Product Specification

PE4251

Product Description

The PE4251 is a HaRP ${ }^{\text {TM }}$ technology-enhanced absorptive single pole double throw (SPDT) RF switch for use in general switching applications and mobile infrastructure. This device offers a flexible supply voltage of $3.3 / 5 \mathrm{~V}$, single-pin or complementary pin control inputs and 4 kV ESD tolerance. It presents a simple alternative solution to pin diode and mechanical relay switches.

Peregrine's HaRPTM technology enhancements deliver high linearity and exceptional performance. It is an innovative feature of the UltraCMOS ${ }^{\circledR}$ process, providing performance superior to GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

UltraCMOS ${ }^{\circledR}$ SPDT RF Switch $10-4000 \mathrm{MHz}$, Absorptive

Features

- HaRPTM technology enhanced
- Low insertion loss: 0.60 dB @ 1000 MHz
- High isolation: 62 dB @ 1000 MHz
- P1dB typical: +30.5 dBm
- IIP3 typical: +59 dBm
- Fast switching time: 150 ns
- Flexible supply voltage: $3.3 \mathrm{~V} \pm 10 \%$ or $5.0 \mathrm{~V} \pm 10 \%$ supply (see Table 3)
- Excellent ESD protection: 4000V HBM
- No blocking capacitors required
- Single pin or complementary control inputs

Figure 2. Package Type
8-lead MSOP with exposed paddle

Table 1. Target Electrical Specifications Temp $=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ or 5.0 V

Parameter	Condition	Min	Typ	Max	Unit
Operation frequency ${ }^{1}$		10		4000	MHz
Insertion loss (RF1/RF2)	10 MHz		0.55	0.60	dB
	1000 MHz		0.60	0.70	dB
	2000 MHz		0.75	0.85	dB
	3000 MHz		0.75	0.90	dB
	4000 MHz		1.0		dB
Isolation (RFC to RF1/RF2)	1000 MHz	61	62		dB
	2000 MHz	51	53		dB
	3000 MHz	42	43		dB
	4000 MHz		37		dB
Return loss	1000 MHz		26		dB
	2000 MHz		23		dB
	3000 MHz		22		dB
	4000 MHz		19		dB
Input 1dB compression ${ }^{2}$	$50-4000 \mathrm{MHz}$		30.5		dBm
Input IP3	$50-4000 \mathrm{MHz},+18 \mathrm{dBm}$ per tone, 5 MHz spacing		59		dBm
Switching time	50% CTRL to 10/90\% RF		150	300	ns

Notes: 1. Device linearity will begin to degrade below 10 MHz .
2. Absolute maximum rating of $P_{\mathrm{IN}}=27 \mathrm{dBm}$.

Table 1A. Target Electrical Specifications Temp $=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ or 5.0 V

Parameter	Condition	Min	Typ	Max	Unit
Operation frequency		50		4000	MHz
Insertion loss (RF1/RF2)	$\begin{array}{\|l\|} \hline 50 \mathrm{MHz} \\ 1000 \mathrm{MHz} \\ 2000 \mathrm{MHz} \\ 3000 \mathrm{MHz} \\ 4000 \mathrm{MHz} \\ \hline \end{array}$		$\begin{gathered} \hline 0.65 \\ 0.75 \\ 0.90 \\ 1.05 \\ 1.2 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Isolation (RFC to RF1/RF2)	$\begin{aligned} & 1000 \mathrm{MHz} \\ & 2000 \mathrm{MHz} \\ & 3000 \mathrm{MHz} \\ & 4000 \mathrm{MHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 62 \\ & 52 \\ & 43 \\ & 36 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Return loss	$\begin{array}{\|l\|} \hline 1000 \mathrm{MHz} \\ 2000 \mathrm{MHz} \\ 3000 \mathrm{MHz} \\ 4000 \mathrm{MHz} \\ \hline \end{array}$		$\begin{aligned} & \hline 24 \\ & 23 \\ & 19 \\ & 18 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Input 1dB compression*	$50-4000 \mathrm{MHz}$		30.5		dBm
Input IP3	$50-4000 \mathrm{MHz},+18 \mathrm{dBm}$ per tone, 5 MHz spacing		57		dBm
Switching time	50% CTRL to 10/90\% RF		200		ns

Note: * Absolute maximum rating of $\mathrm{P}_{\mathrm{IN}}=22 \mathrm{dBm}$.

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
1	V2	This pin supports two interface options: Single-pin control mode. A nominal 3-volt supply connection is required. Complementary-pin control mode. A complementary CMOS control signal to V1 is supplied to this pin.
2	V1	Switch control input, CMOS logic level.
3	RFC	RF common port.*
4	N/C or GND	No connect or ground
5	RF1	RF1 port.*
6	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
7	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
8	RF2	RF2 port.*
Paddle	GND	Exposed ground paddle. Ground for proper device operation

Note: * All RF pins must be DC blocked with an external series capacitor or held at 0 VDC.

Table 3. Operating Ranges

Parameter	Min	Typ	Max	Unit
$V_{D D}$ power supply voltage*	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IDD power supply current $\begin{aligned} & V_{D D}=V_{C N T L}=3.3 \mathrm{~V} \\ & V_{D D}=V_{C N T L}=5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 55 \\ & 75 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Control voltage high	$0.8 \times \mathrm{V}_{\mathrm{DD}}$			V
Control voltage low			$0.2 \times \mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{P}_{\text {IN }}$ RF input power (50) $10 \mathrm{MHz}-4 \mathrm{GHz},+85^{\circ} \mathrm{C}$ $50 \mathrm{MHz}-4 \mathrm{GHz},+125^{\circ} \mathrm{C}$			$\begin{aligned} & 27 \\ & 22 \end{aligned}$	dBm dBm
Top operating temperature range	-40	+25	+125	${ }^{\circ} \mathrm{C}$
T_{ST} storage temperature range	-65	+25	+150	${ }^{\circ} \mathrm{C}$

Note: * Customer must choose either 3.3V or 5.0V power supply range.

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
$V_{\text {DD }}$	Power supply voltage	3	5.5	V
V_{1}	Voltage on any control input	-0.3	5.5	V
$\mathrm{T}_{\text {ST }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$
PIN	RF input power (50 $)$ $10 \mathrm{MHz}-4 \mathrm{GHz},+85^{\circ} \mathrm{C}$ $50 \mathrm{MHz}-4 \mathrm{GHz},+125^{\circ} \mathrm{C}$		$\begin{aligned} & 27 \\ & 22 \end{aligned}$	dBm dBm
$V_{\text {ESD }}$	ESD voltage, HBM ESD voltage, MM (machine model)		$\begin{gathered} 4000 \\ 250 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note: 1. Human body model (MIL_STD 883 Method 3015).
2. Machine model (JEDEC JESD22-A115).

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Latch-Up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Switching Frequency

The PE4251 has a maximum 25 kHz switching rate.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE4251 in the 8-lead MSOP package is MSL1.

Table 5. Single-pin Control Logic Truth Table

Control Voltages	Signal Path
$\begin{aligned} & \text { Pin } 1(\mathrm{~V} 2)=\mathrm{V}_{\mathrm{DD}} \\ & \text { Pin } 2(\mathrm{~V} 1)=\text { High } \end{aligned}$	RFC to RF1
$\begin{aligned} & \operatorname{Pin} 1(\mathrm{~V} 2)=\mathrm{V}_{\mathrm{DD}} \\ & \operatorname{Pin} 2(\mathrm{~V} 1)=\text { Low } \end{aligned}$	RFC to RF2

Table 6. Complementary-pin Control Logic Truth Table

Control Voltages	Signal Path
Pin 1 (V2) = Low Pin 2 (V1) = High	RFC to RF1
Pin 1 (V2) = High Pin 2 (V1) = Low	RFC to RF2

Control Logic Input

The PE4251 is a versatile RF CMOS switch that supports two operating control modes: single-pin control mode and complementary-pin control mode.

Single-pin control mode enables the switch to operate with a single control pin (pin 2) supporting a +3.3 or 5.0 -volt CMOS logic input, and requires a dedicated +3.3 or 5.0 -volt power supply connection (pin 1). This mode of operation reduces the number of control lines required and simplifies the switch control interface typically derived from a CMOS μ Processor I/O port.

Complementary-pin control mode allows the switch to operate using complementary control pins V1 and V2 (pins 2 \& 1), that can be directly driven by +3.3 or 5.0 -volt CMOS logic or a suitable μ Processor I/O port. This enables the PE4251 to operate in positive control voltage mode within the PE4251 operating limits.

Evaluation Kit

The SPDT switch evaluation kit board was designed to ease customer evaluation of the PE4251 SPDT switch. The RF common port is connected through a 50Ω transmission line to the bottom SMA connector, J3. Port 1 and Port 2 are connected through 50Ω transmission lines to two SMA connectors on either side of the board, J4 and J2. A through transmission line connects SMA connectors J5 and J6. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.0322 ". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 0.033 ", trace gaps of $0.010^{\prime \prime}$, dielectric thickness of 0.028 ", copper thickness of 0.0021 " and ε_{r} of 4.3.

J1 provides a means for controlling the DC inputs to the device. The second-to-bottom lower right pin ($\mathrm{J} 1-3$) is connected to the device V1 input. The second-to-top upper right pin ($\mathrm{J} 1-7$) is connected to the device V2 input. Footprints for decoupling capacitors are provided on both V1 and V2 traces. It is the responsibility of the customer to determine proper supply decoupling for their design application. Removing these components from the evaluation board has not been shown to degrade RF performance.

Figure 4. Evaluation Board Layouts

Figure 5. Evaluation Board Schematic

DOC-02389

Figure 6. Insertion Loss: RFC-RF @ +25 ${ }^{\circ} \mathrm{C}$

Figure 8. Isolation: RFC-RF @ +25 ${ }^{\circ} \mathrm{C}$

Figure 7. Insertion Loss: RFC-RF @ 3.3V

Figure 9. Isolation: RFC-RF @ 3.3V

Figure 10. Return Loss at Active Port @ +25 ${ }^{\circ} \mathrm{C}$

Figure 11. Return Loss at Active Port @ 3.3V

Figure 12. Package Drawing
8-lead MSOP

FRONT VIEW

Figure 13. Top Marking Specification

Figure 14. Tape and Reel Specifications
8-lead MSOP with exposed paddle

NITES:

1. LO SRERIKET HIEE PITCH CUMMLHTTYE TLLERMCE 10.2
2. [AMBR IN CDHPLIMNEE VTTH EIA 481
3. Puc:eg positidn relatile to spaiket hie meavpro AS TRE PISITIIN IF PIKEE, NIT PICKET HLE

Table 7. Ordering Information

Order Code	Description	Package	Shipping Method
EK4251-01	PE4251 Evaluation kit	Evaluation kit	$1 /$ Box
PE4251MLI-Z	PE4251 SPDT RF switch	Green 8-lead MSOP, exposed paddle	3000 units / T\&R

Sales Contact and Information

For Sales and contact information please visit www.psemi.com.

[^0]No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

