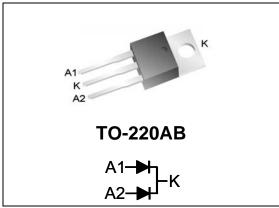
LXA12T600C Qspeed Family



600 V, 12 A X-Series Common-Cathode Diode

Product Summary

I _{F(AVG)} per diode	6	Α
V_{RRM}	600	V
Q _{RR} (Typ at 125 °C)	71	nC
I _{RRM} (Typ at 125 °C)	3.1	Α
Softness t _b /t _a (Typ at 125 °C)	0.7	

Pin Assignment

RoHS Compliant

Package uses Lead-free plating and Green mold compound. Halogen free per IEC 61249-2-21.

General Description

This device has the lowest Q_{RR} of any 600 V Silicon diode. Its recovery characteristics increase efficiency, reduce EMI and eliminate snubbers.

Applications

- Power Factor Correction (PFC) Boost Diode
- Motor drive circuits
- DC-AC inverters

Features

- Low Q_{RR}, Low I_{RRM}, Low t_{RR}
- High dl_F/dt capable (1000 A/µs)
- Soft recovery

Benefits

- Increases efficiency
 - Eliminates need for snubber circuits
 - Reduces EMI filter component size & count
- Enables extremely fast switching

Absolute Maximum Ratings

Absolute maximum ratings are the values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Symbol	Parameter	Conditions	Rating	Units
V _{RRM}	Peak repetitive reverse voltage		600	V
1	Average forward current	Per Diode, T _J = 150 °C, T _C = 121 °C	6	Α
I _{F(AVG)}	Average forward current	Per Device, $T_J = 150 ^{\circ}\text{C}$, $T_C = 121 ^{\circ}\text{C}$	12	Α
I _{FSM}	Non-repetitive peak surge current	60 Hz, ½ cycle	50	Α
I _{FSM}	Non-repetitive peak surge current	$\frac{1}{2}$ cycle of t = 28 µs Sinusoid, T _C = 25 °C	350	Α
T _J Maximum junction temperature			150	°C
T _{STG}	Storage temperature		-55 to 150	°C
	Lead soldering temperature	Leads at 1.6mm from case, 10 sec	300	°C
P_D	Power dissipation	T _C = 25 °C	62.5	W

Thermal Resistance

Symbol	Resistance from:	Conditions	Rating	Units
$R_{\theta JA}$	Junction to ambient	TO-220AB	62	°C/W
	Per Diode	2.0	°C/W	
$R_{\theta JC}$	Junction to case	Per Device	1.0	°C/W

www.powerint.com November 2013

LXA12T600C

Electrical Specifications at T_J= 25 °C (unless otherwise specified)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DC Chara	acteristics						
I _R	Reverse current per diode	$V_R = 600 \text{ V}, T_J = 3$	25 °C	-	-	250	μА
		V _R = 600 V, T _J =	125 °C	-	0.7	-	mA
V _F	Forward voltage per diode	I _F = 6 A, T _J = 25 °	С	-	2.27	2.94	V
		I _F = 6 A, T _J = 150	°C	-	2.0	-	V
СЈ	Junction capacitance per diode	V _R = 10 V, 1 MHz		-	30	-	pF
Dynamic	Characteristics						
t _{RR}	Reverse recovery time,	dI _F /dt =200 A/μs	Т _J =25 °С	-	23	-	ns
	per diode	V _R =400, I _F =6 A	T _J =125 °C	-	32	-	ns
Q _{RR}	Reverse recovery charge,	dI _F /dt =200 A/μs	T _J =25 °C	-	30	47	nC
	per diode	V _R =400, I _F =6 A	T _J =125 °C	-	71	-	nC
I _{RRM}	Maximum reverse	dI _F /dt =200 A/μs	T _J =25 °C	-	2.0	2.5	Α
	recovery current, per diode	V _R =400, I _F =6 A	T _J =125 °C	-	3.1	-	Α
S	t _h	dI _F /dt =200 A/μs	T _J =25 °C	-	0.8	-	
	Softness per diode= $\frac{t_b}{t_a}$	V _R =400, I _F =6 A	T _J =125 °C	-	0.7	-	

Note to component engineers: X-Series diodes employ Schottky technologies in their design and construction. Therefore, component engineers should plan their test setups to be similar to traditional Schottky test setups. (For further details, see application note AN-300.)

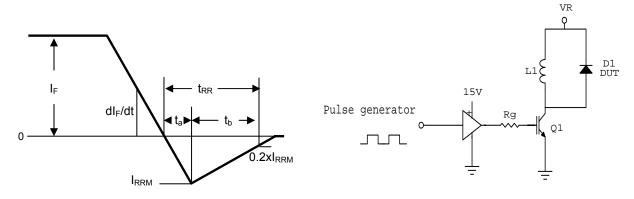
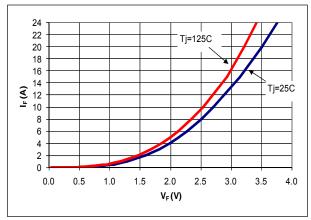



Figure 1. Reverse Recovery Definitions

Figure 2. Reverse Recovery Test Circuit

Electrical Specifications at T_J= 25 °C (unless otherwise specified)

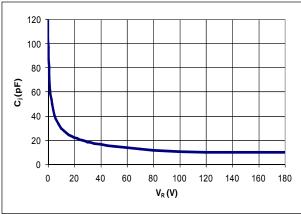
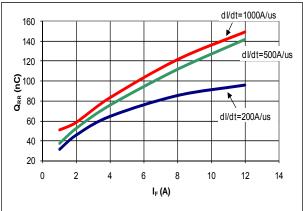
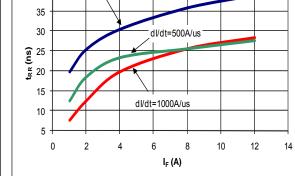
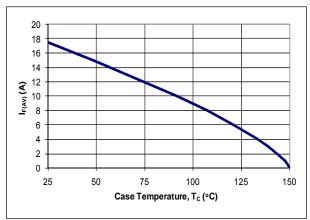




Figure 3. Typical I_F vs V_F

Figure 4. Typical C, vs V,



dl/dt=200A/us

40

Figure 5. Typical Q_{RR} vs I_F at $T_J = 125$ °C

Figure 6. Typical t_{RR} vs I_F at T_J = 125 $^\circ$

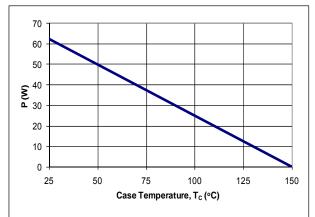


Figure 7. DC Current Derating Curve

Figure 8. Power Derating Curve

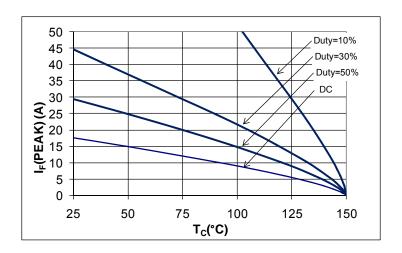


Figure 9. $I_{\rm F}({\rm Peak})$ vs ${\rm T_c}$, f=70 kHz

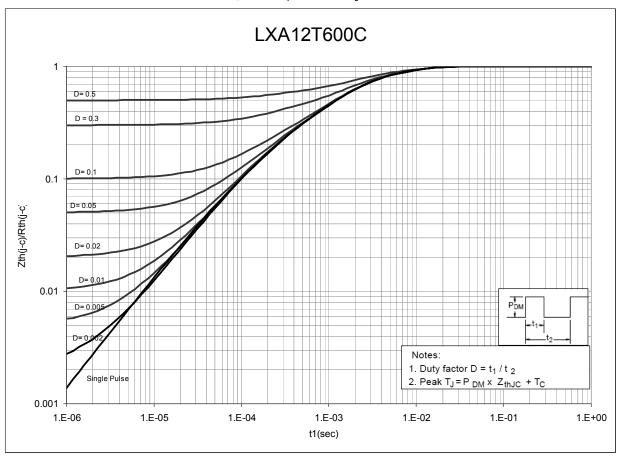
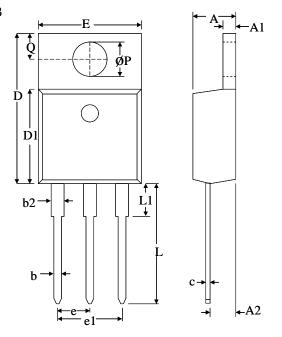



Figure 10. Normalized Maximum Transient Thermal Impedance

Dimensional Outline Drawings

TO-220AB

	Millimeters		
Dim	MIN MAX		
Α	4.32	4.70	
A1	1.11	1.38	
A2	2.59	2.79	
b	0.77	1.00	
b2	1.23	1.36	
С	0.34	0.47	
D	14.71	15.75	
D1	9.05	9.25	
E	9.96	10.36	
е	2.44	2.64	
e1	4.98	5.18	
L	12.70	14.22	
L1	_	3.90	
ØP	3.71	3.96	
Q	2.54	2.90	

Mechanical Mounting Method	Maximum Torque / Pressure specification	
Screw through hole in package tab	1 Newton Meter (nm) or 8.8 inch-pounds (lb-in)	
Clamp against package body	12.3 kilogram-force per square centimeter (kgf/cm ²) or 175 lbf/in ²	

Soldering time and temperature: This product has been designed for use with high-temperature, lead-free solder. The component leads can be subjected to a maximum temperature of 300 °C, for up to 10 seconds. See Application Note AN-303, for more details.

Ordering Information

Part Number	Package	Packing
LXA12T600C	TO-220AB	50 units/tube

The information contained in this document is subject to change without notice.

LXA12T600C

Revision	Notes	Date
1.0	Released by Qspeed	
1.1	Converted to Power Integrations Document	
1.1	Stop Point of t _{RR} error corrected due to typo in Figure 1	11/13

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING. WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2013 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellver Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales @powerint.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales @powerint.com

CHINA (SHENZHEN)

3rd Floor, Block A, **Zhongtou International Business** Center, No. 1061, Xiang Mei Rd, FuTian District, ShenZhen, China, 518040

Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: chinasales @powerint.com

GERMANY

Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales @powerint.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales @powerint.com

ITALY

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan

Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales @powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul. 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630

SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales @powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales @powerint.com

EUROPE HQ

1st Floor, St. James's House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: e-mail: koreasales @powerint.com eurosales @powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-

APPLICATIONS FAX

World Wide +1-408-414-9760

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Power Integrations manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F

RRE02VS6SGTR 067907F MS306 70HF40 T110HF60 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF

ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077

85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K

VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358