QH05TZ600, QH05BZ600

600 V, 5 A H-Series PFC Diode

Product Summary

$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	5	A
$\mathrm{~V}_{\text {RRM }}$	600	V
$\mathrm{Q}_{\mathrm{RR}}\left(\right.$ Typ at $\left.125^{\circ} \mathrm{C}\right)$	18.9	nC
$\mathrm{I}_{\text {RRM }}\left(\right.$ Typ at $\left.125^{\circ} \mathrm{C}\right)$	1.59	A
Softness $\mathrm{t}_{\mathrm{B}} / \mathrm{t}_{\mathrm{A}}\left(\right.$ Typ at $\left.125^{\circ} \mathrm{C}\right)$	0.86	

Pin Assignment

TO-220AC QH057Z600

TO-263AB QH05BZ600

$A \rightarrow-K$

RoHS Compliant
Package uses Lead-free plating and Green mold compound.
Halogen free per IEC 61249-2-21.

General Description

This device has the lowest $Q_{R R}$ of any 600 V silicon diode. Its recovery characteristics increase efficiency, reduce EMI and eliminate snubbers.

Applications

- Power Factor Correction (PFC) boost diode
- Motor drive circuits
- DC-AC inverters

Features

- Low $Q_{R R}$, low $I_{R R M}$, low $t_{R R}$
- High dl ${ }_{\mathrm{F}} /$ dt capable ($1000 \mathrm{~A} / \mu \mathrm{s}$)
- Soft recovery

Benefits

- Increases efficiency
- Eliminates need for snubber circuits
- Reduces EMI filter component size \& count
- Enables extremely fast switching

Absolute Maximum Ratings

Absolute maximum ratings are the values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Symbol	Parameter	Conditions	Rating	Units
$\mathrm{V}_{\text {RRM }}$	Peak repetitive reverse voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	600	V
$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$	Average forward current	$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}=109^{\circ} \mathrm{C}$	5	A
$\mathrm{I}_{\mathrm{FSM}}$	Non-repetitive peak surge current	$60 \mathrm{~Hz}, 1 / 2 \mathrm{CyCle}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	50	A
$\mathrm{I}_{\mathrm{FSM}}$	Non-repetitive peak surge current	$1 / 2 \mathrm{cycle}$ of $\mathrm{t}=28 \mu \mathrm{~S}$ Sinusoid, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	350	A
$\mathrm{~T}_{\mathrm{J}}$	Operating junction temperature range		-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-55 to 150	${ }^{\circ} \mathrm{C}$
	Lead soldering temperature	Leads at 1.6 mm from case, 10 seC	300	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	Isolation voltage (leads-to-tab)	$\mathrm{AC}, \mathrm{TO}-220$	2500	V
$\mathrm{~V}_{\text {ISOL }}$	Isolation voltage (leads-to-tab)	$\mathrm{AC}, \mathrm{TO}-263$	1500	V
P_{D}	Power dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	36.8	W

Thermal Resistance

Symbol	Resistance from:	Conditions	Rating	Units
$\mathrm{R}_{\theta \mathrm{JA}}$	J unction to ambient	TO-220 (only)	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JC}}$	Junction to case		3.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Specifications at $\mathbf{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
DC Characteristics							
I_{R}	Reverse current	$V_{R}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-	-	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		-	0.31	-	mA
V_{F}	Forward voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-	2.6	3.1	V
		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$		-	2.2	-	V
C	Junction capacitance	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, 1 \mathrm{MHz}$		-	17	-	pF
Dynamic Characteristics							
t_{RR}	Reverse recovery time	$\begin{aligned} & \mathrm{dl} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	10	-	ns
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	17.4	-	ns
QRR	Reverse recovery charge	$\begin{aligned} & \mathrm{dl} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	6.5	12	nC
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	18.9	-	nC
$\mathrm{I}_{\text {RRM }}$	Maximum reverse recovery current	$\begin{aligned} & \mathrm{dl} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	1.0	1.55	A
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	1.59	-	A
S	Softness factor $=\frac{t_{B}}{t_{A}}$	$\begin{aligned} & \mathrm{dl} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	0.8	-	
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	-	0.86	-	

Note to component engineers: H-Series diodes employ Schottky technologies in their design and construction. Therefore, Component Engineers should plan their test setups to be similar to those for traditional Schottky test setups. (For additional details, see Application Note AN-300.)

Figure 1. Reverse Recovery Definitions.

Figure 2. Reverse Recovery Test Circuit.

Electrical Specifications at $\mathbf{T}_{\mathrm{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$ (unless otherwise specified)

Figure 3. Typical I_{F} vs. V_{F}.

Figure 5. Typical $Q_{R R}$ vs. I_{F} at $T_{J}=125{ }^{\circ} \mathrm{C}$.

Figure 7. DC Current Derating Curve.

Figure 4. Typical C_{J} vs. V_{R}.

Figure 6. Typical $t_{R R}$ vs. I_{F} at $T_{J}=125{ }^{\circ} \mathrm{C}$.

Figure 8. Power Derating Curve.

Figure 9. $I_{F}(P E A K) ~ v s . ~ T_{C}, f=70 \mathrm{kHz}$.

Figure 10. Normalized Maximum Transient Thermal I mpedance.

Dimensional Outline Drawings

TO-220AC

	Millimeters	
Dim	MI N	MAX
A	4.32	4.70
A1	1.14	1.40
A2	2.03	2.79
C	0.34	0.610
D	9.65	10.67
E	2.49	2.59
E1	4.98	5.18
F	0.508	1.016
F1	1.14	1.78
H	14.71	16.51
H1	5.84	6.795
H2	8.40	9.00
H3	3.53	3.96
H4	2.54	3.05
L	12.70	14.22
L1	-	6.35

Dimensional Outline Drawings

TO-263AB

	Millimeters	
$\mathbf{D i m}$	MI N	MAX
\mathbf{A}	4.40	4.70
$\mathbf{A 1}$	0.00	0.25
$\mathbf{A 2}$	2.59	2.79
\mathbf{b}	0.77	0.90
$\mathbf{b 2}$	1.23	1.36
$\mathbf{c 2}$	1.22	1.32
\mathbf{D}	9.05	9.25
\mathbf{E}	10.06	10.26
\mathbf{e}	2.54 BSC	2.54 BSC
\mathbf{H}	14.70	15.50
\mathbf{L}	2.00	2.60
$\mathbf{L 1}$	1.17	1.40
$\mathbf{L 2}$	-	1.75
$\mathbf{L 3}$	0.25 BSC	0.25 BSC
$\mathbf{L 4}$	2.00 BSC	2.00 BSC
$\mathbf{0}$	0°	8°
$\mathbf{0 1}$	5°	9°
$\mathbf{0 2}$	1°	5°

Mechanical Mounting Method	Maximum Torque / Pressure specification
Screw through hole in package tab	1 Newton Meter (nm) or 8.8 inch-pounds $(\mathrm{lb}-\mathrm{in})$
Clamp against package body	12.3 kilogram-force per square centimeter $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$ or $175 \mathrm{lbf} / \mathrm{in}^{2}$

Footprint and Solder Pad Dimensions

Pad Dimensions in mm:

TO-263AB

Soldering time and temperature: This product has been designed for use with hightemperature, lead-free solder. The component leads can be subjected to a maximum temperature of $300^{\circ} \mathrm{C}$, for up to 10 seconds. See Application Note AN-303, for more details.

Ordering I nformation

Part Number	Package	Packing
QH05TZ600	TO-220AC	50 units/tube
QH05BZ600	TO-263AB	800 units/reel

[^0]| Revision | Notes | Date |
| :---: | :--- | :---: |
| 1.0 | Released by Qspeed | $01 / 10$ |
| 1.1 | Converted to Power Integrations Document | $01 / 11$ |
| 1.2 | Added QH05BZ600 | $02 / 13$ |
| 1.3 | Updated with new Brand Style. Added footprint and solder pad dimension
 for TO-263AB package. | $11 / 15$ |

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVI CES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESI DENT OF POWER INTEGRATIONS. As used herein:

1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@power.com

CHI NA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail:_chinasales@power.com

CHI NA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689
Fax: +86-755-8672-8690
e-mail: chinasales@power.com

GERMANY
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-
39110
Fax: +49-895-527-39200
e-mail:
eurosales@power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
indiasales@power.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. FI.
20099 Sesto San Giovanni
(MI) Italy

Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
eurosales@power.com

J APAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi, Kanagawa
222-0033 J apan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@power.com

SI NGAPORE

51 Newton Road,
\#19-01/05 Goldhill Plaza Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
singaporesales@power.com

TAI WAN

5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
taiwansales@power.com

UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road
Cambridge CB4 IYG
Phone: +44 (0) 1223-446483
e-mail: eurosales@power.com

9

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by Power Integrations manufacturer:

Other Similar products are found below :
RD0306T-H BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244 1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B 1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW75-TAP MM230L-CAA IDW40E65D1 JAN1N3600 LL4151-GS18 053684A SMMSD4148T3G 707803H NSVDAN222T1G SP000010217 CDSZC01100-HF BAV199E6433HTMA1 BAV70M3T5G SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 BAS28-7 BAW56HDW-13 BAS28 TR VS-HFA04SD60STR-M3 NSVM1MA152WKT1G

[^0]: The information contained in this document is subject to change without notice.

