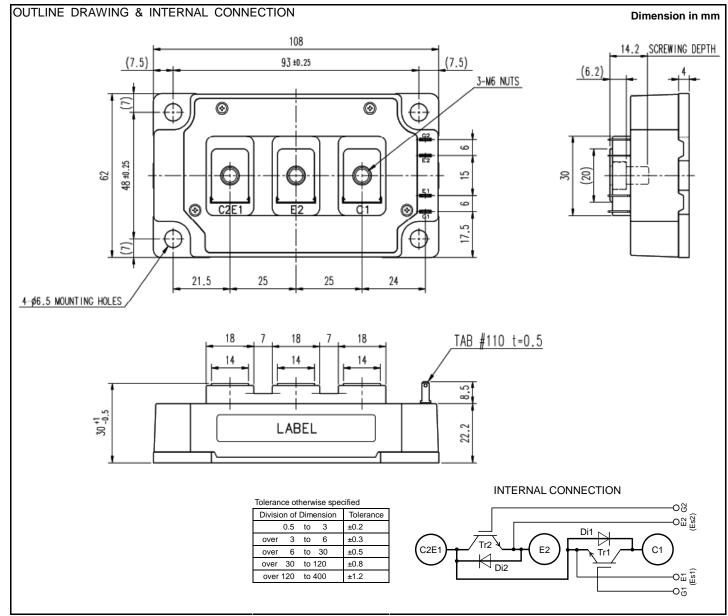


<IGBT Modules>

APPLICATION

CM300DY-24S


HIGH POWER SWITCHING USE INSULATED TYPE

- Flat base Type
- •Copper base plate
- •RoHS Directive compliant
- •UL Recognized under UL1557, File E323585

dual switch (Half-Bridge)

AC Motor Control, Motion/Servo Control, Power supply, etc.

1

<IGBT Modules>

CM300DY-24S

HIGH POWER SWITCHING USE

INSULATED TYPE

MAXIMUM RATINGS (T_j=25 °C, unless otherwise specified)

Symbol	Item	Conditions	Rating	Unit	
V _{CES}	Collector-emitter voltage	G-E short-circuited	1200	V	
V _{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V	
Ic	Collector current	DC, T _C =119 °C (Note2, 4)	300	^	
I _{CRM}	Collector current	Pulse, Repetitive (Note3)	600	A	
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	2270	W	
I _E (Note1)	Facilities expressed	DC (Note2)	300	^	
I _{ERM} (Note1)	Emitter current	Pulse, Repetitive (Note3)	600	A	
V _{isol}	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	2500	V	
T _{jmax}	Maximum junction temperature	Instantaneous event (overload)	175	°C	
T _{cmax}	Maximum case temperature	(Note4)	125]	
T _{jop}	Operating junction temperature	Continuous operation (under switching)	-40 ~ +150	°C	
T _{stg}	Storage temperature	-	-40 ~ +125		

ELECTRICAL CHARACTERISTICS (T_j =25 °C, unless otherwise specified)

Symbol	Item	Conditions			Limits		Unit
Symbol	item	Conditions		Min.	Тур.	Max.	Offic
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited	V _{CE} =V _{CES} , G-E short-circuited		-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA
V _{GE(th)}	Gate-emitter threshold voltage	I _C =30 mA, V _{CE} =10 V		5.4	6.0	6.6	V
		I _C =300 A, V _{GE} =15 V,	T _j =25 °C	-	1.80	2.25	
V _{CEsat} (Terminal)		Refer to the figure of test circuit	T _j =125 °C	-	2.00	-	V
(Terminal)	Collector emitter acturation valters	(Note5)	T _j =150 °C	-	2.05	-	
.,	Collector-emitter saturation voltage	I _C =300 A,	T _j =25 °C	-	1.70	2.15	
V _{CEsat}		V _{GE} =15 V,	T _j =125 °C	-	1.90	-	V
(Chip)		(Note5)	T _j =150 °C	-	1.95	-	
Cies	Input capacitance		•	-	-	30	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited		-	-	6.0	nF
Cres	Reverse transfer capacitance			-	-	0.5	1
Q _G	Gate charge	V _{CC} =600 V, I _C =300 A, V _{GE} =15 V		-	700	-	nC
t _{d(on)}	Turn-on delay time	V _{CC} =600 V, I _C =300 A, V _{GE} =±15 V,		-	-	800	ns
tr	Rise time			-	-	200	
t _{d(off)}	Turn-off delay time			-	-	600	
t _f	Fall time	$R_G=0 \Omega$, Inductive load		-	-	300	1
. (Note 1)		I _E =300 A, G-E short-circuited,	T _j =25 °C	-	1.85	2.30	
V _{EC} (Note.1)			T _j =125 °C	-	1.85	-	V
(Terminal)			T _j =150 °C	-	1.85	-	1
(Note 1)	Emitter-collector voltage	I _E =300 A,	T _j =25 °C	-	1.70	2.15	
V _{EC} (Note.1)		G-E short-circuited, (Note5)	T _j =125 °C	-	1.70	-	V
(Chip)			T _j =150 °C	-	1.70	-	
t _{rr} (Note1)	Reverse recovery time	V _{CC} =600 V, I _E =300 A, V _{GE} =±15 V,		-	-	300	ns
Q _{rr} (Note1)	Reverse recovery charge	R _G =0 Ω, Inductive load		-	16	-	μC
Eon	Turn-on switching energy per pulse	V_{CC} =600 V, I_{C} = I_{E} =300 A, V_{GE} =±15 V, R_{G} =0 Ω ,		-	41	-	
E _{off}	Turn-off switching energy per pulse			-	32	-	mJ
E _{rr} (Note1)	Reverse recovery energy per pulse	T _j =150 °C, Inductive load		-	22	-	mJ
R _{CC'+EE'}	Internal lead resistance	Main terminals -chip, per switch, To	=25 °C	-	-	0.9	mΩ
r _g	Internal gate resistance	Per switch		-	6.5	-	Ω

HIGH POWER SWITCHING USE

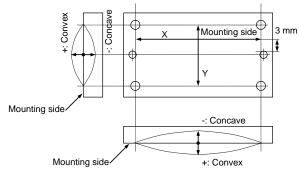
INSULATED TYPE

THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
	item	Conditions	Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$	Thermal resistance	Junction to case, per IGBT (Note4)	-	-	66	K/kW
$R_{th(j-c)D}$		Junction to case, per DIODE (Note4)	-	-	120	K/kW
R _{th(c-s)}	Contact thermal resistance	Case to heat sink, per 1/2 module,		20		K/kW
	Contact thermal resistance	Thermal grease applied (Note4, 6)	-	20	-	r/KVV

MECHANICAL CHARACTERISTICS

Symbol	Item	Conditions		Limits			Unit
				Min.	Тур.	Max.	Offic
M_t	Mounting torque	Main terminals	M 6 screw	3.5	4.0	4.5	N∙m
Ms		Mounting to heat sink	M 6 screw	3.5	4.0	4.5	N⋅m
m	mass	-		-	400	-	g
ec	Flatness of base plate	On the centerline X, Y (Note7)		-50	-	+100	μm

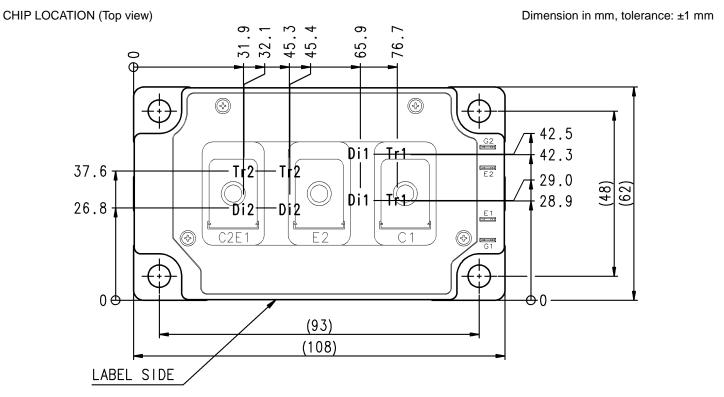

This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU.

Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE).

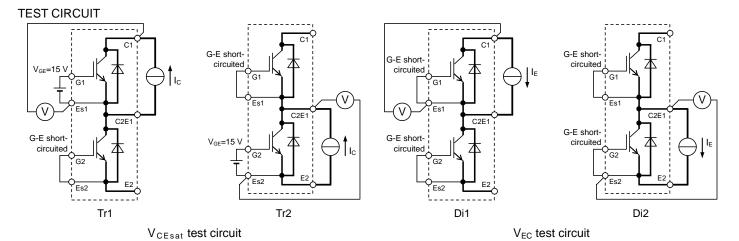
- 2. Junction temperature (T_j) should not increase beyond T_{jmax} rating.
- 3. Pulse width and repetition rate should be such that the device junction temperature (T_j) dose not exceed T_{jmax} rating.
- 4. temperature (T_C) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.

The heat sink thermal resistance should measure just under the chips.

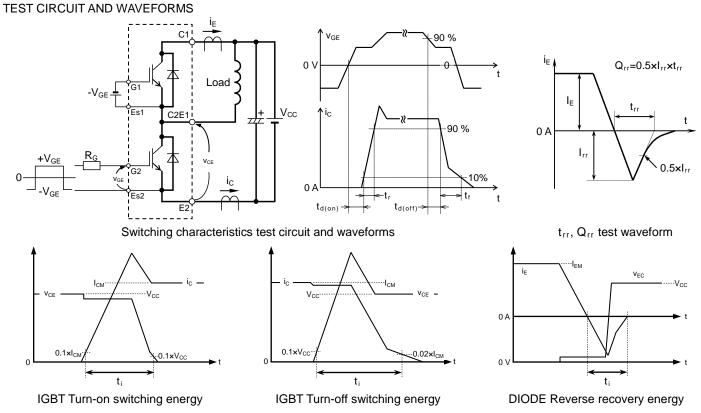
- 5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit.
- 6. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).
- 7. Base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.



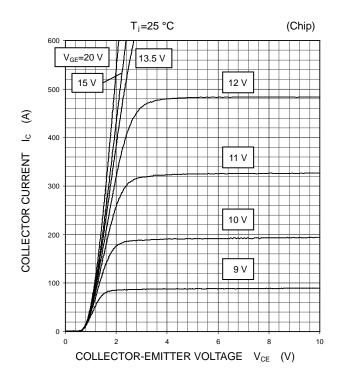
RECOMMENDED OPERATING CONDITIONS

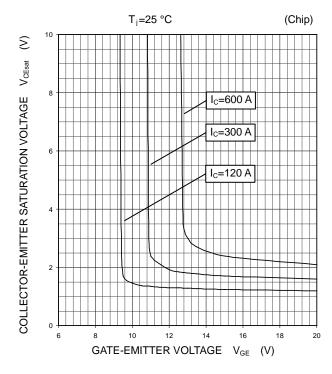

Symbol	Item	Conditions	Limits			Unit
	item	Conditions	Min.	Тур.	Max.	lax.
V _{cc}	(DC) Supply voltage	Applied across C1-E2	-	600	850	V
V_{GEon}	Gate (-emitter drive) voltage	Applied across G1-Es1/G2-Es2	13.5	15.0	16.5	V
R _G	External gate resistance	Per switch	0	•	15	Ω

3

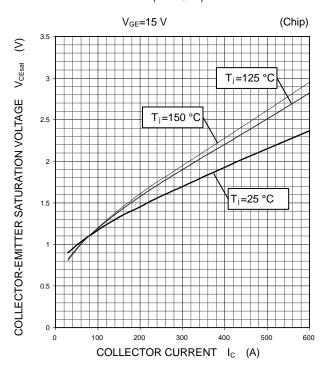

Publication Date: February 2015 CMH-10486 Ver.1.5

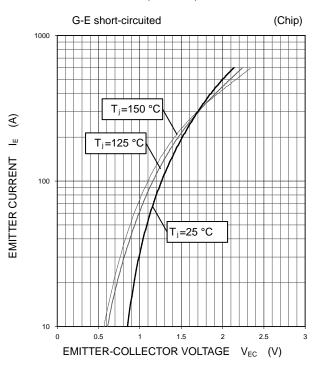
Tr1/Tr2: IGBT, Di1/Di2: DIODE


Publication Date : February 2015 CMH-10486 Ver.1.5

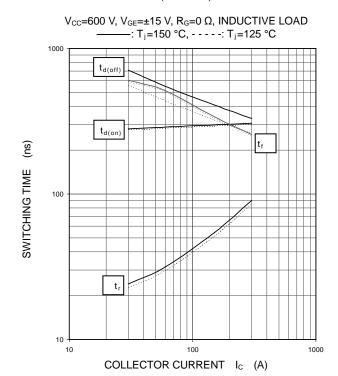

Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

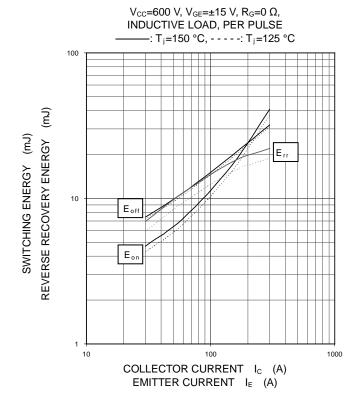
PERFORMANCE CURVES


OUTPUT CHARACTERISTICS (TYPICAL)

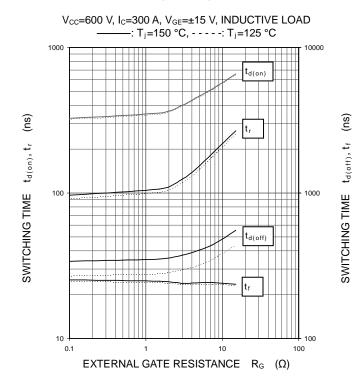

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

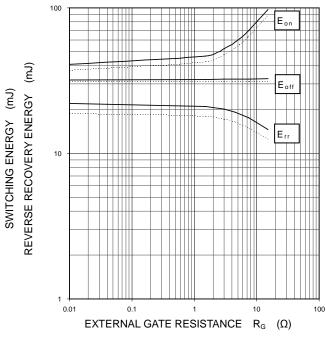

FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)


HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES

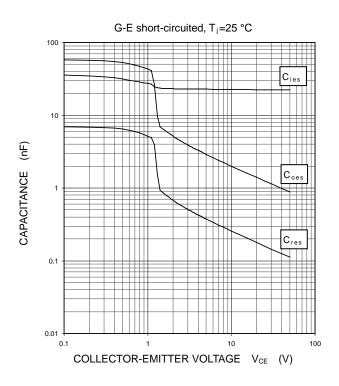

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

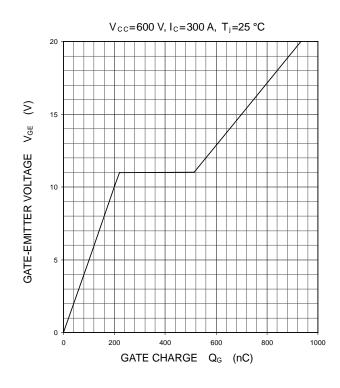
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)



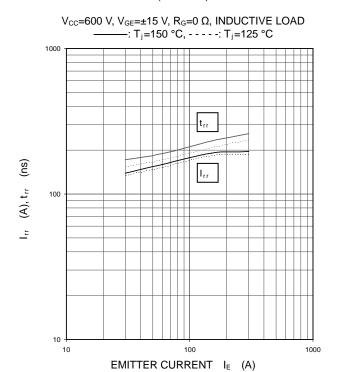
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

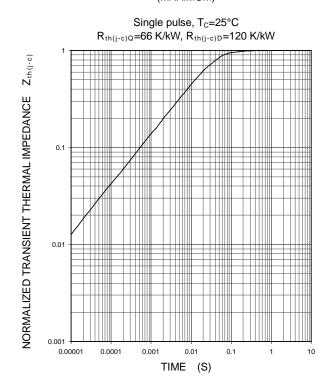
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)


 V_{CC} =600 V, I_{C}/I_{E} =300 A, V_{GE} =±15 V, INDUCTIVE LOAD, PER PULSE ...: T_{j} =150 °C, - - - - : T_{j} =125 °C


HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES


CAPACITANCE CHARACTERISTICS (TYPICAL)


GATE CHARGE CHARACTERISTICS (TYPICAL)

FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)

HIGH POWER SWITCHING USE INSULATED TYPE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2013-2015 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for powerex manufacturer:

Other Similar products are found below:

R7013003XXUA R9G01212XX VLA541-01R QRD0630T30 CM400DY-24NF CM100TX-24S1 CM600HA-24A NLD422PB
PSM03S93E5-A BP2B-V ND431625 R5031213LSWS BG2B BG2C-5015 ND431825 T9G0121203DH CD611616C BG1A-PX
TCS4402802DH CD421690C PM600DVA060 CD411899C CD631615B C601PB R5021213LSWS BG2A-NFH C180PB CD431690B
NLR425CM HARDWARE KIT 50 CD410899C CM400HA-24A CD411699C LEAD KIT #NK HARDWARE KIT 49 VLA500-01
HARDWARE KIT 87 VLA106-24154 VLA502-01 VLA106-15242