

Magellan[®] Family of Motion Control ICs

The **Magellan Family of Motion Control ICs** provide advanced motion control for medical, scientific, automation, industrial, and robotic applications. Available in 1, 2, 3, and 4-axis versions, these flexible, programmable devices control Brushless DC, DC Brush, and step motors.

A Powerful Motion Controller

Magellan Motion ICs are complete motion controllers requiring only an external bridge circuit or amplifier to be functional. They are driven by a host using either a parallel bus, SPI (Serial Peripheral Interface), CANbus 2.0B, or RS232/485 serial. User selectable profiling modes include S-curve, trapezoidal, velocity contouring and electronic gearing. PID servo loop compensation utilizes a 32-bit position error and includes velocity and acceleration feedforward. High performance FOC (field oriented control) provides high accuracy, ultra-low noise motor operation.

Easy to Use and Program

All Magellan Motion Control ICs provide a flexible and powerful instruction set to initialize and control motion axes, monitor performance, and synchronize overall machine behavior. Working with Magellan ICs and Pro-Motion® development software makes it fast and easy to graph and analyze system performance; while C-Motion® language allows you to develop your own application using C/C++.

Flexible Offering

Magellan ICs are offered in three series:

- Magellan MC58000 Series*
- Magellan MC55000 Series
- Magellan MC58113 Series

*Magellan MC58000 and MC55000 Series are packaged in a two-IC 144/100-pin TQFP while the MC58113 Series is a single-IC 100-pin TQFP. All devices operate at 3.3 V.

MEET THE FAMILY

- MC58000 Series: Positioning Motion Control ICs for Brushless DC, DC Brush and step motors in a 1 to 4-axis package.
- MC55000 Series: Pulse and direction output positioning ICs for step motors in a 1 to 4-axis package.
- MC58113 Series: Positioning motion control ICs with integrated current control for Brushless DC, DC Brush and step motors in a single axis package.

FEATURES

- S-curve, trapezoidal, velocity contouring, and electronic gearing profiles
- Serial RS232/485, Parallel, CANbus, and SPI (Serial Peripheral Interface) communications
- Advanced PID filter with velocity and acceleration feedforward
- High performance current control & PWM signal generation
- Velocity, position and acceleration changes on-the-fly
- Field oriented control
- High speed (up to 5 Mpulses/sec) pulse & direction output
- Incremental encoder quadrature input (up to 25 Mcounts/sec)

- Programmable loop time to 50 μsec
- Dedicated motion trace function for performance optimization
- Overcurrent, overvoltage, and overtemperature monitoring
- Two directional limit switches, index input, and home indicator per axis
- Axis settled indicator, tracking window and automatic motion error detection
- Programmable dual biquad filters
- Programmable acceleration and deceleration values
- Dual loop encoder input
- 3.3 V operation, packaged in 144- or 100-pin TQFP

CONFIGURATION

MC58113 Series Only

TECHNICAL OVERVIEW

MAGELLAN SPECIFICATIONS

Parameters	Value				
Motors supported	Brushless DC, DC Brush, Step motor				
Host communication options	Serial RS232/485 CANbus 2.0B Parallel bus (8 or 16 bits) (MC5X000 only) SPI (Serial Peripheral Interface)				
Position range	-2,147,483,648 to +2,147,483,647 counts				
Velocity range	0 to 32,767 counts/sample				
Acceleration and deceleration range	0 to 32,767 counts/sample ²				
Jerk range	0 to 1/2 counts/sample ³				
Servo loop range	50 µsec to 1.1 sec				
Position error resolution	32 bits				
Commutation rate	20 kHz				
Signals per axis	QuadA/B, Index, Home, Hall A/B/C AxisIn, Pos/NegLimit, AxisOut, FaultOut				
Max encoder rate	Incremental: Up to 25 Mcounts/sec Parallel-word: Up to 160 Mcounts/sec				
Operating temperature (Ta)	-40° C to 85° C				
Supply voltage operating range (Vcc)	3.0 V to 3.6 V				
Dimensions, MC5XX20	CP: 20 x 20 mm, I0: 14 x 14 mm				
Dimensions, MC58113	14 x 14 mm				

AMPLIFIER CONNECTION OPTIONS

On-board PWM amplifier circuitry						
PWM output rate	20, 40, or 80 kHz					
Current control modes (MC58113 only)	FOC (field oriented control), A/B, third leg floating					
Current loop rate	20 kHz					
PWM output modes	High/Low, Sign/Magnitude, 50/50					
External +/- 10V input amplifier						
AmplifierSPI bus serial	16 bits					

AmplifierSPI bus serial DAC

Pulse & direction input amplifier

Pulse and direction output up to 1.0 Mpulses/sec rate

ATLAS® Digital Amplifiers

ATLAS[®] Digital amplifiers are compact single-axis amplifiers that provide high performance torque control of DC brush, brushless DC, and step motors. They are packaged in a Compact or Ultra Compact solderable module and utilize standard through-hole pins for all connections.

Voltage Input	12-56 VDC			
Microstepping resolution	256			
PWM frequency	20, 40, 80 kHz	No.		
Current Loop rate	20 kHz	**auto		
Power rating options	75W, 250W, 500W			
Mechanical Dimensions	Ultra Compact size: 1.05" x 1.05" x .53" (27mm x 27mm x 13mm)			
	Compact size: 1.52" x 1.52" x .60" (39mm x 39mm x 15mm)			

Development Tools

INCLUDES

- MC58420, MC55420, or MC58113 Developer Kit boards
- Pro-Motion software
- Software Development Kit (SDK) with C-Motion
- Complete manual set
- Complete cable & prototyping connector set

TUNE & OPTIMIZE Pro-Motion[®] GUI

Pro-Motion is a sophisticated, easy-to-use Windows-based exerciser program for use with PMD motion control ICs, modules, and boards.

FEATURES

- Motion oscilloscope graphically displays processor parameters in real-time
- Autotuning
- Ability to save and load settings
- Advanced Bode analysis for frequency machine response
- Axis wizard

- Axis shuttle performs programmable motion between two positions
- Distance and time units conversion
- Motor-specific parameter setup
- Communications monitor echoes all commands sent by Pro-Motion to the board

C-Motion is a complete, easy-to-use, motion programming language that includes a source library containing all the code required for communicating with PMD motion ICs, boards, and modules.

C-MOTION FEATURES INCLUDE:

- Extensive library of commands for virtually all motion design needs
- Develop embeddable C/C++ applications
- Complete, functional examples
- Supports PC104, serial, CAN, Ethernet, and SPI communications

code for executing a profile and trach. Applured in this example could be used for tuning the P

race buffer wrap mode to a one time trace aceMode (hAxis1, PMDTraceOneTime);

At the processor variables that we want to capture

tTraceVariable(hAxis1, PMDTraceVariable1, PMDAxis1, etTraceVariable(hAxis1, PMDTraceVariable2, PMDAxis1, SetTraceVariable(hAxis1, PMDTraceVariable3, PMDAxis1, F

/// set the trace to begin when we issue the next update command SetTraceStart(hAxis1, PMDTraceConditionNextUpdate);

// set the trace to stop when the MotionComplete event occurs

SetTraceStop(hAxis1, PMDTraceConditionEventStatus, PMDEventMotionCompleteBit, PMDTraceStateHigh); SetProfileMode(hAxis1, PMDTrapezoidalProfile);

set the profile parameters

Position (hAxis1, 200000); Velocity (hAxis1, 0x200000); celeration (hAxis1, 0x1000)

V:

celeration(hAxis1, 0x1000); leration(hAxis1, 0x1000); 'on

PMD PRODUCT FAMILY OVERVIEW

		1		1		
	# Axes	Motor Types	Format	Voltage	Communication	Features
JUNO® VELOCITY & TORQUE CONTROL ICS	1	Brushless DCDC BrushStep Motor	64-pin TQFP56-pin VQFN	3.3 V	RS232/485CANbusSPI	Velocity controlCurrent controlField oriented control
MAGELLAN® MOTION CONTROL ICS	1,2,3,4	Brushless DCDC BrushStep Motor	144-pin TQFP100-pin TQF	3.3 V	RS232/485CANbusSPIParallel	 Position control Torque/current control Field oriented control Profile generation
ATLAS® DIGITAL AMPLIFIERS	1	Brushless DCDC BrushStep Motor	• 20-pin solderable module	12-56 V	 SPI Pulse and direction 	Torque/current controlField oriented controlMOSFET amplifier
ION®/CME N-SERIES DIGITAL DRIVES	1	Brushless DCDC BrushStep Motor	Fully enclosed PCB-mounted module	12-56 V	EthernetRS232/485CAN FDSPI	 Position control Torque/current control Field oriented control Profile generation MOSFET amplifier Downloadable user code
ION® 500 & 3000 DIGITAL DRIVES	1	Brushless DCDC BrushStep Motor	Fully enclosed cable-connected module	12-56 V 20-195 V	EthernetRS232/485CANbus	 Position control Torque/current control Field oriented control Profile generation MOSFET amplifier Downloadable user code
PRODIGY® MOTION BOARDS	1,2,3,4	Brushless DCDC BrushStep Motor	 Machine Controller PC/104 Standalone 	 5 V: PC/104 and Standalone 12-56 V: Machine Controller 	EthernetRS232/485CANbusPC/104 bus	 Position control Torque/current control Field oriented control Profile generation Downloadable user code

C-Motion[®] is the common motion language for all Performance Motion Devices products.

FOR ORDERING

To place an order email purchaseorders@pmdcorp.com. For questions email support@pmdcorp.com

About Performance Motion Devices

Performance Motion Devices (PMD) is a worldwide leader in motion control ICs, boards and modules. Dedicated to providing cost-effective, high performance motion systems to OEM customers, PMD utilizes extensive in-house expertise to minimize time-tomarket and maximize customer satisfaction.

1 Technology Park Dr, Westford, MA 01886 Tel: 978.266.1210 Fax: 978.266.1211 e-mail: info@pmdcorp.com www.pmdcorp.com

ATLAS, ION, Juno, Magellan, Navigator, Pilot, Prodigy, C-Motion and Pro-Motion are trademarks of Performance Motion Devices, Inc. All other trade names, brand names and company names are the property of their respective owners. 2021 Performance Motion Devices, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by Performance Motion Devices manufacturer:

Other Similar products are found below :

FSB50550TB2FSBF15CH60BTHMSVGW45-14-2MSVGW54-14-3MSVGW54-14-5NTE7043LA6565VR-TLM-ELB11650-ELB1837M-TLM-ELB1845DAZ-XELC898300XA-MHSS30-TE-L-E26700LV8281VR-TLM-HBA5839FP-E2IRAM236-1067ALA6584JA-AHLB11847L-ENCV70501DW002R2GSTK672-630CN-ETND315S-TL-2HFNA23060FSB50250ABFNA41060MSVB54MSVBTC50EMSVCPM4-63-12MSVTA120FSB50550ABNCV70501DW002GLC898301XA-MHLV8413GP-TE-L-EMSVGW45-14-3MSVGW45-14-4MSVGW45-14-5MSVGW54-14-4STK984-091A-ESLA7026MLB11651-EIRSM515-025DA4LV8127T-TLM-HNCP81382MNTXGTDA21801LB11851FA-BHNCV70627DQ001R2GLB1938FAGEVBIGCM04G60GAXKMA1IKCM15H60HATB6569FTG,8,ELIGCM04F60HAXKMA1KMA1KKKKKK