

74F377A
Octal D-type flip-flop with enable

Product specification
IC15 Data Handbook

FEATURES

- High impedance inputs for reduced loading $(20 \mu \mathrm{~A}$ in Low and High states)
- Ideal for addressable register applications
- Enable for address and data synchronization applications
- Eight edge-triggered D-type flip-flops
- Buffered common clock
- See 'F273A for Master Reset version
- See 'F373 for transparent latch version
- See 'F374 for 3-State version

DESCRIPTION

The 74F377A has 8 edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered clock (CP) input loads all flip-flops simultaneously when the Enable (E) input is Low.

The register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

The E input must be stable one setup time prior to the Low-to-High clock transition for predictable operation.

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 377 A	165 MHz	29 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{c c}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{amb}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathbf{C}$	PKG. DWG. \#
20-pin plastic DIP	N74F377AN	SOT146-1
20-pin plastic SOL	N74F377AD	SOT163-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0 - D7	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
E	Enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Q0 - Q7	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

PIN CONFIGURATION

LOGIC SYMBOL

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
SF00351

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS			OUTPUTS	OPERATING MODE
E	CP	Dn	Qn	
I	\uparrow	h	H	Load "1"
I	\uparrow	।	L	Load "0"
h	\uparrow	X	no change no change	Hold (do nothing)
	X	X		

H = High voltage level
h = High voltage level one set-up time prior to the Low-to-High clock transition
L = Low voltage level
। = Low voltage level one set-up time prior to the Low-to-High clock transition
X = Don't care
$\uparrow=$ Low-to-High clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER	RATING	
V_{CC}	Supply voltage	-0.5 to +7.0	
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	
I_{IN}	Input current	V	
$\mathrm{V}_{\mathrm{OUT}}$	Voltage applied to output in High output state	V	
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	-30 to +5	
$\mathrm{~T}_{\text {amb }}$	Operating free air temperature range	mA	
$\mathrm{T}_{\text {stg }}$	Storage temperature range	V	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
1 lk	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lot	Low-level output current			20	mA
$\mathrm{T}_{\text {amb }}$	Operating free air temperature range	0		+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage	E \& CP inputs			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}^{3}$,	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V}^{3}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.4		V		
		Other inputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7			V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\text {OL }}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{l}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / \mathrm{L}$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{l}}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
los	Short circuit output current ${ }^{4}$		$V_{C C}=$ MAX		-60		-150	mA		
$I_{\text {cc }}$	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX			27	40	mA		
		$\mathrm{I}_{\mathrm{CCL}}$	$\mathrm{V}_{C C}=\mathrm{MAX}$			29	43	mA		

Notes to DC electrical characteristics

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. To reduce the effect of external noise during test. Special test conditions are not necessary for the '377A.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS tests should be performed last.

AC CHARACTERISTICS

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	150	165		120		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to Qn	1	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Dn to CP	2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low Dn to CP	2	$\begin{aligned} & 1.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low E to CP	2	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$			3.0 4.5		ns
$\begin{aligned} & \operatorname{th}_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low E to CP	2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse width High or Low	1	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$			5.0 4.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width and Maximum Clock Frequency

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 2. Data and Enable Setup and Hold Times

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$R_{L}=$ Load resistor; see AC electrical characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\text { max. }}{A}$	A min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	- ¢	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square -	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by Philips manufacturer:

Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLV27WZ125USG CD4041UBE CY2CP1504ZXC CY2DP1510AXC 028192B 042140C 051117G 070519XB NL17SG07DFT2G NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CY2DP1504ZXI CD4502BE 74LVCE1G126FZ4-7 74LVC1G125FW4-7 NL17SH17P5T5G NLV17SZ07DFT2G NC7WZ17FHX 74HCT126T14-13 74LVC2G34FW4-7 NL17SH125P5T5G 74VHC9126FT(BJ) NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT

LE87290YQC LE87290YQCT

