

Features

- For Switching and AF Amplifer Applications.
- Silicon Epitaxial Chip.

SOT-23 (TO-236)

1.Base 2.Emitter 3.Collector

Absolute Maximum Ratings ($T_A = 25$ °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	Vсво	60	V
Collector Emitter Voltage	VCEO	40	V
Emitter Base Voltage	VEBO	6	V
Collector Current	Ic	600	mA
Power Dissipation ¹	P _D	300	mW
Thermal Resistance Junction to Ambient	Reja	417	°C/W
Junction Temperature	TJ	150	°C
Storage Temperature Range	Tstg	- 55 to + 150	°C

Note: On FR-5 board

www.pingjingsemi.com Revision : 1.0 Oct-2017 1/4

Electrical Characteristics at TA = 25°C

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain				
at $V_{CE} = 1 \text{ V}$, $I_C = 0.1 \text{ mA}$	hfe	20	-	-
at V_{CE} = 1 V, I_C = 1 mA	h _{FE}	40	-	-
at V_{CE} = 1 V, I_C = 10 mA	hfe	80	-	-
at $V_{CE} = 1 \text{ V}$, $I_C = 150 \text{ mA}$	hfe	100	300	-
at $V_{CE} = 2 \text{ V}$, $I_C = 500 \text{ mA}$	h _{FE}	40	-	-
Collector Base Cutoff Current	Ісво		0.1	
at $V_{CB} = 35 \text{ V}$	ICBO	-	0.1	μA
Emitter Base Cutoff Current at $V_{EB} = 5 \text{ V}$	ІЕВО	-	0.1	μA
Collector Base Breakdown Voltage at I _C = 0.1 mA	V(BR)CBO	60	-	V
Collector Emitter Breakdown Voltage at I _C = 1 mA	V(BR)CEO	40	-	V
Emitter Base Breakdown Voltage at I _E = 0.1 mA	V(BR)EBO	6	-	V
Collector Emitter Saturation Voltage				
at $I_C = 10$ mA, $I_B = 1$ mA	VCE(sat)	-	0.4	V
at $I_C = 50$ mA, $I_B = 5$ mA	V _{CE(sat)}	-	0.75	V
D F:# O-4	1 2 2 (- 1.1)			
Base Emitter Saturation Voltage at I_C = 150 mA, I_B = 15 mA	.,	0.75	0.05	
at $I_C = 150$ mA, $I_B = 15$ mA	V _{BE} (sat)	0.75	0.95 1.2	V V
	V _{BE(sat)}	-	1.2	V
Current Gain Bandwidth Product at $V_{CE} = 10 \text{ V}$, $I_C = 20 \text{ mA}$, $f = 100 \text{ MHz}$	f⊤	250	-	MHz
Collector Output Capacitance at $V_{CB} = 5 \text{ V}$, $f = 1 \text{ MHz}$	C _{ob}	-	6.5	pF
Delay Time at V_{CC} = 30 V, V_{BE} = 2 V, I_C = 150 mA, I_{B1} = 15 mA	t _d	-	15	ns
Rise Time at V_{CC} = 30 V, V_{BE} = 2 V, I_C = 150 mA, I_{B1} = 15 mA	t _r	-	20	ns
Storage Time at V_{CC} = 30 V, I_C = 150 mA, I_{B1} = I_{B2} = 15 mA	ts	-	225	ns
Fall Time at V_{CC} = 30 V, I_C = 150 mA, I_{B1} = I_{B2} = 15 mA	t _f	-	30	ns

w.pingjingsemi.com 2/4

Electrical Characteristics Curves

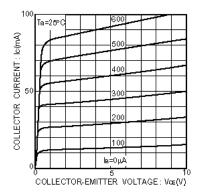


Fig.1 Grounded emitter output characteristics

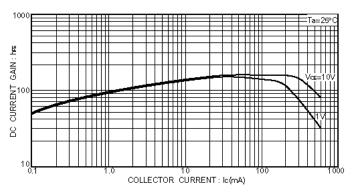


Fig.3 DC current gain vs. collector current(I)

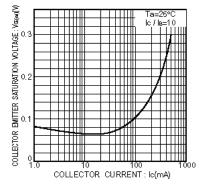


Fig.2 Collector-emitter saturation voltage vs. collector current

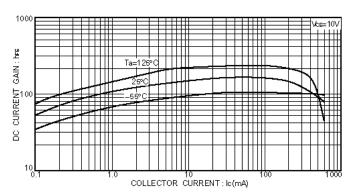


Fig.4 DC current gain vs. collector current(II)

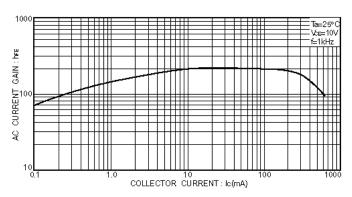


Fig.5 AC current gain vs. collector current

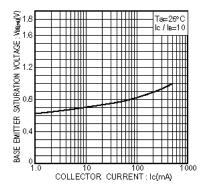
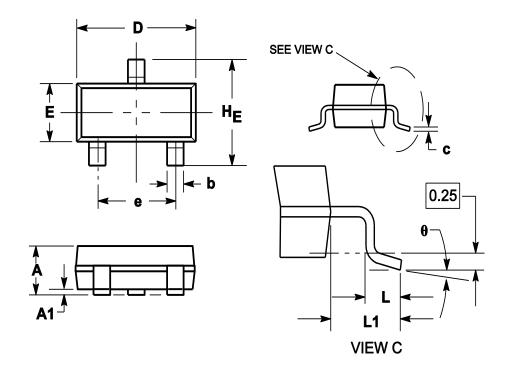



Fig.6 Base-emitter saturation voltage vs. collector current

www.pingjingsemi.com 3/4

Package Outline (SOT-23)

Sumbal	Dimensions in millimeter			
Symbol	Min.	Тур.	Max.	
А	0.900	1.025	1.150	
A1	0.000	0.050	0.100	
b	0.300	0.400	0.500	
С	0.080	0.115	0.150	
D	2.800	2.900	3.000	
E	1.200	1.300	1.400	
H _E	2.250	2.400	2.550	
е	1.800	1.900	2.000	
L1	0.550REF			
L	0.300		0.500	
θ	0°		8°	

Ordering Information

Device	Package	Reel Dimension (inch)	Shipping Quantity
MMBT4401	SOT-23	7	3,000

ww.pingjingsemi.com 4/4

www.pingjingsemi.com Revision: 1.0 Oct-2017

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Pingjingsemi manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B