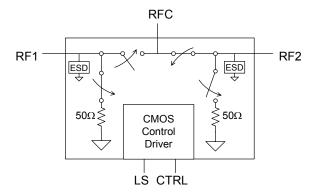


Product Specification PE42556 Flip Chip

Product Description

The PE42556 RF Switch is designed for use in Test/ATE, cellular and other wireless applications. This broadband general purpose switch maintains excellent RF performance and linearity from 9kHz through 13500 MHz. The PE42556 integrates on-board CMOS control logic driven by a single-pin, low voltage CMOS control input. It also has a logic select pin which enables changing the logic definition of the control pin. Additional features include a novel user defined logic table, enabled by the on-board CMOS circuitry. The PE42556 also exhibits excellent isolation of 26 dB at 13500 MHz, fast settling time, and is offered in a tiny Flip Chip package.


The PE42556 is manufactured on Peregrine's UltraCMOS[™] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

SPDT UltraCMOS[™] RF Switch 9 kHz - 13500 MHz

Features

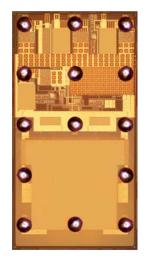

- HaRPTM-Technology-Enhanced
 - Eliminates Gate Lag
 - No insertion loss or phase drift
 - Fast settling time
- Next Gen 0.25 µm Process Technology
- Single-pin 3.3 V CMOS logic control
- High Isolation: 26 dB@ 13.5 GHz
- Low Insertion Loss: 1.7 dB @ 13.5 GHz
- P1dB: 33 dBm typical
- Return Loss: 13 dB @ 13.5 GHz (typ)
- IIP3: +56 dBm typical
- Exceptional ESD: 4000 V HBM
- Absorptive Switch Design
- Flip Chip packaging

Figure 1. Functional Diagram

Figure 2. Die Photo (Bumps Up)

Flip Chip Packaging

Table 1. Electrical Specifications: Temp = 25°C, V_{DD} = 3.3V

Parameter	Conditions	Min	Typical	Max	Units
Operation Frequency		9 kHz		13500 MHz	As shown
Insertion Loss	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz		0.85 0.92 0.98 1.07 1.74	0.93 1.06 1.23 1.41 2.65	dB dB dB dB dB
Isolation – RF1 to RF2	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	76.5 43.5 30.0 24.0 15.5	88.5 46.0 31.5 25.5 17.5		dB dB dB dB dB
Isolation – RFC to RF1	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	72.5 39.0 31.5 27.0 21.5	84.0 40.5 33.0 30.5 26.5		dB dB dB dB dB
Isolation – RFC to RF2	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	75.5 39.5 31.5 27.5 21.0	87.0 41.0 33.0 30.5 26.0		dB dB dB dB dB
Return Loss	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz		22.5 22.0 17.0 16.0 13.0		dB dB dB dB dB
Settling Time	50% CTRL to 0.05 dB final value (-40 to +85 °C) Rising Edge 50% CTRL to 0.05 dB final value (-40 to +85 °C) Falling Edge		8.5 9.5	10.0 13.5	μs μs
Switching Time	50% CTRL to 90% or 10% of final value (-40 to +85 °C)		3.3	4.0	μs
Input 1 dB Compression ^{1,2}	13500 MHz		33		dBm
Input IP3 ¹	13500 MHz		56		dBm
Input IP2 ¹	13500 MHz		107.5		dBm

1. Linearity and power performance are derated at lower frequencies (< 1 MHz) 2. Please refer to Maximum Operating Pin (50Ω) in Table 3 Note:

Figure 3. Bump Configuration (Bumps Up)

Flip Chip Packaging

	uging	
Vdd	CTRL	Vss
(11)	(12)	(1)
LS	D-GND	D-GND
(10)	(13)	2
GND	DGND	GND
9	(14)	3
RF1 (B) GND	RFC	RF2 (4) GND
(7)	(6)	(5)

Table 2. Bump Descriptions

Bump No.	Bump Name	Description
1	V_{SS}	Negative supply voltage or GND connection (Note 3)
2, 13, 14	D-GND	Digital Ground
3, 5, 7, 9	GND	Ground
4	RF2	RF Port 2
6	RFC	RF Common
8	RF1	RF Port 1
10	LS	Logic Select - Used to determine the definition for the CTRL pin (see Table 5)
11	V _{DD}	Nominal 3.3 V supply connection
12	CTRL	CMOS logic level

Note: 3. Use VSS (bump 1, VSS = -VDD) to bypass and disable internal negative voltage generator. Connect VSS (bump 1) to GND (VSS = 0V) to enable internal negative voltage generator.

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Units
V _{DD} Positive Power Supply Voltage	3.0	3.3	3.6	V
V _{DD} Negative Power Supply Voltage	-3.6	-3.3	-3.0	V
I_{DD} Power Supply Current (V _{ss} = -3.3V, V _{DD} = 3.0 to 3.6V, -40 to +85 °C)		8.0	12.5	μA
I_{DD} Power Supply Current ($V_{ss} = 0V, V_{DD} = 3.0$ to 3.6V, -40 to +85 °C)		21.5	29.0	μA
$\label{eq:lss} \begin{array}{l} I_{SS} \mbox{ Negative Power Supply} \\ Current \\ (V_{ss} = -3.3V, \ V_{DD} = 3.0 \ to \\ 3.6V, \ -40 \ to \ +85 \ ^{\circ}C) \end{array}$		-18.0	-24.0	μA
Control Voltage High	$0.7 \mathrm{xV}_{\mathrm{DD}}$			V
Control Voltage Low			$0.3 x V_{DD}$	V
P _{IN} RF Power In⁴ (50Ω): 9 kHz ≤ 1 MHz 1 MHz ≤ 13.5 GHz			fig. 4,5 30	dBm dBm

Note: 4. Please consult Figures 4 and 5 (low-frequency graphs) for recommended low-frequency operating power level.

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V _{DD}	Power supply voltage	-0.3	4.0	V
Vi	Voltage on any input except for CTRL and LS inputs	-0.3	V _{DD} + 0.3	V
V _{CTRL}	Voltage on CTRL input		4.0	V
V _{LS}	Voltage on LS input		4.0	V
T _{ST}	Storage temperature range	-65	150	S°
T _{OP}	Operating temperature range	-40	85	S
P _{IN} ⁵ (50Ω)	9 kHz ≤ 1 MHz		fig. 4,5	dBm
$\Gamma_{\rm IN}^{-1}(5022)$	1 MHz ≤ 13.5 GHz		30	dBm
V	ESD voltage (HBM) ⁶		4000	V
V _{ESD}	ESD voltage (Machine Model)		300	V

Note: 5. Please consult Figures 4 and 5 (low-frequency graphs) for recommended low-frequency operating power level.

6. Human Body Model (HBM, MIL_STD 883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[™] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[™] devices are immune to latch-up.

Table 5. Control Logic Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	off	on
0	1	on	off
1	0	on	off
1	1	off	on

Logic Select (LS)

The Logic Select feature is used to determine the definition for the CTRL pin.

Spurious Performance

The typical spurious performance of the PE42556 is -116 dBm when VSS=0V (bump 1 = GND). If further improvement is desired, the internal negative voltage generator can be disabled by setting VSS = -VDD.

Switching Frequency

The PE42556 has a maximum 25 kHz switching rate when the internal negative voltage generator is used (bump1=GND). The rate at which the PE42556 can be switched is only limited to the switching time (Table 1) if an external negative supply is provided (bump1=VSS).

©2009-2010 Peregrine Semiconductor Corp. All rights reserved.

Low Frequency Power Handling: $Z_L = 50\Omega$

Figure 4 provides guidelines of how to adjust the Vdd and Input Power to the PE42556 device. The upper limit curve represents the maximum Input Power vs Vdd recommended for this part at low frequencies only. Please consult Table 3 for the 1 MHz \leq 13.5 GHz range.

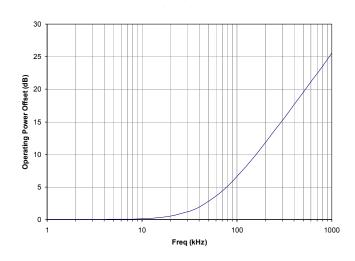

vs. Vdd and Input Power @ 9 KHz — Upper Power Limit

Figure 4. Maximum Operating Power Limit

6 4 Input Power (dBm) 2 0 -2 -4 -6 -8 -10 -12 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 Vdd (V)

To allow for sustained operation under any load VSWR condition, max power should be kept 6dB lower than max power in 50 Ohm.

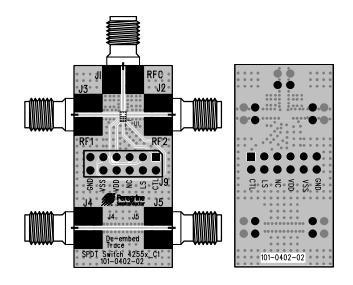
Figure 5 shows how the power limit in Figure 4 will increase with frequency. As the frequency increases, the contours and Maximum Power Limit Curve will increase with the increase in power handling shown on the curve.

Figure 5. Operating Power Offset vs. Frequency (Normalized to 9kHz)

Power Handling Examples

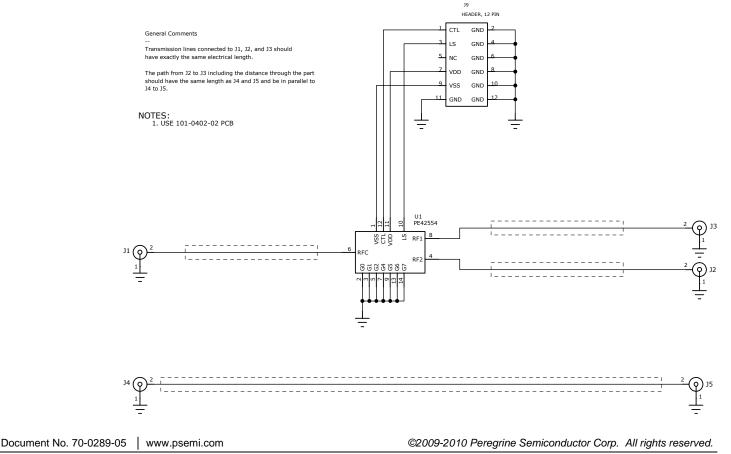
Example 1: Maximum power handling at 100 kHz, Z=50 ohms, VSWR 1:1, and Vdd=3V

- The power handling offset for 100 kHz from *Fig. 5* is 7 dB
- The max power handling at Vdd = 3 V is 5.5 dB from *Fig. 4*
- Derate power under mismatch conditions
- Total maximum power handling for this example is 7 dB + 5.5 dB = 12.5 dBm

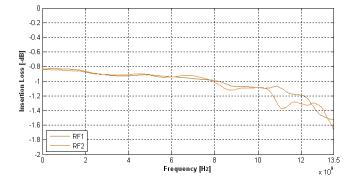

Evaluation Kit

The SPDT switch EK Board was designed to ease customer evaluation of Peregrine's PE42556 (dual use with PE42554). The RF Common port is connected through a 50ohm transmission line via the top SMA connector, J1. RF1 and RF2 are connected through 50ohm transmission lines via SMA connectors J3, and J2, respectively. A through 50ohm transmission line is available via SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a four metal layers with a total thickness of 62 mils. The top and bottom layers are ROGERS RO4003 material with an 8 mil core and Er=3.55. The middle layers provide ground for the transmission lines. The RF transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 15 mils, and trace gaps of 10 mils.


Figure 6. Evaluation Board Layouts

Peregrine Specification 101/0402


Figure 7. Evaluation Board Schematic

Peregrine Specification 102/0478

Performance Plots: Temperature = 25 °C, V_{DD} = 3.3 V unless otherwise indicated

Figure 8. Nominal Insertion Loss: RF1, RF2

Peregrine Semiconductor

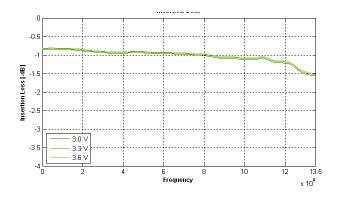
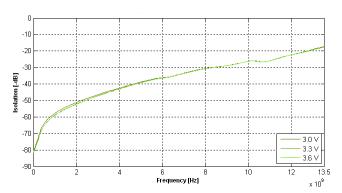
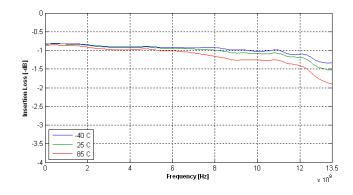




Figure 12. Isolation: Active Port to Isolated Port @ 25 °C

Figure 9. Insertion Loss: RFX @ 3.3 V

Figure 11. Isolation: Active Port to Isolated Port @ 3.3 V

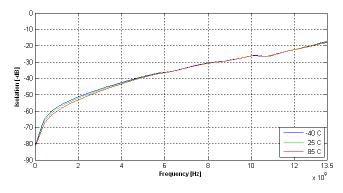
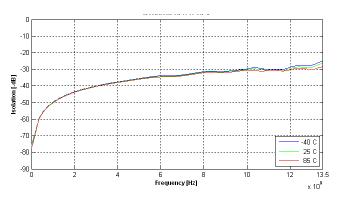
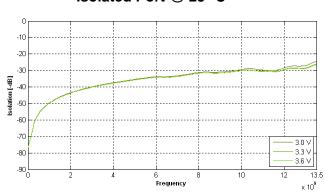
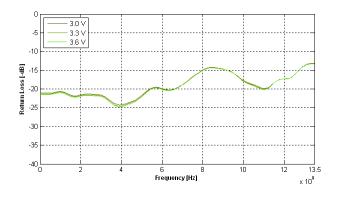




Figure 13. Isolation: RFC to Isolated Port @ 3.3 V



Performance Plots: Temperature = 25 °C, V_{DD} = 3.3 V unless otherwise indicated

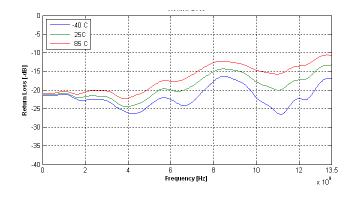


Figure 14. Isolation: RFC to Isolated Port @ 25 °C

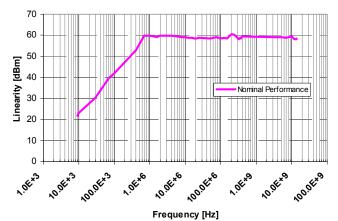

Figure 16. Return Loss at active port @ 25 °C

Figure 15. Return Loss at active port @ 3.3 V

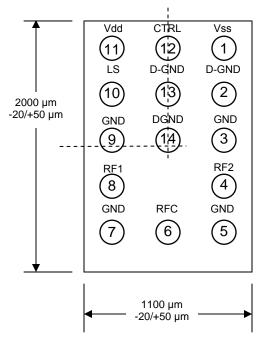
Figure 17. IIP3: Third Order Distortion from 9kHz - 14GHz

Table 6. Mechanical Specifications

Parameter	Minimum	Typical	Maximum	Units	Test Conditions
Die Size, Drawn (x,y)		996 x 1896		μm	As drawn
Die Size, Singulated (x,y)	1080 x 1980	1100 x 2000	1150 x 2050	μm	Including excess sapphire, max. tolerance = -20/+50 μm
Wafer Thickness	180	200	220	μm	
Wafer Size		150		mm	
Ball Pitch		400		μm	
Ball Height	72.25	85	97.75	μm	
Ball Diameter		110		μm	Typical
UBM Diameter	85	90	95	μm	

RoHS compliant lead-free solder balls

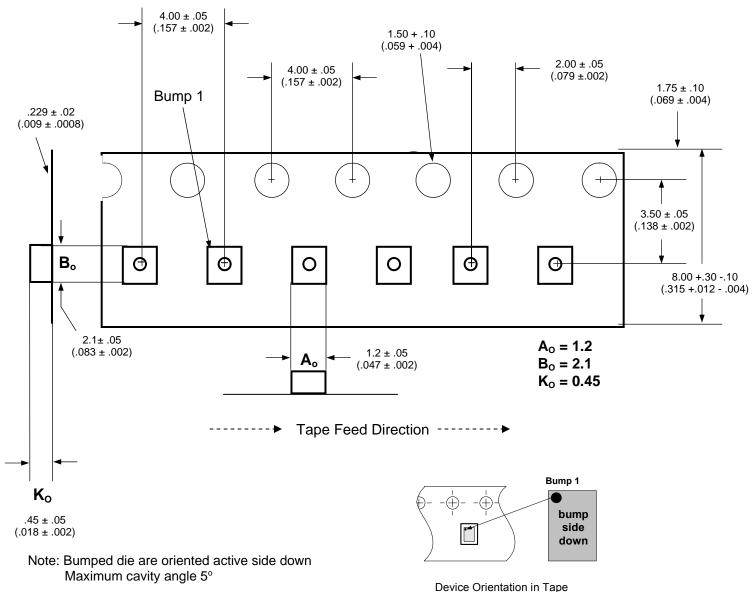
• Solder ball composition: 95.5%Sn/3.5%Ag/ 1.0%Cu


Table 7. Bump Coordinates

D	Burne Nome	Bump Center (µm)		
Bump #	Bump Name	Х	Y	
1	VSS	400	850	
2	DGND	400	450	
3	GND4	400	50	
4	RF2	400	-350	
5	GND3	400	-750	
6	RFC	0	-750	
7	GND1	-400	-750	
8	RF1	-400	-350	
9	GND2	-400	50	
10	LS	-400	450	
11	VDD	-400	850	
12	CTRL	0	850	
13	DGND	0	450	
14	DGND	0	50	

All bump locations originate from the die center and refer to the center of the bump.

Ball pitch is 400 µm.


Figure 18. Pad Layout (Bumps Up)

Singulated Die size: 1.1 X 2.0 mm (400um ball pitch)

.

Drawing not drawn to scale, Pocket hole diameter 0.6±0.05mm

Table 8. Ordering Information

Order Code	Package	Specification	Shipping Method
PE42556DI	Die on cut Tape and Reel	81-0012	Loose or cut tape
PE42556DI-Z	Die on full Tape and Reel	81-0012	1,000 Dice / Reel
PE42556DBI	Die in waffle pack	81-0015	204 Dice / Waffle pack
EK42556-01	Evaluation Kit		1/ box

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax : +33-1-4741-9173

High-Reliability and Defense Products

Americas San Diego, CA, USA Phone: 858-731-9475 Fax: 848-731-9499

Europe/Asia-Pacific Aix-En-Provence Cedex 3, France Phone: +33-4-4239-3361 Fax: +33-4-4239-7227

Peregrine Semiconductor, Asia Pacific (APAC)

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

Peregrine Semiconductor, Korea

#B-2607, Kolon Tripolis, 210 Geumgok-dong, Bundang-gu, Seongnam-si Gyeonggi-do, 463-943 South Korea Tel: +82-31-728-3939 Fax: +82-31-728-3940

Peregrine Semiconductor K.K., Japan

Teikoku Hotel Tower 10B-6 1-1-1 Uchisaiwai-cho, Chiyoda-ku Tokyo 100-0011 Japan Tel: +81-3-3502-5211 Fax: +81-3-3502-5213

For a list of representatives in your area, please refer to our Web site at: www.psemi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

©2009-2010 Peregrine Semiconductor Corp. All rights reserved.

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0289-05 | UltraCMOS[™] RFIC Solutions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Switch ICs category:

Click to view products by pSemi manufacturer:

Other Similar products are found below :

 MASW-007921-002SMB
 BGSA142GN12E6327XTSA1
 BGSA142MN12E6327XTSA1
 BGSA142M2N12E6327XTSA1
 MASW-004100

 11930W
 MASW-008853-TR3000
 BGS13SN8E6327XTSA1
 BGSF18DM20E6327XUMA1
 BGSX210MA18E6327XTSA1
 MASW-004100

 BGSX212MA18E6327XTSA1
 SKY13446-374LF
 SW-227-PIN
 PE42524A-X
 CG2185X2
 CG2415M6
 MA4AGSW1A
 MA4AGSW2

 MA4AGSW3
 MA4AGSW5
 MA4SW210B-1
 MA4SW410
 MASW-002102-13580G
 MASW-008955-TR3000
 BGS 12PL6 E6327

 BGS1414MN20E6327XTSA1
 BGS1515MN20E6327XTSA1
 BGSA11GN10E6327XTSA1
 BGSX28MA18E6327XTSA1
 HMC199AMS8

 HMC595AETR
 HMC986A
 SKY13374-397LF
 SKY13453-385LF
 CG2430X1-C2
 TGS2353-2-SM
 TGS4304
 UPG2162T5N-A
 CG2415M6

 C2
 AS222-92LF
 SW-314-PIN
 UPG2162T5N-E2-A
 BGS18GA14E6327XTSA1
 MASWS0204TR-3000
 MASWS0201TR

 MASWS0181TR-3000
 MASW-007588-TR3000
 MASW-007075-000100
 MASW-004103-13655P
 MASW-003102-13590G

 MASWS0202TR-3000
 MASW-007075-000100
 MASW-004103-13655P
 MASW-003102-13590G