

Silicon NPN Phototransistor

Description

BPW85 is a high speed and high sensitive silicon NPN epitaxial planar phototransistor in a standard T–1 (\emptyset 3 mm) plastic package. Due to its waterclear epoxy the device is sensitive to visible and near infrared radiation.

The viewing angle of $\pm 25\,^\circ$ makes it insensible to ambient straylight.

- Fast response times
- High photo sensitivity
- Standard T-1 (ø 3 mm) clear plastic package
- Axial terminals
- Angle of half sensitivity $\varphi = \pm 25^{\circ}$
- Suitable for visible and near infrared radiation
- Selected into sensitivity groups

Detector in electronic control and drive circuits

94 8396

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$

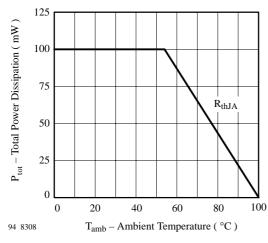
amb				
Parameter	Test Conditions	Symbol	Value	Unit
Collector Emitter Voltage		V_{CEO}	70	V
Emitter Collector Voltage		V _{ECO}	5	V
Collector Current		I _C	50	mA
Peak Collector Current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA
Total Power Dissipation	T _{amb} ≤ 55 °C	P _{tot}	100	mW
Junction Temperature		T _i	100	°C
Storage Temperature Range		T _{sta}	<i>−</i> 55+100	°C
Soldering Temperature	$t \le 3 \text{ s}, 2 \text{ mm from case}$	T _{sd}	260	°C
Thermal Resistance Junction/Ambient		R _{thJA}	450	K/W

BPW85

Vishay Telefunken

Basic Characteristics

 $T_{amb} = 25^{\circ}C$


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Collector Emitter Breakdown Voltage	I _C = 1 mA	V _{(BR)CE}	70			V
Collector Dark Current	V _{CE} = 20 V, E = 0	I _{CEO}		1	200	nA
Collector Emitter Capacitance	$V_{CE} = 5 \text{ V, f} = 1 \text{ MHz, E} = 0$	C _{CEO}		3		рF
Angle of Half Sensitivity		φ		±25		deg
Wavelength of Peak Sensitivity		λ_{p}		850		nm
Range of Spectral Bandwidth		λ _{0.5}		620980		nm
Collector Emitter Saturation Voltage	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $I_C = 0.1 \text{ mA}$	V _{CEsat}			0.3	V
Turn-On Time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA},$ $R_L = 100 \Omega$	t _{on}		2.0		μS
Turn–Off Time	$V_S = 5 \text{ V, } I_C = 5 \text{ mA,}$ $R_L = 100 \Omega$	t _{off}		2.3		μS
Cut-Off Frequency	$V_S = 5 \text{ V, } I_C = 5 \text{ mA,}$ $R_L = 100 \Omega$	f _c		180		kHz

Type Dedicated Characteristics

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Collector Light Current	E _e =1mW/cm ² ,	BPW85A	I _{ca}	0.8	1.5	2.5	mΑ
	λ=950nm, V _{CE} =5V	BPW85B	I _{ca}	1.5	2.5	4.0	mA
		BPW85C	I _{ca}	3.0	5.0	8.0	mA

Typical Characteristics $(T_{amb} = 25^{\circ}C \text{ unless otherwise specified})$

10⁴ V_{CE}=20V V_{CE}=20V 10¹ 10⁰ 20 40 60 80 100 94 8304 T_{amb} – Ambient Temperature (°C)

Figure 1. Total Power Dissipation vs. Ambient Temperature

Figure 2. Collector Dark Current vs. Ambient Temperature

Vishay Telefunken

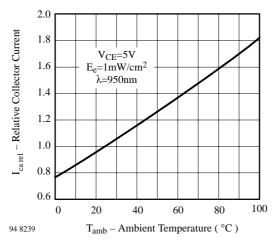


Figure 3. Relative Collector Current vs.
Ambient Temperature

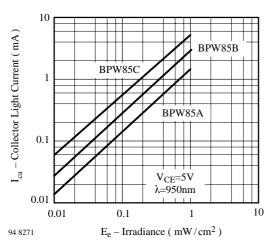


Figure 4. Collector Light Current vs. Irradiance

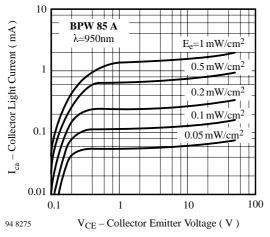


Figure 5. Collector Light Current vs. Collector Emitter Voltage

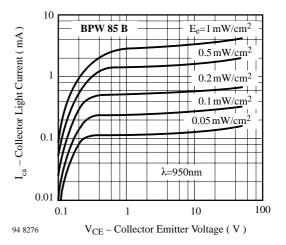


Figure 6. Collector Light Current vs. Collector Emitter Voltage

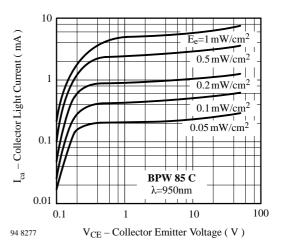


Figure 7. Collector Light Current vs. Collector Emitter Voltage

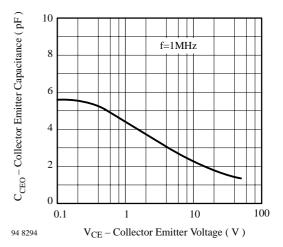


Figure 8. Collector Emitter Capacitance vs. Collector Emitter Voltage

Vishay Telefunken

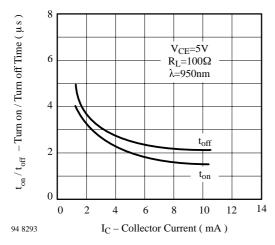


Figure 9. Turn On/Turn Off Time vs. Collector Current

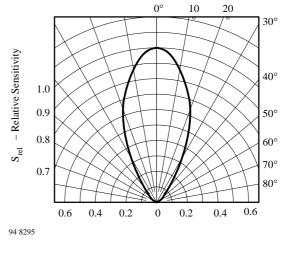
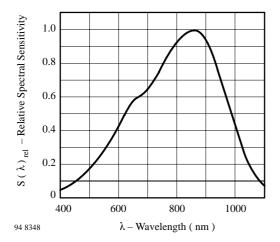
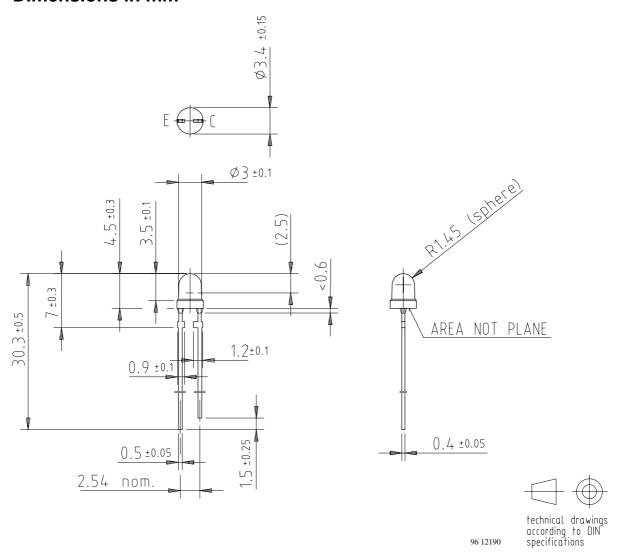


Figure 11. Relative Radiant Sensitivity vs.
Angular Displacement




Figure 10. Relative Spectral Sensitivity vs. Wavelength

Vishay Telefunken

Dimensions in mm

BPW85

Vishay Telefunken

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Phototransistors category:

Click to view products by Phoenix Contact manufacturer:

Other Similar products are found below:

LTR-5576D PT17-21B/L41/TR8 PT908-7B-F ASDL-6620-C22 OED-ST-8LR2 OED-STR44B90-TR SD5410-109 PT26-21C/CT PT15-21B-TR8 PT-IC-AC-3528-520 PT-IC-BC-3528-550 MHT153PTBT MHS153PTBT PT5529B/L2/H2-F PT91-21C/TR10 BP 103-3/4 BPX 38-3 BPY 62 KPS-3227SP1C L-53P3BT L-53P3C L-93DP3BT L-93DP3C LL-503PTC2E-1AD LL-S150PTC-1A LL-S150PTD-1A SFH 320 SFH 320-3 SFH 320 FA OP508FA TEMT1030 LTR-301 PGM5516 PGM5516-MP PGM5537-MP PGM5549 PGM5549-MP PGM5637D PGM5639D VTT7125H VEMT4700F-GS08 PT19-21B/L41/TR8 KP-2012P3C TEKT5400S SD1410-128L SFH 313 FA-2/3 SFH 320-4-Z SFH 309 FA-5/6 PT4800FE000F SFH 309-5/6