

Features

- For Switching and AF Amplifer Applications.
- Silicon Epitaxial Chip.

SOT-23 (TO-236)

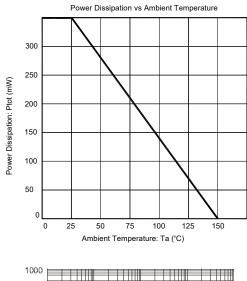
1.Base 2.Emitter 3.Collector

Marking: 3E

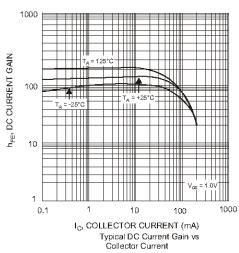
Absolute Maximum Ratings ($T_A = 25$ °C)

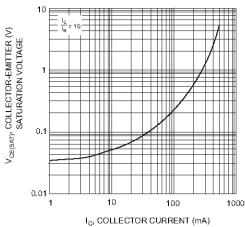
Parameter	Symbol	Value	Unit
Collector Base Voltage	-Усво	40	V
Collector Emitter Voltage	-Vceo	40	٧
Emitter Base Voltage	-V _{EBO}	6	٧
Collector Current	-l _C	200	mA
Power Dissipation	P _D	350	mW
Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{STG}	- 55 to + 150	°C

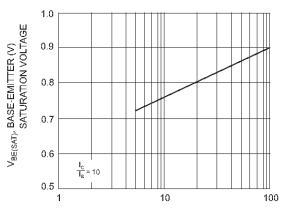
vw.pingjingsemi.com 1/4

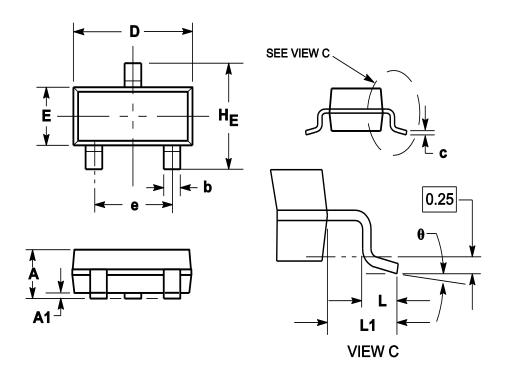

Electrical Characteristics at T_A = 25°C

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	Min.	Max.	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DC Current Gain				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		h _{FE}		-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		h _{FE}	80	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				300	-
	_ · · · · · · · · · · · · · · · · · · ·			-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		h _{FE}	30	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Collector Base Cutoff Current	-1	_	50	nΔ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	at $-V_{CB} = 30 \text{ V}$	-iCBO	_	30	ПА
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Emitter Base Cutoff Current			50	n 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	at -V _{EB} = 6 V	-IEBO	-	50	IIA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Collector Base Breakdown Voltage		40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	at -I _C = 10 μA	-V _{(BR)CBO}	40	-	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Collector Emitter Breakdown Voltage		40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-V _{(BR)CEO}	40	-	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Emitter Base Breakdown Voltage	\/			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-V _{(BR)EBO}	б	-	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Collector Emitter Saturation Voltage				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	at $-I_C = 10 \text{ mA}$, $-I_B = 1 \text{ mA}$	-V _{CE(sat)}	-	0.25	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	0.4	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Base Emitter Saturation Voltage				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	at $-I_C = 10 \text{ mA}$, $-I_B = 1 \text{ mA}$	-V _{BE(sat)}	0.65	0.85	V
at -V _{CE} = 20 V, -I _C = 10 mA, f = 100 MHz t_T 250 - MHz	at $-I_C = 50 \text{ mA}$, $-I_B = 5 \text{ mA}$	-V _{BE(sat)}	-	0.95	V
at -V _{CE} = 20 V, -I _C = 10 mA, f = 100 MHz t_T 250 - MHz	Current Gain Bandwidth Product				
		† _⊤	250	-	MHz
	Output Capacitance				
at $-V_{CB} = 5 \text{ V}$, $I_E = 0$, $f = 1 \text{ MHz}$	· · · · · · · · · · · · · · · · · · ·	C_ob	-	4.5	pF
Delay Time type - 35 ns		t _d	-	35	ns
at-v _{CC} - 3 v, -v _{BE} - 0.5 v, -i _C - 10 mA, -i _{B1} - 1 mA					
Rise Time t _r - 35 ns		t.	_	35	ns
at -V _{CC} = 3 V, -V _{BE} = 0.5 V, -I _C = 10 mA, -I _{B1} = 1 mA	at $-V_{CC} = 3 \text{ V}$, $-V_{BE} = 0.5 \text{ V}$, $-I_{C} = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	4			110
Storage Time t _s - 225 ns		+		225	ne
at -V _{CC} = 3 V, -I _C = 10 mA, -I _{B1} = I _{B2} = 1 mA t_s - 225 ns	at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = I_{B2} = 1 \text{ mA}$	ι _S	_	223	115
Fall Time		1		7.5	
at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = I_{B2} = 1 \text{ mA}$	at $-V_{CC} = 3 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = I_{B2} = 1 \text{ mA}$	τ _f	-	/5	ns


w.pingjingsemi.com 2/4




Electrical Characteristics Curves


Typical Collector-Emitter Saturation Voltage vs. Collector Current

I_C, COLLECTOR CURRENT (mA) Typical Base-Emitter Saturation Voltage vs. Collector Current

3/4

Package Outline (SOT-23)

Symbol	Dimensions in millimeter			
Symbol	Min.	Тур.	Max.	
Α	0.900	1.025	1.150	
A1	0.000	0.050	0.100	
b	0.300	0.400	0.500	
С	0.080	0.115	0.150	
D	2.800	2.900	3.000	
E	1.200	1.300	1.400	
H _E	2.250	2.400	2.550	
е	1.800	1.900	2.000	
L1	0.550REF			
L	0.300		0.500	
θ	0°		8°	

Ordering Information

Device	Package	Reel Dimension (inch)	Shipping Quantity
MMBT3906	SOT-23	7	3,000

4/4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Pingjingsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B