

2SC0635T2A0-45 Preliminary Datasheet

Dual-Channel Cost-Effective SCALE™-2 IGBT Driver Core for 4500V IGBTs

Abstract

The SCALE™-2 dual-driver core 2SC0635T2A0-45 combines unrivalled compactness with broad applicability. The driver is designed for universal applications requiring high reliability. The 2SC0635T2A0-45 drives all usual high-power IGBT modules up to 4500V. Its embedded paralleling capability allows easy inverter design covering higher power ratings. Multi-level topologies involving 1700V or 3300V IGBTs with higher isolation requirements can also be easily supported by 2SC0635T2A0-45.

The 2SC0635T2A0-45 combines a complete two-channel driver core with all components required for driving, such as an isolated DC/DC converter, short-circuit protection, Advanced Active Clamping as well as supply voltage monitoring. Each of the two output channels is electrically isolated from the primary side and from the other secondary channel.

An output current of 35A and 6W drive power is available per channel, making the 2SC0635T2A0-45 an ideal driver platform for universal use in medium and high-power applications. The driver provides a gate voltage swing of 15V/-10V. The turn-on voltage is regulated to maintain a stable 15V regardless of the output power level

Its outstanding EMC allows safe and reliable operation even in hard industrial applications.

Product Highlights

- ✓ Ultra-compact dual-channel driver
- ✓ Highly integrated SCALE-2 chipset
- ✓ Gate current ±35A, 6W output power per channel.
- √ 15V/-10V gate driving
- ✓ Blocking voltages up to 4500V
- ✓ Basic isolation to IEC 61800-5-1 and IEC 60664-1
- ✓ Short delay and low jitter
- √ 15V logic level interface
- ✓ UL compliant
- ✓ Lead free

Applications

- ✓ Traction
- ✓ Railroad power supplies
- ✓ Light rail vehicles
- ✓ HVDC
- ✓ Flexible AC transmission systems (FACTS)
- ✓ Medium-voltage converters
- ✓ Wind-power converters
- ✓ Industrial drives
- Medical applications

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and important information that apply to this product, please refer to "2SC0635T Description & Application Manual" on www.power.com/igbt-driver/go/2SC0635T.

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V _{DC}	VDC to GND	0	16	V
Supply voltage V _{CC}	VCC to GND	0	16	V
Logic input and output voltages	Primary side, to GND	-0.5	VCC+0.5	5 V
SOx current	Failure condition, total current		20	mΑ
Gate peak current Iout	Note 1	-35	+35	Α
External gate resistance	Turn-on and turn-off	0.5		Ω
Average supply current I _{DC}	Notes 2, 3		1450	mA
Output power	Ambient temperature 0°C70°C (Notes 4, 5)		9	W
	Ambient temperature -40°C85°C (Note 4)		6	W
Switching frequency f			100	kHz
Test voltage (50Hz/1min.)	Primary to secondary (Note 14)		10.2	kV_{eff}
	Secondary to secondary (Note 14)		10.2	kV_{eff}
dV/dt	Rate of change of input to output voltage		50	kV/μs
Operating voltage	Primary/secondary, secondary/secondary		4500	V_{peak}
Operating temperature	Notes 5, 17	-40	+85	°C
Storage temperature		-55	+90	°C

Recommended Operating Conditions

Power Supply	Remarks	Min	Тур	Max	Unit
Supply voltage V _{DC}	VDC to GND, IGBT mode	14.5	15	15.5	V
Supply voltage V _{CC}	VCC to GND	14.5	15	15.5	V

Electrical Characteristics (IGBT mode)

All data refer to +25°C and V_{CC} = V_{DC} = 15V unless otherwise specified.

Power supply	Remarks	Min	Тур	Max	Unit
Supply current I _{DC}	Without load		70		mA
Supply current I _{cc}	f = OHz		25		mA
Supply current I _{cc}	f = 100kHz		34		mA
Coupling capacitance C _{io}	Primary to output, total		14		pF
Power Supply Monitoring	Remarks	Min	Тур	Max	Unit
Supply threshold V _{CC}	Primary side, clear fault	11.9	12.6	13.3	V
	Primary side, set fault (Note 11)	11.3	12.0	12.7	V
Monitoring hysteresis	Primary side, set/clear fault	0.35			V
Supply threshold V_{ISOx} - V_{Ex}	Secondary side, clear fault	12.1	12.6	13.1	٧
	Secondary side, set fault (Note 12)	11.5	12.0	12.5	٧
Monitoring hysteresis	Secondary side, set/clear fault	0.35			٧
Supply threshold V_{Ex} - V_{COMx}	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 12)	4.7	4.85	5	٧
Monitoring hysteresis	Secondary side, set/clear fault	0.15			V
Logic Inputs and Outputs	Remarks	Min	Тур	Max	Unit
Input impedance	V(INx) = 15V	4.7	4.8	4.9	kΩ
Turn-on threshold	V(INx)		8.8		V
Turn-off threshold	V(INx)		4.5		٧
SOx pull-up resistor to VCC	On board		10		kΩ
SOx output voltage	Failure condition, I(SOx)<6.5mA			0.7	V
Short-Circuit Protection	Remarks	Min	Тур	Max	Unit
V _{CE} -monitoring threshold	Factory set value (Note 18)		9.3		V
Minimum response time	Note 9		5.1		μs
Blocking time	After fault. Factory set value (Note 10)		130		ms
Minimum blocking time	Note 10		9		μs

Short-Circuit Protection	Remarks	Min	Тур	Max	Unit
Delay in IGBT turn-off	Factory-set value (Note 19)		0.2		μs
Timing Characteristics	Remarks	Min	Тур	Max	Unit
Turn-on delay t _{d(on)}	Note 6		95		ns
Turn-off delay t _{d(off)}	Note 6		80		ns
Jitter of turn-on delay	Note 16		±2		ns
Jitter of turn-off delay	Note 16		±2		ns
Output rise time t _{r(out)}	Note 7		20		ns
Output fall time t _{f(out)}	Note 7		25		ns
Transmission delay of fault state	Note 13		450		ns
Electrical Isolation	Remarks	Min	Тур	Max	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 14)	10.2	10.3	10.4	kV _{eff}
	Secondary to secondary side (Note 14)	10.2	10.3	10.4	kV_{eff}
Partial discharge extinction volt.	Primary to secondary side (Note 15)	5400			V_{peak}
	Secondary to secondary side (Note 15)	5400			V_{peak}
Creepage distance					·
On the PCB	Primary to secondary side	34			mm
(Material group IIIa)	Secondary to secondary side	34			mm
On the transformer	Primary to secondary side	29			mm
(Material group I)	Secondary to secondary side	25			mm
Clearance distance	Primary to secondary side	25			mm
	Secondary to secondary side	18			mm
Output	Remarks	Min	Тур	Max	Unit
Blocking capacitance	VISOx to VEx (Note 8)		9.4		μF
	VEx to COMx (Note 8)		9.4		μF

Output voltage swing

The output voltage swing consists of two distinct segments. First, there is the turn-on voltage V_{GHx} between pins GHx and VEx. V_{GHx} is regulated and maintained at a constant level for all output power values and frequencies.

The second segment of the output voltage swing is the turn-off voltage V_{GLx} . V_{GLx} is measured between pins GLx and VEx. It is a negative voltage. It changes with the output power to accommodate the inevitable voltage drop across the internal DC/DC converter.

Output Voltage	Remarks	Min	Тур	Max	Unit
Turn-on voltage, V _{GHx}	Any load condition		15.0		V
Turn-off voltage, V _{GLx}	No load		-10.8		V
Turn-off voltage, V _{GLx}	6W output power		-8.5		V
Turn-off voltage, V_{GLx}	9W output power		-8.2		V

Footnotes to the Key Data

- 1) The maximum peak gate current refers to the highest current level occurring during the product lifetime. It is an absolute value and does also apply for short pulses.
- 2) The average supply input current is limited for thermal reasons. Higher values than specified by the absolute maximum rating are permissible (e.g. during power supply start up) if the average remains below the given value, provided the average is taken over a time period which is shorter than the thermal time constants of the driver in the application.
- 3) There is no means of actively controlling or limiting the input current in the driver. In the case of start-up with very high blocking capacitor values, or in case of short circuit at the output, the supply input current has to be limited externally.
- 4) The maximum output power must not be exceeded at any time during operation. The absolute maximum rating must also be observed for time periods shorter than the thermal time constants of the driver in the application.
- 5) An extended output power range is specified in the output power section for ambient temperatures limited from 0°C to 70°C.
- 6) The delay time is measured between 50% of the input signal and 10% voltage swing of the corresponding output. The delay time is independent on the output loading.
- 7) Output rise and fall times are measured between 10% and 90% of the nominal output swing with an output load of 4.7Ω and 270nF. The values are given for the driver side of the gate resistors. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.
- 8) External blocking capacitors should be placed between the VISOx and VEx as well as the VEx and COMx terminals. Refer to "2SC0635T Description & Application Manual" (paragraph "DC/DC output (VISOx), emitter (VEx) and COMx terminals)" for recommendations. Ceramic capacitors are recommended.
- 9) The minimum response time is valid for the circuit given in the description and application manual (Fig. 7) with the values of table 1.
- 10) The blocking time sets a minimum time span between the end of any secondary-side fault state and the start of normal operation (remove fault from pin SOx). The value of the blocking time can be adjusted at pin TB.
- 11) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to both SOx outputs and the power semiconductors are switched off.
- 12) Undervoltage monitoring of the secondary-side supply voltage (VISOx to VEx and VEx to COMx, which correspond to the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, a fault is transmitted to the corresponding SOx output and the IGBT is switched off after the corresponding delays. Refer to "2SC0635T Description & Application Manual" for more details.
- 13) Transmission delay of fault state from the secondary side to the corresponding primary-side status output.
- 14) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots. Excessive HiPot testing at voltages much higher than 3182V_{AC(eff)} may lead to insulation degradation. No degradation has been observed over 1min. testing at 10.2kV_{AC(eff)}. Every production sample shipped to customers has undergone 100% testing at the given value for 1s.

- 15) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in IEC 60664-1. The partial discharge extinction voltage between primary and either secondary side is coordinated for basic isolation to IEC 60664-1.
- 16) Jitter measurements are performed with input signals INx switching between 0V and 15V referred to GND, with a corresponding rise time and fall time of 6ns.
- 17) The minimum operating temperature is limited to -40°C for the first series. This will be extended to -55°C upon completion of the ongoing qualification program.
- 18) The V_{CE}-monitoring threshold value can be reduced with an external resistor. Refer to "2SC0635T Description & Application Manual".
- 19) The turn-off event of the IGBT after a secondary-side fault (IGBT short circuit or undervoltage monitoring) can be additionally delayed with an external capacitor. Refer to "2SC0635T Description & Application Manual".

RoHS Statement

On the basis of Annexes II and III of European Directive 2011/65/EC of 08 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), we hereby state that the products described in this datasheet do not contain lead (Pb), mercury (Hg), hexavalent chromium (Cr VI), cadmium (Cd), polibrometo of biphenyl (PBB) or polibrometo diphenyl ether (PBDE) in concentrations exceeding the restrictions set forth in Annex III of 2011/65/EC with due consideration of the applicable exemptions as listed in Annex III of 2011/65/EC.

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Ordering Information

The general terms and conditions of delivery of Power Integrations Switzerland GmbH apply.

Type Designation

Description

2SC0635T2A0-45

Dual-channel 4.5kV SCALE-2 driver core

Product home page: www.power.com/igbt-driver/qo/2SC0635T

Refer to www.power.com/igbt-driver/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, product documentation, and application support

Please click: www.power.com

Manufacturer

Power Integrations Switzerland GmbH Johann-Renfer-Strasse 15 2504 Biel-Bienne, Switzerland

Phone +41 32 344 47 47 Fax +41 32 344 47 40

Email <u>igbt-driver.sales@power.com</u>
Website <u>www.power.com/igbt-driver</u>

 ${\small \texttt{@ 2013...2015 Power Integrations Switzerland GmbH.}}$

We reserve the right to make any technical modifications without prior notice.

All rights reserved.

Version 1.2 from 2016-05-20

Power Integrations Worldwide High Power Customer Support Locations

World Headquarters

5245 Hellyer Avenue San Jose, CA 95138 | USA Main +1 408 414 9200 Customer Service:

Phone +1 408 414 9665 Fax +1 408 414 9765 Email <u>usasales@power.com</u>

Switzerland (Biel)

Johann-Renfer-Strasse 15 2504 Biel-Bienne | Switzerland Phone +41 32 344 47 47 Fax +41 32 344 47 40

Email iqbt-driver.sales@power.com

Germany (Ense)

HellwegForum 1 59469 Ense | Germany Phone +49 2938 643 9990 Email igbt-driver.sales@power.com

Erridii <u>igbt driver:salese po</u>

Germany (Munich)

Lindwurmstrasse 114 80337 Munich | Germany Phone +49 895 527 39110 Fax +49 895 527 39200 Email eurosales@power.com

China (Shanghai)

Rm 2410, Charity Plaza, No. 88 North Caoxi Road Shanghai, PRC 200030 Phone +86 21 6354 6323 Fax +86 21 6354 6325 Email chinasales@power.com

China (Shenzhen)

17/F, Hivac Building, No 2, Keji South 8th Road, Nanshan District Shenzhen | China, 518057 Phone +86 755 8672 8725 Fax +86 755 8672 8690 Hotline +86 400 0755 669 Email chinasales@power.com

Italy (Milano)

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni | Italy Phone +39 024 550 8701 Fax +39 028 928 6009 Email eurosales@power.com

UK (Herts)

First Floor, Unit 15, Meadway Court, Rutherford Close, Stevenage, Herts SG1 2EF | United Kingdom Phone +44 1252 730 141 Fax +44 1252 727 689 Email eurosales@power.com

India (Bangalore)

#1, 14th Main Road
Vasanthanagar
Bangalore 560052 | India
Phone +91 80 4113 8020
Fax +91 80 4113 8023
Email indiasales@power.com

Japan (Kanagawa)

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 | Japan Phone +81 45 471 1021 Fax +81 45 471 3717 Email japansales@power.com

Korea (Seoul)

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu
Seoul 135-728 | Korea
Phone +82 2 2016 6610
Fax +82 2 2016 6630
Email koreasales@power.com

Taiwan (Taipei)

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei 11493 | Taiwan R.O.C.

Phone +886 2 2659 4570 Fax +886 2 2659 4550 Email <u>taiwansales@power.com</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Power Integrations manufacturer:

Other Similar products are found below:

00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 011003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63