Product Specification

PE43205

Product Description

The PE43205 is a 50Ω, HaRP ${ }^{\text {TM }}$ technology-enhanced fast switching 2-bit RF Digital Step Attenuator (DSA) designed for use in 3G/4G wireless infrastructure and other high performance RF applications.

This DSA is a pin-compatible upgraded version of the PE43204 with a wider frequency and power supply range, and extended operating temperature range.

Covering an 18 dB attenuation range in 6 dB and 12 dB steps, it maintains high RF performance and low power consumption from 35 MHz through 6 GHz . PE43205 is offered in a 12-lead $3 \times 3 \mathrm{~mm}$ QFN package. In addition, no external blocking capacitors are required if 0 VDC is present on the RF ports.

The PE43205 is manufactured on Peregrine's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-oninsulator (SOI) technology on a sapphire substrate.

Peregrine's HaRP ${ }^{\text {TM }}$ technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

UltraCMOS ${ }^{\circledR}$ RF Digital Attenuator
 2-bit, $18 \mathrm{~dB}, 35-6000 \mathrm{MHz}$

Features

- Attenuation: $6 \mathrm{~dB} / 12 \mathrm{~dB}$ steps to 18 dB
- Fast switching time of 29 ns
- Low attenuation error
- 0.10 dB @ 2 GHz
- 0.15 dB @ 3 GHz
- High linearity
- +61 dBm IIP3 @ 1950 MHz
- Wide supply range of 2.3 V to 5.5 V
- 1.8 V control logic compatible
- $105^{\circ} \mathrm{C}$ operating temperature
- ESD performance
- 2 kV HBM on all pins
- 100V MM on all pins
- 1 kV CDM on all pins
- Parallel control

Figure 2. Package Type
12-lead 3×3 mm QFN

Table 1. Electrical Specifications $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 5.5 V

Parameter	Condition	Min	Typ	Max	Unit
Frequency range		35		6000	MHz
Attenuation range	6 dB and 12 dB steps		0-18		dB
Insertion loss	$\begin{aligned} & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.50 \\ & 0.60 \\ & 0.70 \\ & 0.85 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.70 \\ & 0.80 \\ & 1.10 \\ & 1.30 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Attenuation error	$\begin{aligned} & 0 \mathrm{~dB}-18 \mathrm{~dB} \text { attenuation settings } \\ & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & >2-3 \mathrm{GHz} \\ & >3-4 \mathrm{GHz} \\ & >4-5 \mathrm{GHz} \\ & >5-6 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -0.25 \\ & -0.20 \\ & -0.15 \\ & -0.15 \\ & -0.30 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.15 \\ & 0.45 \\ & 0.55 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.50 \\ & 1.05 \\ & 1.25 \\ & 1.55 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return loss	$\begin{aligned} & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 17 \\ 14 \\ 11 \\ 10 \\ 9 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Relative phase	$\begin{aligned} & \text { All states } \\ & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 9 \\ 12 \\ 17 \\ 22 \\ 24 \end{gathered}$		deg deg deg deg deg
Input 0.1 dB compression point *	$200 \mathrm{MHz}-6 \mathrm{GHz}$		30		dBm
IIP3	1950 MHz		61		dBm
Switching time	50% DC CTRL to 90% or 10\% RF		29		ns

Note: * Input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for operating RF input power (50 5).

Table 1A. Electrical Specifications $@+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 5.5 V

Parameter	Condition	Min	Typ	Max	Unit
Frequency range		35		6000	MHz
Attenuation range	6 dB and 12 dB steps		0-18		dB
Insertion loss	$\begin{aligned} & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.65 \\ & 0.80 \\ & 0.95 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.80 \\ & 0.90 \\ & 1.20 \\ & 1.45 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Attenuation error	$\begin{aligned} & 0 \mathrm{~dB}-18 \mathrm{~dB} \text { attenuation settings } \\ & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & >2-3 \mathrm{GHz} \\ & >3-4 \mathrm{GHz} \\ & >4-5 \mathrm{GHz} \\ & >5-6 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -0.35 \\ & -0.45 \\ & -0.45 \\ & -0.35 \\ & -0.45 \end{aligned}$	$\begin{gathered} -0.03 \\ -0.10 \\ -0.15 \\ 0.25 \\ 0.40 \end{gathered}$	$\begin{aligned} & 0.25 \\ & 0.30 \\ & 0.65 \\ & 0.85 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Return loss	$\begin{aligned} & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 18 \\ & 15 \\ & 11 \\ & 10 \\ & 9.5 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Relative phase	$\begin{aligned} & \text { All states } \\ & 35 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-3 \mathrm{GHz} \\ & 3-4 \mathrm{GHz} \\ & 4-5 \mathrm{GHz} \\ & 5-6 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 9 \\ 13 \\ 17 \\ 23 \\ 25 \end{gathered}$		deg deg deg deg deg
Input 0.1dB compression point *	$200 \mathrm{MHz}-6 \mathrm{GHz}$		30		dBm
IIP3	1950 MHz		63		dBm
Switching time	50% DC CTRL to 90% or 10\% RF		31		ns

Note: * Input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for operating RF input power (50Ω).

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
1	GND	Ground
2	RF1 2	RF1 port
3	NC^{1}	No connect
4	NC^{1}	No connect
5	NC^{1}	No connect
6	NC^{1}	No connect
7	NC^{1}	No connect
8	RF^{2}	RF2 port
9	GND^{2}	Ground
10	C 2	Attenuation control bit, 12 dB
11	C 1	Attenuation control bit, 6 dB
12	$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage (nominal 3.3V)

Notes: 1. Pins 3 through 7 may be tied to ground if desired, but they are not connected to ground internal to the package. 2. RF pins 2 and 8 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	$V_{D D}$	2.3		5.5	V
Supply current	I_{DD}		130	200	$\mu \mathrm{A}$
Digital input high	V_{IH}	1.17		3.6	V
Digital Input Low	$\mathrm{V}_{\text {IL }}$	-0.3		0.6	V
Digital input leakage				10	$\mu \mathrm{A}$
$\begin{gathered} \text { RF input power, CW } \\ 35 \mathrm{MHz}-4 \mathrm{GHz} \\ >4 \mathrm{GHz}-6 \mathrm{GHz} \end{gathered}$	$\mathrm{P}_{\text {MAX,CW }}$			See Fig. 4 +24	dBm dBm
RF input power, pulsed * $\begin{aligned} & 35 \mathrm{MHz}-4 \mathrm{GHz} \\ & >4 \mathrm{GHz}-6 \mathrm{GHz} \\ & \hline \end{aligned}$	$\mathrm{P}_{\text {MAX, Pulsed }}$			See Fig. 4 $+27$	dBm dBm
Operating temperature range	T_{OP}	-40	+25	+105	${ }^{\circ} \mathrm{C}$

Note: * Pulsed, 5\% duty cycle of $4620 \mu \mathrm{~s}$ period, 50Ω
Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-0.3	5.5	V
Voltage on any digital input	V_{I}	-0.3	3.6	V
Storage temperature range	T_{ST}	-65	+150	${ }^{\circ} \mathrm{C}$
Maximum input power	$\mathrm{P}_{\mathrm{MAX}, \mathrm{ABS}}$		+27.5	dBm
ESD voltage HBM^{1}, on all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{HBM}}$		2000	V
ESD voltage MM^{2}, on all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{MM}}$		100	V
ESD voltage CDM^{3}, on all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{CDM}}$		1000	V

Notes: 1. Human Body Model (MIL-STD 883 Method 3015.7)
2. Machine Model (JEDEC JESD22-A115)
3. Charged Device Model (JEDEC JESD22-C101)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Switching Frequency

The PE43205 has a maximum 25 kHz switching rate. Switching rate is defined to be the speed at which the DSA can be toggled across attenuation states. Switching time is the time duration between the point the control signal reaches 50\% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Table 5. Attenuation Word Truth Table

C1	C2	Attenuation Setting RF1-RF2
L	L	Reference I.L.
H	L	6 dB
L	H	12 dB
H	H	18 dB

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE43205 in the 12-lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL1.

Exposed Solder Pad Connection

The exposed solder pad on the bottom of the package must be grounded for proper device operation.

Spurious Performance

The typical low-frequency spurious performance of the PE43205 is -135 dBm .

Figure 4. Power De-Rating Curve for 35 MHz-4 GHz

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise specified

Figure 5. Attenuation vs. Attenuation Setting

Figure 7. Insertion Loss vs. Temperature

Figure 9. Output Return Loss vs. Attenuation State

Figure 6. Attenuation Error vs. Frequency

Figure 8. Input Return Loss vs. Attenuation State

Figure 10. Input Return Loss vs. Temperature @ 12 dB State

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise specified

Figure 11. Output Return Loss vs. Temperature @ 12 dB State

Figure 12. Relative Phase vs. Frequency

Evaluation Kit

The 2-bit DSA evaluation kit board was designed to ease customer evaluation of Peregrine's PE43205.

To evaluate the PE43205, apply 3.3V to the Vdo header pin and Ground to the GND header pin. The DUT can be controlled two ways:

1. The mechanical switches in conjunction with the VCTL pin can be used. Apply desired control voltage to VCTL header pin. The top mechanical switch controls the 6 dB stage, the bottom mechanical switch controls the 12 dB stage. For each switch, the left position is the OV condition, while the right position is the V ctrl condition. The middle position leaves the control pin floating.
2. The CTL1 and CTL2 pins on the header can be used. Each pin directly controls the 6 dB and 12 dB stage respectively. The VCTL pin on the header is left open. The mechanical switches may be left uninstalled or must be kept in the middle position.

Note: To accurately measure the fast switching performance of the PE43205, C3 and C4 should be removed.

Power-up Control Settings

The PE43205 will always power up into the state determined by the voltages on the two control pins. The DSA can be preset to any state within the 18 dB range by pre-setting the parallel control pins prior to power-up. There is a $10 \mu \mathrm{~s}$ delay between the time the DSA is powered-up to the time the desired state is set. If the control pins are left floating during power-up, the device will default to the minimum attenuation setting (insertion loss state).

Figure 13. Evaluation Board Layout

Figure 14. Evaluation Board Schematic

Notes: 1. Use PCB part number PRT-53374.
DOC-30927
2. CAUTION: Contains parts and assemblies susceptible to damage by electrostatic discharge (ESD).

PE43205

Figure 15. Package Drawing
12-lead 3x3 mm QFN

Note: Pin 1 identification tab is electrically connected to the exposed ground paddle.

Figure 16. Top Marking Specifications

$$
\begin{aligned}
\bigcirc & =\text { Pin } 1 \text { designator } \\
43205 & =\text { Five digit part number } \\
\text { YYWW } & =\text { Date Code, last two digits of the year and work week } \\
\text { ZZZZZZ } & =\text { Maximum six characters of the assembly lot code }
\end{aligned}
$$

Figure 7. Tape and Reel Drawing

SECTIDN A - A

	A0 $=3.30$
ES:	$\mathrm{BR}=3.30$
	$k 0=1.10$

1. 10 SPRITKET HOLE PTTCH [UKHLLLTTVE TILERMIE 50.2
2. CAMER IN CIMPLINIE MITH EIA 48l
 AS TAE PISITIDN F PICKET, NII PICKET HEE

Device Orientation in Tape

Table 6. Ordering Information

Ordering Code	Description	Package	Shipping Method
PE43205MLAA-Z	PE43205 Digital step attenuator	Green 12-lead 3x3 mm QFN	3000 units/T\&R
EK43205-01	PE43205 Evaluation kit	Evaluation kit	$1 / B o x$

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVALADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z F0440EVBI F1241EVBI F1423EVB-DI F1423EVB-SI F1701EVBI F1751EVBI F2250EVBI MICRF219A-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223-HMC789ST89E ADL5363EVALZ ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436-HMC1010LP4E DEMOBOARD-U2790B ATR2406-PNQW EKIT01-HMC1197LP7F Si4705-D60-EVB Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331-08-EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL_PAN4555ETU EVAL01-HMC1041LC4

