Product Highlights

Dramatically Simplifies CV/CC Converters

- Eliminates optocoupler and all secondary CV/CC control circuitry
- Eliminates all control loop compensation circuitry

Advanced Performance Features

- Dynamic base drive technology provides flexibility in choice of BJT transistor by dynamically optimizing BJT switching characteristics
- Extends RBSOA of BJT
- Dramatically reduces sensitivity to BJT gain
- Compensates for input line voltage variations
- Compensates for cable voltage drop
- Compensates for external component temperature variations
- Very accurate IC parameter tolerances using proprietary trimming technology
- Frequency up to 65 kHz to reduce transformer size
- The minimum peak current is fixed to improve transient load response

Enhanced Performance Features

- Easy start for starting into capacitive loads (LNK4114D, LNK4115D)
- Constant power for high current start-up (LNK4214D, LNK4215D)
- 13003 drive improved efficiency with 13003 BJT's (LNK4302S, LNK4322S)

Advanced Protection/Safety Features

- Single fault output overvoltage and short-circuit
- Over-temperature protection
- Active clamp

EcoSmart ${ }^{\text {TM }}$ - Energy Efficient

- Meets DoE 6 and CoC V5 2016 via an optimized quasi-resonant switching PWM/PFM control
- No-load consumption of $<30 \mathrm{~mW}$ at 230 VAC input

Green Package

- Halogen free and RoHS compliant package

Applications

- Chargers for cell/cordless phones, PDAs, MP3/portable audio devices, adapters, networking, etc.

Description

The LinkSwitch ${ }^{\text {TM }}$-4 family of ICs dramatically simplifies low power CV/CC charger design by eliminating an optocoupler and secondary control circuitry. The LinkSwitch-4 family adaptive BJT drive technology uses combined base and emitter switching to boost switching performance and deliver higher efficiency, wider Reverse Bias Safe Operating Area (RBSOA) margin and the flexibility to accommodate a wide range of low cost BJT. The device incorporates a multimode PWM/PFM controller with quasi resonant switch to maximize the efficiency, meets low no-load power and at same time maintain fast transient response greater than 4.3 V with a load change from 0% to 100%.

Figure 3. SOT-23-6 and SO-8 Packages.

Figure 2. Typical Application (SO-8) (D).

Output Power Table

Product $^{\mathbf{3}, 4}$	$85-265 \mathrm{VAC}$	
	Features	
LNK43x2S	13003 Drive	Adapter $^{\mathbf{1}}$ Open Frame
LNK40x2S	STD	5 W
LNK40x3S	STD	6.5 W
LNK4323S	STD	8 W
LNK40x3D	STD	8 W
LNK4323D	STD	10 W
LNK40x4D	STD	10 W
LNK4114D	Easy Start	15 W
LNK4214D	Easy Start + Constant Power	15 W
LNK4115D	Easy Start	15 W
LNK4215D	Easy Start + Constant Power	18 W
LT	18 W	

Table 1. Output Power Table.

Notes:

1. Minimum continuous power in a typical enclosed adapter measured at $+50^{\circ} \mathrm{C}$ ambient, 85-265 VAC device $\mathrm{T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C}$.
2. Maximum practical continuous power in an open frame design with adequate heat sinking, measured at $+50^{\circ} \mathrm{C}$.
3. Package: D: SO-8, S: SOT-23-6.
4. Cable compensation factor. $x=0$ (no cable compensation),
$x=1(3 \%$ cable compensation) $x=2$ (6% cable compensation).
5. Easy Start feature uses the BJT current to directly charge $\mathrm{C}_{\mathrm{vcc}}$, allowing start-up into large output capacitors. 13003 drive feature has the gate drive optimized for maximum efficiency when using 13003 BJTs. Constant power feature provides 175% of rated current at start-up, allowing start-up into large output capacitors (see Figure 15). STD are standard products with all the advanced performance and protection/safety features.

Figure 4. LNK40x2S, LNK40x3S, LNK4323S and LNK43x2S Functional Block Diagram.

Figure 5. LNK40x3D, LNK4323D, LNK40x4D, LNK4114D, LNK4115D and LNK4215D Functional Block Diagram.

Pin Functional Description

VOLTAGE SUPPLY (VCC) Pin:
During Run mode, power derived from the transformer voltage supply winding is fed to the control circuitry via the VOLTAGE SUPPLY pin.

BASE DRIVE (BD) Pin:
BASE DRIVE pin for BJT.
EMITTER DRIVE (ED) Pin:
EMITTER DRIVE pin for BJT.
FEEDBACK (FB) Pin:
The FEEDBACK pin input provides feedback to the control circuitry by monitoring the transformer voltage waveform.

GROUND (GND) Pin:

Power and signal ground.
Primary CURRENT SENSE (CS) Pin:
Primary CURRENT SENSE pin via R $_{\text {cS }}$.
SUPPLEMENTARY BASE DRIVE (SBD) Pin:
Supplementary base drive.

Figure 6. Pin Configuration.

Functional Description

Power-Up/Power-Down Sequences

Refer to Figure 10 and Figure 7. When mains input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is applied, current flows through the start-up resistors ($R_{H T}$) and BJT. Some of this current flows into the LinkSwitch-4 internal circuits, which are in Sleep mode; the remainder charges capacitor $\mathrm{C}_{\mathrm{vcc}}$. As soon as the VOLTAGE SUPPLY pin voltage rises to $\mathrm{V}_{\text {vcc(run) }}$, the LinkSwitch-4 changes to Initialise mode. Current consumption increases to $\mathrm{I}_{\text {vcc(run) }}$ while internal circuits are enabled. The emitter switch is held at low impedance to ground (GND) and a short drive pulse is output on the BASE DRIVE pin, during which time the voltage at feedback is held at GND potential by current sourced from the FEEDBACK pin. This enables the LinkSwitch-4 control circuit to compare the rectified mains input voltage with thresholds for allowing or preventing the next stage of power-up. If the input voltage is too low ($\left.\mathrm{I}_{\text {FB }}<\mathrm{I}_{\text {FBHT(START }}\right)$, the LinkSwitch-4 will not issue further drive pulses, the VCC voltage will discharge to $\mathrm{V}_{\text {vcc(SLLEEP) }}$, and the power-up sequence will repeat. If the mains input voltage is high enough ($\mathrm{I}_{\mathrm{FB}}>$ $\left.\mathrm{I}_{\text {FBHT(START) }}\right)$, the LinkSwitch-4 will enter Run mode and drive pulses will be output on the BASE DRIVE pin. To achieve smooth power-up (monotonic rise in $\mathrm{V}_{\text {out }}$), $\mathrm{C}_{\mathrm{vcc}}$ must be large enough to power the control circuitry during Initialize mode and the first few cycles of Run mode, until sufficient power is provided by the transformer voltage supply winding.
If the input voltage falls below $\mathrm{V}_{\text {Mains(L)) }}$ (see Input Undervoltage Protection), $\mathrm{V}_{\mathrm{vcc}}$ will fall below $\mathrm{V}_{\text {vcC(SLLEEP) }}$ and the LinkSwitch- 4 will go
into Sleep mode, reducing its current consumption to $\mathrm{I}_{\mathrm{vcc(sLEEPP})}$. The control circuitry will re-initialize if the input voltage is restored and $\mathrm{V}_{\text {vcc }}$ reaches $\mathrm{V}_{\text {vcc(run) }}$.

Figure 7. VCC Waveforms.

Mode	Description
Sleep	From initial application of input power or from Run mode, if $\mathrm{V}_{\text {vcc }}$ falls below $\mathrm{V}_{\text {vcc(sLEEP), }}$ the LinkSwitch-4 goes to Sleep mode. Non-essential circuits are turned off. Base and Emitter drives are turned off so BASE DRIVE and EMITTER DRIVE pins become high impedance, allowing the bootstrap resistor $\left(R_{H T}\right)$ and BJT to start the circuit. Sleep mode is exited when $V_{\text {vcc }}$ rises to $\mathrm{V}_{\text {vc(R(RUN) }}$ and the control circuitry goes to Initialize mode.
Initialize	Internal circuits are enabled and the LinkSwitch-4 issues one switching cycle to sample the input voltage via the FEEDBACK pin. If $V_{\text {IN }}$ (hence $V_{H T}$) is high enough, the LinkSwitch-4 changes to Run mode. If $V_{\text {IN }} V_{\text {is not high enough, no further base drive }}$ pulses are issued and the LinkSwitch-4 returns to Sleep mode when $V_{\text {vcc }}$ falls below V_{V}
Run	Power conversion: The control circuitry is powered from the VCC rail and the internal V_{DD} is regulated. If $\mathrm{V}_{\mathrm{vcc}}$ falls below $\mathrm{V}_{\text {vcc(sLeEP), }}$ the IC ceases power conversion and goes to Sleep mode.

Table 2. Summary of LinkSwitch-4 Operating Modes.

Switching Waveforms

Typical waveforms at the feedback and primary current sense inputs are shown in Figure 8.

PI-7458-010815

Figure 8. Typical Waveforms at the Feedback and Primary Current Sense Inputs.

Constant Voltage (CV) Regulation

Constant output voltage regulation is achieved by sensing the voltage at the feedback input, which is connected to the voltage supply winding as shown in Figure 10 or to a dedicated feedback winding. An internal current source prevents the feedback voltage from going negative. A typical feedback voltage waveform is shown in Figure 8. The feedback waveform is continuously analyzed and sampled at time $\mathrm{t}_{\text {SAMP }}$ to measure the reflected output voltage. $\mathrm{t}_{\text {SAMP }}$ is identified by the slope of the feedback waveform and is coincident with zero flux in the transformer. The sampled voltage is regulated at $\mathrm{V}_{\mathrm{FB}(\mathrm{REG)}}$ by the voltage control loop. The (typical) CV mode output voltage is set by the ratio of resistors $R_{F B 1}$ and $R_{F B 2}$ (see Figure 10) and by the transformer turns ratio, according to the following formula (where output diode voltage is neglected):

$$
V_{o U T(C V)}=V_{F B(R E G)}\left(1+\frac{R_{F B 1}}{R_{F B 2}}\right)\left(\frac{N_{s}}{N_{F}}\right)
$$

Where N_{F} is the number of turns on the feedback (or voltage supply if used for feedback) winding and N_{s} is the number of turns on the secondary winding. The tolerances of $R_{F B 1}$ and $R_{F B 2}$ affect output voltage regulation and mains estimation so should typically be chosen to be 1% or better.

The current required to clamp the feedback voltage to ground potential during the on-time of the primary switch depends on the primary winding voltage (approximately equal to the rectified mains input voltage), the primary to feedback turns ratio, and resistor $\mathrm{R}_{\text {FB1 }}$. The controller measures feedback source current and so enables $\mathrm{R}_{\mathrm{FB} 1}$ to set the input voltage start threshold and the input undervoltage protection threshold, as described below.

Input Voltage Start Threshold

In Initialise mode, the LinkSwitch-4 issues a single short-duration drive pulse in order to measure the primary voltage and so the
approximate mains input voltage. If the input voltage is below $\mathrm{V}_{\text {Mains(START) }}$ then the LinkSwitch-4 will not start. Instead it will pause while $^{\text {MAINSTARTT }}$ visc discharges below $\mathrm{V}_{\text {vcc(SLEEP) }}$ then it will begin a new power-up cycle. If the input voltage exceeds $\mathrm{V}_{\text {mains(Start) }}$, the converter will power-up. $\mathrm{V}_{\text {MAINS(START) }}$ is set by $\mathrm{R}_{\text {FB1 }}$ using this equation:

$$
V_{M A I N S(S T A R T)}=\frac{-1}{\sqrt{2}} \times I_{F B H T(S T A R T)} \times R_{F B 1} \times \frac{N_{P}}{N_{F}}
$$

Input Undervoltage Protection

In Run mode, if the mains voltage falls to $\mathrm{V}_{\text {mains (}-0) \text {, }}$, the LinkSwitch-4 will stop issuing drive pulses, $\mathrm{V}_{\text {vcc }}$ will reduce to $\mathrm{V}_{\text {vcc(SLEEP) }}$ and the LinkSwitch-4 will enter Sleep mode. $V_{\text {Mains(LO) }}$ is set by $R_{\text {FB1 }}$ using this equation:

$$
V_{M A N S(L O)}=\frac{-1}{\sqrt{2}} \times I_{F B H T(L O)} \times R_{F B 1} \times \frac{N_{P}}{N_{F}}
$$

Constant Current (CC Mode) Regulation

Constant current output ($\mathrm{I}_{\text {out }}$ (C)) is achieved by regulating the CS input to the primary side estimate of the output current scaled by R_{cs}, $\mathrm{V}_{\mathrm{cs}(\mathrm{C})}$. The regulated output current, $\mathrm{I}_{\text {out }(\mathrm{CC})}$ is set by the value of the current sense resistor, R_{CS}, and the transformer primary to secondary turns ratio $\left(N_{P} / N_{S}\right)$. The value of $R_{C S}$ is determined using the formula:

$$
R_{C S} \approx\left(\frac{N_{P}}{N_{S}}\right)\left(\frac{V_{C S(C C)}(T y p)}{I_{\text {oUT }(C C)}(T y p)}\right)
$$

The tolerance of R_{CS} affects the accuracy of output the current regulation so is typically chosen to be 1%. The LinkSwitch-4 can maintain CC regulation down to much lower levels of $\mathrm{V}_{\text {Shutdon(max) }}$ normally specified for mobile phones chargers (see Figure 11).

Cable Compensation

If required, LinkSwitch-4 adjusts the converter output voltage ($\mathrm{V}_{\text {ouT }}$) to compensate for voltage drop across the output cable. The amount of compensation applied ($\mathrm{G}_{\text {CAB }}$) is specified by using the formula below to match cable compensation with output cable resistance $\left(R_{C A B}\right)$:

$$
G_{C A B}=\frac{I_{\text {OUT }(C C)}(T y p) \times R_{C A B}}{V_{\text {oUT }(C V)}(T y p)} \times 100 \%
$$

Or

$$
G_{C A B}=\frac{I_{O U T(C P)}(T y p) \times R_{C A B}}{V_{\text {OUT }(C V)}(T y p)} \times 100 \%
$$

Drive Pulse and Frequency Modulation

The LinkSwitch-4 control circuitry determines both the primary switch peak current and the switching frequency to control output power, ensuring discontinuous conduction mode operation at all times.

Primary current generates a voltage across the current sense resistor, R_{Cs}, and is sensed by the primary current sense input. The voltage on the primary CURRENT SENSE pin is negative-going, as shown in Figure 8. When the voltage exceeds a (negative) threshold ($\mathrm{V}_{\text {CSTHR }}$) set by the control circuitry, base drive is driven low to turn the primary switch off. The primary current sense voltage threshold $\left(\mathrm{V}_{\text {CSTHR }}\right)$ varies from $\mathrm{V}_{\text {CSMIN }}$ to $\mathrm{V}_{\text {CSMAX) }}$ during normal operation. The switching frequency varies from $f_{\text {MIN }}$ at no-load, to the maximum switching frequency, $f_{\text {MAX }}$.
Minimum switching frequency occurs during no-load operation and is typically in the range 1 to 3 kHz , depending on application design. The periodic voltage waveform on the VCC input, which depends on the current consumed by the control circuitry and the value of $\mathrm{C}_{\mathrm{vc},}$, contributes to control of the switching frequency. In no-load condition, $\mathrm{C}_{\mathrm{vcc}}$ must be large enough to ensure that ripple voltage on $\operatorname{VCC}\left(\Delta \mathrm{V}_{\text {vccppm }}\right)$ is less than 1.6 V , and $\mathrm{C}_{\mathrm{vcc}}$ must be small enough to ensure the ripple on VCC is greater than 50 mV :

$$
C_{V C C}=\frac{I_{V C C N L}}{f_{M I N} \times \Delta V_{V C C P F M}}
$$

The switching frequency increases as the load increases, eventually reaching $\mathrm{f}_{\text {mAX }}$ at full load. For protection purposes in the event of certain transitory conditions, the controller immediately issues a drive pulse if VCC voltage falls to $\mathrm{V}_{\text {vcc(Low) }}$. This is not part of normal operation or normal frequency control.

Base Drive Control

During the on-time of the BJT, the emitter is switched to GND via the EMITTER DRIVE pin. Base current, I_{BD} is controlled to achieve fast turn-on, low on-voltage and fast turn-off to enable reduced power dissipation and accurate timing of each part of the switching cycle.
As shown in Figure 9, the base drive current starts with a fixed pulse of $\mathrm{I}_{\mathrm{FON})} / \mathrm{t}_{\mathrm{F}(O N)}$. Its amplitude and duration are then modulated to provide sufficient charge for low BJT on-voltage, while allowing de-saturation towards the end of on-time so as to enable fast turn-off. When $\mathrm{V}_{\text {cSTHR }}$ is detected on the primary CURRENT SENSE pin, the BASE DRIVE pin is switched to GND and the emitter drive switch is opened.
LNK43×2S - drive optimized for high efficiency performance using 13003 transistors.

Duty Cycle Control

Maximum duty cycle is a function of the primary to secondary turns ratio of the transformer (typically 16:1 for a 5 V output). For a universal mains input power supply, maximum duty cycle is typically
chosen to be 50% at the minimum (including ripple) of the rectified mains voltage (typically 80 V).

Quasi-Resonant Switching

The primary switch is turned on when the voltage across it rings down to a minimum (voltage-valley, quasi-resonant switching). The effect of this is to reduce losses in the switch at turn-on. It also helps reduce EMI.

Primary Switch Over-Current Protection

The primary switch is turned off if the emitter current sensed by the primary current sense input exceeds the effective threshold $\mathrm{V}_{\text {csocp(EFF), }}$ subject to the minimum on-time, $\mathrm{T}_{\text {on(min) }}$. The effective threshold $\mathrm{V}_{\text {csocp(EFF) }}$ depends on a threshold $\mathrm{V}_{\text {CS(OCP) }}$ predefined by the controller, the primary current sense signal rate of rise ($\mathrm{dVcs} / \mathrm{dt}$), which is dependent on the application design, and the primary CURRENT SENSE pin turn-off response time, $\mathrm{t}_{\text {cs(off) }}$. This gives pulse by pulse over-current protection of the primary switch.

Output Overvoltage Protection

The on-time of the primary switch is reduced if the output voltage tends to $\mathrm{V}_{\text {out(ovp). }}$ The value depends on the set output voltage ($\mathrm{V}_{\text {out(CV) }}$) and the feedback OVP ratio:

$$
V_{\text {OUT }(O V P)}=V_{\text {oUT }(C V)} \times G_{F B(O V P)}
$$

Supplementary Base Drive (LNK40x3D, LNK4114D, LNK4214D)

 The resistor $\mathrm{R}_{\text {SBD }}$ connects the SUPPLEMENTARY BASE DRIVE pin to VOLTAGE SUPPLY pin. It supplements current to the base drive to optimize the switching bipolar transistor turn-on and turn-off in high power applications.Suggested values for the supplementary base drive resistor $R_{\text {SBD }}$ are between 220Ω and 390Ω.

Shunt Function (LNK40x3D, LNK40x4D, LNK4115D, LNK4215D) The shunt function is intended to automatically limit the VCC voltage and allow greater flexibility in transformer design. VOLTAGE SUPPLY pin will be shunted via $\mathrm{R}_{\text {SBO }}$ the SUPPLEMENTARY BASE DRIVE pin resistance $R_{\text {sBb(ON) }}$ and $R_{\text {BD(OFF) }}$ to the GROUND pin when the VCC voltage is greater than $V_{\text {vcc(HI) }}$ and the transformer is discharging.
Output Undervoltage Protection (LNK40x3S/D, LNK43x3S/D) The output undervoltage protection (UVP) function is used to shutdown the converter when the output voltage is below $\mathrm{V}_{\text {out(uvP) }}$.
At start-up this function is disabled during the first $\mathrm{N}_{\text {STARTUP }}$ switching cycles and the output current is regulated allowing the output voltage to rise from 0 V in a monotonic way.

Product	Output Undervoltage Protection Function
LNK40x2S LNK43x2S	$\mathrm{V}_{\text {OUT(UVP) }}$ Depends on $\mathrm{V}_{\text {vcc(sLleep) }}$
LNK40x3S LNK40x3D LNK4323S LNK4323D	$\mathrm{V}_{\text {OUT(UVP) }}=0.63 \times \mathrm{V}_{\text {OUT(CV) }}$
LNK40x4D	$\mathrm{V}_{\text {out(uUP) }}$ Depends on $\mathrm{V}_{\text {vcC(SLEEP) }}$
LNK4114D LNK4214D LNK4115D LNK4215D	$\mathrm{V}_{\text {OUT(UVP) }}$ Depends on $\mathrm{V}_{\text {vcC(SLEEP) }}$

Table 3. Output Undervoltage Protection.

If the output does not reach $\mathrm{V}_{\text {out(uvp) }}$ during this time then the controller will shutdown and restart.
$\mathrm{V}_{\text {out(UvP) }}$ value depends on the set output voltage $\left(\mathrm{V}_{\text {out(CV) }}\right)$ and the feedback UVP ratio:

$$
V_{o U T(U V P)}=V_{\text {oUT }(C V)} \times G_{F B(U V P)}
$$

Easy Start (LNK4114D, LNK4214D, LNK4115D, LNK4215D)

The Easy Start feature guarantees start-up into large output capacitances and allows the output voltage to work down the CC chimney close to OV.

The Easy Start feature uses the BJT emitter current (equal to the primary current) to charge the supply capacitor $\mathrm{C}_{\mathrm{vcc}}$ via an additional Schottky diode.

This only occurs when the supply voltage has fallen below $\mathrm{V}_{\text {vcces }}$ and is achieved by altering the sequencing of EMITTER DRIVE pin switching.

If the supply voltage is below $\mathrm{V}_{\text {vcc(es)! }}$, and when the base has received enough charge, the EMITTER DRIVE pin is released at the same time as the BASE DRIVE pin.

This allows the BJT emitter voltage to rise until the Schottky diode conducts. Emitter current then charges the $\mathrm{C}_{\mathrm{vcc}}$ until the BJT is turned off by the BASE DRIVE pin being pulled low.

If the supply voltage is above $\mathrm{V}_{\text {vcc(Es) }}$, then Easy Start has no effect on the operation of the controller.

Note $\mathrm{V}_{\text {vcc(Es) }}=6 \mathrm{~V}$ for LNK4114D and LNK4214D, $\mathrm{V}_{\text {vcc(ESS) }}=10 \mathrm{~V}$ for LNK43x3S, LNK43x3D, LNK4115D and LNK4215D during $\mathrm{N}_{\text {sTARTup }}$ cycles, after which it reduces to 6 V .

Over-Temperature Protection

Temperature protection is internal to LinkSwitch-4. The sensor measures the junction temperature T_{1}, which is the hottest part of LinkSwitch-4.

At temperatures $\mathrm{T}_{3} \sim 140^{\circ} \mathrm{C}$, LinkSwitch-4 will shutdown and remain in this state until a temperature of $\mathrm{T}_{\mathrm{j}} \sim 70^{\circ} \mathrm{C}$ is reached. Whereby LinkSwitch-4 will power-up in the normal sequence.

Figure 9. Base Drive Waveforms.

Figure 9b. Base Drive Waveforms - Easy Start mode of Operation.

Typical Application for LNK40x3D

Parameter	Symbol	Range or Value	Units	Comment
Supply Voltage	V_{IN}	$85-265$	VAC	Universal mains
Output Voltage	$\mathrm{V}_{\text {OUTCV) }}$	$5.0 \pm 5 \%$	V	Constant voltage (CV) mode, at the load
Output Current	$\mathrm{I}_{\text {OUT }}$	2	A	Label rated output current
Switching Frequency at Full Load	$\mathrm{f}_{\text {MAX }}$	65	kHz	
Cable Compensation	$\mathrm{G}_{\text {CAB }}$	6	$\%$	Determined by the chosen variant
No-load Power	P_{NL}	<30	mW	Energy Star test method
Average Efficiency	η	>75	$\%$	Energy Star test method
Turn-on Delay	$\mathrm{T}_{\text {ON }}$	<1	s	
Undershoot Voltage	$\mathrm{V}_{\text {UNDERSHT }}$	>4	V	Load step from 0 A to 0.5 A

Table 4. 10 W Typical Application Results for Figure 10.

Figure 10. Typical Universal Input, 10 W Charger.

By sensing the primary-side waveforms of transformer voltage and primary current, the LinkSwitch-4 achieves constant voltage and constant current output within tight limits without the need for any secondary-side sensing components. Figure 11 shows the output characteristics of a typical charger implementation.

Figure 11. Typical CV/CC Output Characteristic Achieved.

Typical Networking Application for LNK4114D

Parameter	Symbol	Range or Value	Units	Comment
Supply Voltage	V_{IN}	$90-264$	VAC	Universal mains
Output Voltage	$\mathrm{V}_{\mathrm{OUT} \text { (CV) }}$	$12.0 \pm 5 \%$	V	Constant voltage (CV) mode, at the load
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	1	A	Label rated output current
Load Capacitance	$\mathrm{C}_{\text {LOAD }}$	3000	$\mu \mathrm{~F}$	System capacitance
Switching Frequency at Full Load	$\mathrm{f}_{\text {MAX }}$	65	kHz	
Cable Compensation	$\mathrm{G}_{\mathrm{CAB}}$	3	$\%$	Determined by the chosen variant
No-load Power	P_{NL}	<75	mW	Energy Star test method
Average Efficiency	η	>83	$\%$	Energy Star test method
Turn-on Delay	T_{ON}	<1	s	

Table 5. 12 W Typical Networking Application Results.

Figure 12. Typical Universal Input, 12 W Adapter.

Figure 13. Typical LNK4114D and LNK4115D CV/CC Output Characteristic Achieved.

Typical Networking Application for LNK4214D

Parameter	Symbol	Range or Value	Units	Comment
Supply Voltage	V_{IN}	$90-264$	VAC	Universal mains
Output Voltage	$\mathrm{V}_{\mathrm{OUT} \text { (CV }}$	$12.0 \pm 5 \%$	V	Constant voltage (CV) mode, at the load
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	1	A	Label rated output current
Load Capacitance	$\mathrm{C}_{\mathrm{LOAD}}$	6000	$\mu \mathrm{~F}$	System capacitance
Switching Frequency at Full Load	$\mathrm{f}_{\mathrm{MAX}}$	65	kHz	
Cable Compensation	$\mathrm{G}_{\mathrm{CAB}}$	3	$\%$	Determined by the chosen variant
No-load Power	P_{NL}	<75	mW	Energy Star test method
Average Efficiency	η	>83	$\%$	Energy Star test method
Turn-on Delay	T_{ON}	<1	s	

Table 6. 12 W Typical Networking Application Results.

Figure 14. Typical Universal Input, 12 W Adapter.

Figure 15. Typical LNK4214D and LNK4215D CP Output Characteristic Achieved.

Constant Power

The LNK4214D controller is optimized for fast start-up into loads with large capacitance. The constant current (CC) pull-up set point of the VI characteristic is determined by the value of R_{CS}. The controller regulates in CC mode until it is above approximately 50% of the programmed constant voltage (CV) regulation point (set by the values of $R_{F B 1}$ and $R_{F B 2}$). It then regulates in a power limited or "constant power" (CP) mode until the output voltage reaches the CV set point, at which point it changes to CV mode regulation. The exact trajectory is dependent on the input mains voltage.
$\mathrm{I}_{\text {OUT }}$ at the point of transition between CP and CV modes, $\mathrm{I}_{\text {outcp, }}$ will be greater than 57% of $\mathrm{I}_{\text {out(ExT) }}$ as shown in Figure 15.

Absolute Maximum Ratings ${ }^{1}$	
SUPPLY VOLTAGE Pin ...-0.5 V to 18 V	
FEEDBACK Pin Input Voltage	. -0.5 V to 4 V
FEEDBACK Pin Input Current	20 mA to 20 mA
CURRENT SENSE Pin Input Voltage	- 0.5 V to 4 V
CURRENT SENSE Pin Input Current	20 mA to 20 mA
BASE DRIVE Pin Voltage.	-0.5 V to 18 V
EMITTER DRIVE Pin Voltage.	-0.5 V to 18 V
SUPPLEMENTARY BASE DRIVE Pin	-0.5 V to 18 V

Thermal Resistance

Thermal Resistance: D Package: (SO-8)

$\left(\theta_{\text {JA }}\right)$...................	
$\left(\theta_{31}\right)^{1,2} \ldots$.	$30^{\circ} \mathrm{C} / \mathrm{W}$
S Package (SOT-23-6)	
$\left(\theta_{\text {JA }}\right)$.	$170^{\circ} \mathrm{C} / \mathrm{W}$
$\left(\theta_{\text {JB }}\right)^{2}$. $60^{\circ} \mathrm{C} / \mathrm{W}$

Junction Temperature .. -40 to $150{ }^{\circ} \mathrm{C}$
Lead Temperature ${ }^{2}$. \qquad $.260^{\circ} \mathrm{C}$

Notes:

1. Maximum ratings specified may be applied, one at a time without causing permanent damage to the product. Exposure to Absolute Maximum ratings for extended periods of time may affect product reliability.
2. Soldering, 10 seconds.

Notes:

1. IC mounted on typical (1oz) copper clad PCB with $164 \mathrm{~mm}^{2}$ ground plane surrounding GROUND pin(s).
2. θ_{JB} measured to GROUND pin terminal of device at the surface of the PCB.

Parameter	Symbol	Conditions $\mathrm{T}_{1}=-25$ to $125^{\circ} \mathrm{C}$ (Unless Otherwise Specified)	Min	Typ	Max	Units
Normal Operating Conditions						
External Supply Voltage	$\mathrm{V}_{\mathrm{vcc}}$		5		16.5	V
Transformer Resonance frequency (In-Circuit)	$\mathrm{f}_{\text {RES }}$		180		1200	kHz
Thermal Shutdown Temperature	$\mathrm{T}_{\text {SD }}$		130	140	150	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {SDH }}$			70		${ }^{\circ} \mathrm{C}$
VOLTAGE SUPPLY Pin						
Easy Start Enable Voltage	$\mathrm{V}_{\text {cC(ES) }}$	LNK4114D / LNK4214D		6		V
		LNK4115D / LNK4215D for $\mathrm{N}_{\text {staRTup }}$ Cycles, then 6 V		10		
Supply Voltage	$\mathrm{V}_{\text {vcc(run) }}$	To Enter Initialize Mode	11.5	13.5	15.5	V
	$\mathrm{V}_{\text {vcC(SLLEPP) }}$			4.5	5.1	
	$\mathrm{V}_{\text {vcc(Low) }}$			5		
Supply Current	$\mathrm{I}_{\mathrm{vcc}(\text { run) }}$	Average at $\mathrm{f}_{\text {MAX }}$, Excluding Base Drive Current		2		mA
	$\mathrm{I}_{\text {vcc(NL) }}$	No-Load		0.6		
	$\mathrm{I}_{\text {vcc(sLEEPP) }}$	In Sleep Mode			15	$\mu \mathrm{A}$
VCC Shunt Trigger Level	$\mathrm{V}_{\text {cC(HI) }}$	LNK4XX3D / LNK4XX4D / LNK4XX5D		15.5		V
FEEDBACK Pin						
Feedback Regulation Level	$\mathrm{V}_{\text {FB(REG })}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1.96	1.98	2.00	V
Feedback Input Resistance	$\mathrm{R}_{\text {FB(IN) }}$	Effective Input Resistance $0<V_{F B}<5$		2		$\mathrm{M} \Omega$
Feedback OVP Ratio	$\mathrm{G}_{\text {FB(OVP) }}$		1.19	1.20	1.21	
Feedback UVP Ratio	$\mathrm{G}_{\text {FB(UVP) }}$	LNK40x3D/S	0.62	0.63	0.64	

 www.power.com

Parameter	Symbol	$\begin{gathered} \text { Conditions } \\ \mathrm{T}_{\mathrm{J}}=-25 \text { to } 125^{\circ} \mathrm{C} \\ \text { (Unless Otherwise Specified) } \end{gathered}$		Min	Typ	Max	Units
EMITTER DRIVE Pin							
Emitter Drive On-State Resistance	$\mathrm{R}_{\text {EDON(MAX) }}$	$\mathrm{V}_{\mathrm{VcC}}=\mathrm{V}_{\mathrm{VcC}(\text { SLEEP })}$	LNK40x2S / LNK43x2S		3		Ω
			LNK40x3S / LNK4323S		1.5		
			LNK40x3D / LNK4323D		1.5		
			LNK40x4D / LNK4114D / LNK4214D / LNK4115D / LNK4215D		0.9		
Emitter Drive Leakage Current	$\mathrm{I}_{\text {ED(SLEEP) }}$	In Sleep Mode,$\mathrm{T}_{\mathrm{J}}=50^{\circ} \mathrm{C}$	LNK40x2S / LNK43x2S			1	$\mu \mathrm{A}$
			LNK40x3S / LNK4323S			1	
			LNK40x3D / LNK4323D			1	
			LNK40x4D / LNK4114D / LNK4214D / LNK4115D / LNK4215D			1	
Emitter Drive Peak Sink Current	$\mathrm{I}_{\text {ED(SINK) }}$	LNK40x2S / LNK43x2S				600	mA
		LNK40x3S / LNK4323S				700	
		LNK40x3D / LNK4323D				900	
		LNK40x4D / LNK4114D / LNK4214D				1100	
		LNK4115D / LNK4215D				1300	
Emitter Drive Minimum On-Time	$t_{\text {EDMIN(ON) }}$	LNK40x3S / LNK40x3D Only			175		ns
SBD Pin							
SBD On-State Resistance	$\mathrm{R}_{\text {SBD(ON) }}$	LNK40x3D / LNK4323D			8		Ω
		LNK40x4D / LNK4114D / LNK4214D / LNK4115D / LNK4215D			4		
SBD Leakage Current	$\mathrm{I}_{\text {SBD (SLEEP) }}$	In Sleep Mode, $\mathrm{T}_{\mathrm{J}}=50^{\circ} \mathrm{C}$	LNK40x3D / LNK40x4D / LNK4114D / LNK4214D / LNK4115D / LNK4215D / LNK4323D			1	$\mu \mathrm{A}$

NOTES:
A. Min and Max values apply over the full range of normal operating conditions.
B. Typical electrical characteristics apply at $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{1}$ (typ).
C. The chip is operating in Run mode.
D. Voltages are specified with respect to the GROUND pin.

Part Ordering Table

Product	$\mathrm{f}_{\text {MAX }}(\mathrm{kHz})$	$\mathrm{G}_{\text {CAB }}$ (\%)	Package Marking ${ }^{1}$	Tape and Reel Part Number
*LNK4002S	65	0	BBxx	LNK4002S-TL
*LNK4012S	65	3	GBxx	LNK4012S-TL
*LNK4022S	65	6	BAxx	LNK4022S-TL
LNK4003S	65	0	DLxx	LNK4003S-TL
LNK4013S	65	3	DOxx	LNK4013S-TL
LNK4023S	65	6	DNxx	LNK4023S-TL
LNK4003D	65	0	LNK4003D	LNK4003D-TL
LNK4013D	65	3	LNK4013D	LNK4013D-TL
LNK4023D	65	6	LNK4023D	LNK4023D-TL
LNK4004D	65	0	LNK4004D	LNK4004D-TL
LNK4014D	65	3	LNK4014D	LNK4014D-TL
LNK4024D	65	6	LNK4024D	LNK4024D-TL
LNK4114D	65	3	LNK4114D	LNK4114D-TL
LNK4115D	65	3	LNK4115D	LNK4115D-TL
LNK4214D	65	3	LNK4214D	LNK4214D-TL
LNK4215D	65	3	LNK4215D	LNK4215D-TL
LNK4302S	65	0	BOxx	LNK4302S-TL
LNK4322S	65	6	BRxx	LNK4322S-TL
LNK4323S	65	6	DPxx	LNK4323S-TL
LNK4323D	65	6	LNK4323D	LNK4323D-TL

NOTES:

1. $x x=$ Manufacturing lot code.
2. *Not recommended for new designs.

Part Ordering Information

Notes

Revision	Notes	Date
A	Initial Release.	$01 / 27 / 15$
B	Added Over-Temperature Protection section. Added LNK4012S, LNK4013S and LNK4013D parts.	$04 / 06 / 15$
C	Added LNK4114 and LNK4214 parts.	$09 / 15$
D	Added LNK4302S, LNK4312S, LNK4322S, LNK43x2S, LNK4115D and LNK4215D parts.	$05 / 16$
E	Added LNK4323S and LNK4323D parts.	$06 / 16$
F	Updated I $_{\text {ED(SINK) }}$ parameter.	$05 / 18$

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE, SCALE-iDriver, SCALE-iFlex, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch, HiperTFS, HiperPFS, HiperLCS, DPA-Switch, CAPZero, Clampless, EcoSmart, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2018, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

World Headquarters

5245 Hellyer Avenue
San Jose, CA 95138, USA
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com
China (Shanghai)
Rm 2410, Charity Plaza, No. 88
North Caoxi Road
Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail: chinasales@power.com
China (Shenzhen)
17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

Germany (AC-DC/LED Sales)
Lindwurmstrasse 114
D-80337 München
Germany
Phone: +49-89-5527-39100
e-mail: eurosales@power.com
Germany (Gate Driver Sales)
HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@power.com

India

\#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

Italy

Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com
Japan
Yusen Shin-Yokohama 1-chome Bldg
1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

Korea

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

Singapore

51 Newton Road
\#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

Taiwan

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com
UK
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for AC/DC Converters category:
Click to view products by Power Integrations manufacturer:
Other Similar products are found below :
BP5722A12 ICE3AR0680VJZ ICE3AR2280CJZ ICE3BR0680JZ ICE3BR2280JZ SEA01 FAN7621SSJX BP5011 BP5055-12 BP5718A12 ICE2QR4780Z NCP1124BP100G AP3983EP7-G1 ICE2QR4765 TEA19363T/1J AP3125CMKTR-G1 ICE3AR10080CJZ SC1076P065G $\underline{47132} 4722047225$ APR3415BMTR-G1 NCP1126BP100G HF500GP-40 TNY179PN ICE3AR10080JZXKLA1 BM2P0361-Z BM2P249Q-Z BM521Q25F-GE2 INN3164C-H107-TL HR1001CGS-P HR1001LGS-P BM2P131X-Z BM2P161X-Z BM2P181X-Z BM2P201X-Z BM2P241X-Z LNK576DG-TL INN3278C-H215-TL INN3278C-H217-TL INN3678C-H605-TL NCP1342BMDCDD1R2G AP3304AW6-7 TNY263PN TNY286PG TNY287PG TNY288DG-TL TNY288PG MP100GN BP5034D24

