Product Specification

PE42552

Product Description

The PE42552 RF Switch is designed for use in Test/ATE, cellular and other wireless applications. This broadband general purpose switch maintains excellent RF performance and linearity from DC through 7500 MHz . The PE42552 integrates on-board CMOS control logic driven by a single-pin, low voltage CMOS control input. It also has a logic select pin which enables changing the logic definition of the control pin. Additional features include a novel user defined logic table, enabled by the on-board CMOS circuitry. The PE42552 also exhibits outstanding isolation of 44 dB at 7500 MHz , fast settling time, and is offered in a tiny $3 \times 3 \mathrm{~mm}$ QFN package.

The PE42552 is manufactured on Peregrine's UltraCMOS ${ }^{\text {TM }}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

SPDT UltraCMOS ${ }^{\text {TM }}$ RF Switch DC - 7500 MHz

Features

- HaRPTM-Technology-Enhanced
- Eliminates Gate and Phase Lag
- No insertion loss or phase drift
- Fast settling time
- High linearity: 65 dBm IIP3
- Low insertion loss: 0.65 dB at 3.0 GHz , 35 dB at $6.0 \mathrm{GHz}, 1.0$ at 7.5 GHz igh isolation of 47 dB at 3.0 GHz , 44 dB at 7.5 GHz 1 dB compression pont: 34.5 dBm typ. Logic Select pin to invert logic control High ESD: 1000 W FBM
Absorptive switondesion tandard $3 \times 3 \mathrm{~mm}$ FN package

Figure 1. Functional Diagram

Figure 2. Package Type

Table 1. Target Electrical Specifications $\operatorname{Temp}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bp}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V} /-3.3 \mathrm{~V}$

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
2	RF1	RF Port 1
$1,3,4,5,6$, $8,9,10,12$	GND	Ground
7	RFC	RF Common
11	RF2	RF Port 2
13	VSS	Negative supply voltage or GND connection (Note 1)
14	CTRL	CMOS level:
15	LS	Logic Select - Used to determine the definition for the CTRL pin (see Table 5)
16	V $_{\text {DD }}$	Nominal 3.3 V supply connection

Note: 1. Use VSS (pin 13, VSS = -VDD) to bypass and disab internal negative voltage generator. Connect VS (VSS $=0 \mathrm{~V}$) to enable internal negative voltage generator.
Table 3. Operating Ranges

Table 3. Operating Ranges			
Parameter	Min		
V ${ }_{\text {DD }}$ Positive Power Supply Volta			
VSS Negative Power Supply Voltage (external power supply used)		-3.0	
$\begin{array}{l}V_{\text {SS }} \text { Negative Power Supply Voltage } \\ \text { (internal power supply used) }\end{array}$ 0.1 0.0 0.0			
$I_{D D}$ Power Supply Current $\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\right.$, Temp $\left.=+85^{\circ} \mathrm{C}\right)$		15 120	$\mu \mathrm{A}$
Iss Negative Supply $\left(\mathrm{V}_{\mathrm{SS}}=-\mathrm{V}_{\mathrm{DD}}, \mathrm{Temp}=25^{\circ} \mathrm{C}\right)$		-10	$\mu \mathrm{A}$
Control Voltage High	0.7 x		V
Control Voltage Low		$0.3 x V_{D D}$	V
$\mathrm{T}_{\text {OP }}$ Operating temperature range		85	${ }^{\circ} \mathrm{C}$
RF Power $\operatorname{In}^{1}\left(\mathrm{P}_{\mathrm{IN}}\right)$:		$\begin{gathered} \text { fig. } 4,5 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$

Note: 1. Please constilt low requency graphs on page 3 for recommended operating power Jevel.

MoistureSensitivity Level

The Moisture Sensitivity Level rating for the PE42552 in the 16 -lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL1.

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
$V_{D D}$	Power supply voltage	-0.3	4.0	V
V_{1}	Voltage on any input except for CTRL and LS inputs	-0.3	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}+ \\ 0.3 \\ \hline \end{gathered}$	V
$V_{\text {CTRL }}$	Voltage on CTRL input		4.0	V
$\mathrm{V}_{\text {LS }}$	Voltage on LS input		4.0	V
$\mathrm{T}_{\text {ST }}$	Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$
Pin	Input Power: $9 \mathrm{kHz} \leq 1 \mathrm{MHz}$ $1 \mathrm{MHz} \leq 7.5 \mathrm{GHz}$		$\begin{gathered} \text { fig. } 4,5 \\ 30 \end{gathered}$	dBm dBm
$\mathrm{V}_{\text {ESD }}$	ESD voltage (HBM) ESD voltage (Machine M		$\begin{gathered} 1000 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note: 1. Human Body Model (HBM, MLL STD 883 Method 3015.7)
Exceeding absolute maximum ratìngs may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolvte maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOSw device, observe the same precautions that yo would with other ESDsensitive devices. Although this device contains ircuitry to protect it from damage due to ESD, precautions show be ajea to avoid exceeding the rating specified

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\text {TM }}$ deviees are mane to latch-up.

Table 5.Control Logic Truth Table

$\mathbf{L} \boldsymbol{S}$	CTRL	RFC-RF1	RFC-RF2
0	0	off	on
0	1	on	off
1	0	on	off
1	1	off	on

Logic Select (LS)

The Logic Select feature is used to determine the definition for the CTRL pin.

Spurious Performance

The typical spurious performance of the PE42552 is -116 dBm when $\mathrm{VSS}=0 \mathrm{~V}$ (pin $13=\mathrm{GND}$). If further improvement is desired, the internal negative voltage generator can be disabled by setting VSS = -VDD.

Switching Frequency

The PE42552 has a maximum 25 kHz switching rate when the internal negative voltage generator is used (pin 13=GND). The rate at which the PE42552 can be switched is only limited to the switching time (Table 1) if an external negative supply is provided at (pin13=VSS).

Low Frequency Power Handling: $Z_{L}=50 \Omega$

Figure 4 provides guidelines of how to adjust the Vdd and input Power to the 42552 device. The upper limit curve represents the maximum Input Power vs Vdd recommended for this part.

Figure 4. Maximum Operating Power Limit vs. Vdd and Input Power @ 9 KHz
 max power should be kept 6 dB lower than max power in $50-\mathrm{hm}$.

Performance Plots: Temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise indicated

Figure 6. Nominal Insertion Loss: RF1, RF2

Figure 7. Insertion Loss: RFX @ 3.3 V

Figure 9. Isolation: Active por to

Figure 11. Isolation: RFC to Isolated Port @ 3.3 V

Performance Plots: Temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise indicated

Figure 12. Isolation: RFC to Isolated Port @ $25^{\circ} \mathrm{C}$

Figure 14. Return Loss at active port @ $25^{\circ} \mathrm{C}$

Figure 13. IIP3: Third Order Distortion from 10kHz-7.5GHz

Figure 15. Return Loss_at active port @ 3.3 V

Evaluation Kit

The SPDT switch EK Board was designed to ease customer evaluation of Peregrine's PE42552. The RF common port is connected through a 50Ω transmission line via the top SMA connector, J1. RF1, RF2, RF3 and RF4 are connected through 50Ω transmission lines via SMA connectors J 3 , J 5 , J 2 and J 4 , respectively. A through 50Ω transmission is available via SMA connectors J6 and J7. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The evaluation kit board is constructed of four metal layers. The dual clad top RF layer is Rogers RO4003 material with an 8 mil RF core and er $=3.55$. The other two dielectric layers are FR4 for DC control and overall board strength with an cumulative board thickness of 60 mils. The RF transmission lines were designed using a Grounded co-planar waveguide with a linewidth of

Figure 16. Evaluation Board Layouts
Peregrine Specification 101/0334

Figure 17. Evaluation BoardSchematic eregrine Specification $102 / 0404$

Figure 18. Package Drawing (mm)
16-lead 3x3 mm QFN

Figure 19. Tape and Reel Specifications
16-lead 3×3 mm QFN

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive
Peregrine Semiconductor, Asia Pacific (APAC)
San Diego, CA 92121
Tel: 858-731-9400
Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine
13-15 rue des Quatre Vents
F-92380 Garches, France
Tel: +33-1-4741-9173
Fax : +33-1-4741-9173

Hi-Rel and Defense Products

Americas:

Tel: 858-731-9453

Europe, Asia Pacific:

180 Rue Jean de Guiramand 13852 Aix-En-Provence Cedex 3, France
Tel: +33-4-4239-3361
Fax: +33-4-4239-7227

For a list of representatives in your area

Data Sheet Identification

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

