Title	Reference Design Report for a 30 W Supply Using TOPSwitch -JX TOP266VG
Specification	85 VAC - 264 VAC Input; 12 V, 2.5 A Output
Application	General Purpose
Author	Applications Engineering Department
Document Number	RDR-242
Date	March 1,2010
Revision	1.2

Summary and Features

- Highly energy efficient
- Very low no-load input power: $<80 \mathrm{~mW}$ at 230 VAC
- Full load efficiency $>84 \%$ at 115 VAC / 47 Hz
- Efficiency $>80 \%$ above 8% load
- Average efficiency $>84 \%(25 \%, 50 \%, 75 \%, 100 \%$ load points $)$
- Simplifies meeting ENERGY STAR 2.0, 80 Plus and EuP requirements
- 725 V MOSFET rating allowed high turns ratio $\left(\mathrm{V}_{\text {OR }}\right)$ and use of 60 V Schottky output diode
- Low cost, low component count and small PCB footprint solution
- 132 kHz operation optimizes core size and efficiency performance
- Low-profile eDIP ${ }^{\text {T" }}$ package with no external heatsink
- Integrated Protection and Reliability Features
- Line undervoltage lock out (UVLO) and line overvoltage shutdown prevents output glitching and improves reliability
- Primary sensed output overvoltage shutdown (OVP) eliminates second optocoupler
- Auto recovery output over current (OCP) and short circuit protection
- Flat overload power with line voltage
- Meets limited power source (LPS) <100 VA requirement with a single point of failure
- Accurate thermal shutdown with large hysteresis

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

Table of Contents

1 Introduction 4
2 Power Supply Specification 6
3 Schematic 7
4 Circuit Description 8
4.1 Key Design Decisions 8
4.1.1 PI part selection 8
4.1.2 Transformer Core Selection 8
4.1.3 Line Sense Resistor Values 8
4.1.4 Clamp Configuration - RZCD vs RCD 9
4.1.5 Feedback Configuration 10
4.1.6 Output Rectifier Choice 10
4.2 Function Block Descriptions 11
4.2.1 Input EMI Filtering 11
4.2.2 TOPSwitch-JX Primary 11
4.2.3 Thermal Overload Protection 11
4.2.4 Output Overvoltage Protection 11
4.2.5 Output Power Limiting with Line Voltage 11
4.2.6 Output Feedback 12
4.2.7 Output Inductor Post Filter Soft-Finish 12
5 PCB Layout 13
6 Bill of Materials 14
7 Transformer Specification 16
7.1 Electrical Diagram 16
7.2 Electrical Specifications 16
7.3 Materials 16
7.4 Transformer Build Diagram 17
7.5 Transformer Construction 18
8 Transformer Design Spreadsheet. 19
9 Performance Data 24
9.1 Active Mode Efficiency 24
9.2 Energy Efficiency Requirements 27
9.2.1 USA Energy Independence and Security Act 2007 27
9.2.2 ENERGY STAR EPS Version 2.0 28
9.3 No-load Input Power. 29
9.4 Available Standby Output Power 30
9.5 Regulation 31
9.5.1 Load 31
9.5.2 Line 32
9.6 Efficiency 33
9.6.1 Load 33
10 Power Limit 35
11 Thermal Performance 36
12 Waveforms 37
12.1 Drain Voltage and Current, Normal Operation 37
12.2 Vout and Drain Current Start-up Profile 38
12.3 Vout and Drain Voltage Start-up Profile 39
12.4 Over-Current Protection. 40
12.5 VDS \& ID at Maximum Power 41
12.6 Voltage Stress 41
12.7 Overvoltage Protection (Open-Loop Test) 42
12.8 Load Transient Response 43
12.9 Output Ripple Measurements 44
12.9.1 Ripple Measurement Technique 44
12.9.2 Ripple and Noise Measurement Results 45
13 Control Loop Measurements 47
13.1 115 VAC Maximum Load 47
13.2 230 VAC Maximum Load 48
14 Conducted EMI 49
14.1 Output Grounded 49
14.2 Output Floating 52
15 AC Surge 54
15.1 Common Mode Surge, 1.2 / $50 \mu \mathrm{sec}$ 54
15.2 Differential Mode Surge, 1.2 / $50 \mu \mathrm{sec}$ 54
16 Appendix A: Fast AC Reset. 55
17 Appendix B: Circuit Modification for Reduced No-load Input Power and Enhanced Output OVP Performance 56
17.1 Enhanced Output OVP Latch Sensitivity 57
18 Revision History 58

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a power supply employing the Power Integrations ${ }^{\circledR}$ TOPSwitch ${ }^{\circledR}$-JX TOP266VG. This power supply operates over a universal input range and provides a $12 \mathrm{~V}, 30 \mathrm{~W}$ output. It has been designed and tested to operate open frame with an ambient temperature environment of up to $40^{\circ} \mathrm{C}$.

The TOPSwitch-JX, by design, maintains virtually constant efficiency across a very wide load range without using special operating modes to meet specific load thresholds. This optimizes performance for existing and emerging energy-efficiency regulations. Maintaining constant efficiency ensures design optimization for future energy-efficiency regulation changes without the need for redesign.

The low MOSFET capacitance of TOPSwitch-JX allows a higher switching frequency without the efficiency penalty which occurs with standard discrete MOSFET. The 132 kHz switching frequency (rather than the 70 kHz to 100 kHz frequency used for a discrete MOSFET) reduces the transformer size required, and so reduces cost.

This power supply offers the following protection features:

- Output OVP (including open loop) with latching shutdown
- Auto-recovery type overload protection

This document provides complete design details including specifications, the schematic, bill of materials, and transformer design and construction information. This information includes performance results pertaining to regulation, efficiency, standby, transient load, power-limit data, and conducted EMI scans.

Figure 1 - Populated Circuit Board Photograph, Component Side.

Figure 2 - Populated Circuit Board Photograph, Solder Side.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Typ	Max	Units	Comment
Input Voltage Frequency No-load Input Power (230 VAC)	$\begin{aligned} & \mathrm{V}_{\text {IN }} \\ & \mathrm{f}_{\text {LINE }} \end{aligned}$	$\begin{aligned} & 85 \\ & 47 \end{aligned}$	50/60	$\begin{gathered} 264 \\ 63 \\ 0.08 \\ \hline \end{gathered}$	$\begin{gathered} \text { VAC } \\ \mathrm{Hz} \\ \mathrm{~W} \\ \hline \end{gathered}$	2 Wire - no P.E.
Output Output Voltage Output Ripple Voltage Output Current Total Output Power Continuous Output Power LPS	$V_{\text {OUT }}$ $\mathrm{V}_{\text {RIPPLE }}$ lout $\mathrm{P}_{\text {out }}$ Pout peak	$\begin{gathered} 11.4 \\ 0 \end{gathered}$	12 30	$\begin{aligned} & 12.6 \\ & 120 \\ & 2.5 \\ & \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \\ \mathrm{~A} \\ \\ \mathrm{~W} \\ \mathrm{~W} \end{gathered}$	20 MHz bandwidth To meet LPS safety requirement
Efficiency Full Load Required average efficiency at $25,50,75$ and 100% of Pout	$\begin{gathered} \eta \\ \eta_{\mathrm{ES} 2.0} \end{gathered}$	$\begin{aligned} & 80 \\ & 83 \end{aligned}$			$\%$ \%	Measured at $\mathrm{P}_{\text {out }} 25^{\circ} \mathrm{C}$, 90 VAC / 60Hz Per ENERGY STAR V2.0
Environmental Conducted EMI Safety Line Surge Differential Mode (L1-L2) Common Mode (L1/L2-PE)			CISPR d to mee Cl	$\begin{gathered} \text { B / ENe } \\ \text { EC950 } \\ \text { s II } \\ \\ 1 \\ 2 \end{gathered}$	22B JL1950 kV kV	1.2/50 μ s surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2Ω Common Mode: 12Ω
Ambient Temperature	$\mathrm{T}_{\text {AMB }}$	0		40	${ }^{\circ} \mathrm{C}$	Free convection, sea level

3 Schematic

Figure 3 - Schematic.

4 Circuit Description

This power supply employs a TOP266VG off-line switcher, (U1), in a flyback configuration. IC U1 has an integrated 725 V MOSFET and a multi-mode controller. It regulates the output by adjusting the MOSFET duty cycle, based on the current fed into its CONTROL (C) pin.

4.1 Key Design Decisions

The goals of the design were highest full load efficiency, average efficiency (average of $25 \%, 50 \%, 75 \%$ and 100% load points) and very low no-load consumption.

Additional requirements included latching output overvoltage shutdown and compliance to safety agency limited power source (LPS) limits. Actual efficiency and no-load performance easily exceeded current energy efficiency requirements.

In order to meet these design goals the following key design decisions were made.

4.1.1 PI part selection

- Ambient of $40^{\circ} \mathrm{C}$ allowed one device size smaller than indicated by the power table.

The device selected for this design was based on the 85-265 VAC, Open Frame, PCB heatsinking column of the datasheet power table (Table 1). One device size smaller was selected (TOP266V vs TOP267V) due to the ambient specification of $40^{\circ} \mathrm{C}$ (vs. the $50^{\circ} \mathrm{C}$ assumed in the power table) and the optimum PCB area and layout for the device heatsink. The subsequent thermal and efficiency data confirmed this choice. The maximum device temperature was $107{ }^{\circ} \mathrm{C}$ at full load, $40^{\circ} \mathrm{C}$, $85 \mathrm{VAC}, 47 \mathrm{~Hz}$ (worst case conditions) and average efficiency exceeded 83% ENERGY STAR and EuP Tier 2 requirements.

4.1.2 Transformer Core Selection

- 132 kHz switching frequency allowed the selection of smaller core for lower cost.

The size of the magnetic core is a function of the switching frequency. The choice of the higher switching frequency of 132 kHz allowed for the use of a smaller core size. The higher switching frequency does not negatively impact the efficiency in TOPSwitch-JX designs due its small drain to source capacitance (Coss) as compared to that of discrete MOSFETs.

4.1.3 Line Sense Resistor Values

- Increasing line sensing resistance from $4 \mathrm{M} \Omega$ to $10.2 \mathrm{M} \Omega$ to reduce no-load input power dissipation by 16 mW

Line sensing is provided by resistors R1 and R2 and sets the line undervoltage and overvoltage thresholds. The combined value of these resistors was increased from the standard $4 \mathrm{M} \Omega$ to $10.2 \mathrm{M} \Omega$. This reduced the resistor, and therefore contribution to no-
load input power, from $\sim 26 \mathrm{~mW}$ to $\sim 10 \mathrm{~mW}$. To compensate the resultant change in the UV threshold resistor R12 was added between the CONTROL and VOLTAGE-MONITOR pins. This adds a DC current equal to $\sim 16 \mathrm{~mA}$ into the V pin, requiring only $9 \mu \mathrm{~A}$ to be provided via R1 and R2 to reach the V pin UV threshold current of $25 \mu \mathrm{~A}$ and setting the UV threshold to approximately 95 VDC.

This technique does effectively disable the line OV feature as the resultant OV threshold is raised from ~ 450 VDC to ~ 980 VDC. However in this design there was no impact as the value of input capacitance (C3) was sufficient to allow the design to withstand differential line surges greater than 1 kV without the peak drain voltage reaching the $\mathrm{BV}_{\text {DSS }}$ rating of U 1 .

Specific guidelines and detailed calculations for the value of R12 may be found in the TOPSwitch-JX Application Note AN-47.

4.1.4 Clamp Configuration - RZCD vs RCD

- An RZCD (Zener bleed) was selected over RCD to give higher light load efficiency and lower no-load consumption

The clamp network is formed by VR1, C4, R5 and D5. It limits the peak drain voltage spike caused by leakage inductance to below the $B V_{\text {DSs }}$ rating of the internal TOPSwitch-JX MOSFET. This arrangement was selected over a standard RCD clamp to improve light load efficiency and no-load input power.

In a standard RCD clamp C4 would be discharged by a parallel resistor rather than a resistor and series Zener. In an RCD clamp the resistor value of R5 is selected to limit the peak drain voltage under full load and over-load conditions. However under light or no-load conditions this resistor value now causes the capacitor voltage to discharge significantly as both the leakage inductance energy and switching frequency are lower. As the capacitor has to be recharged to above the reflected output voltage each switching cycle the lower capacitor voltage represents wasted energy. It has the effect of making the clamp dissipation appear as a significant load just as if it were connected to the output of the power supply.

The RZCD arrangement solves this problem by preventing the voltage across the capacitor discharging below a minimum value (defined by the voltage rating of VR1) and therefore minimizing clamp dissipation under light and no-load conditions. Zener VR1 is shown as a high peak dissipation capable TVS however a standard lower cost Zener may also be used due to the low peak current that component experiences.

In many designs a resistor value of less than 50Ω may be used in series with C 4 to damp out high frequency ringing and improve EMI but this was not necessary in this case.

4.1.5 Feedback Configuration

- A high CTR optocoupler was used to reduce secondary bias currents and no-load input power
- Low voltage, low current voltage reference IC used on secondary side to reduce secondary side feedback current and no-load input power.
- Bias winding voltage tuned to $\sim 9 \mathrm{~V}$ at no-load, high line to reduce no-load input power

Typically the feedback current into the CONTROL pin at high line is $\sim 3 \mathrm{~mA}$. This current is both sourced from the bias winding (voltage across C10) and directly from the output. Both of these represent a load on the output of the power supply.

To minimize the dissipation from the bias winding under no-load conditions the number of bias winding turns and value of C7 was adjusted to give a minimum voltage across C7 of $\sim 9 \mathrm{~V}$. This was the minimum achievable to keep the optocoupler biased and the output in regulation.

To minimize the dissipation of the secondary side feedback circuit a high CTR (CTR of 300 - 600\%) optocoupler type was used. This reduces the secondary side opto-led current from $\sim 3 \mathrm{~mA}$ to $<\sim 1 \mathrm{~mA}$ and therefore the effective load on the output. A standard 2.5 V TL431 voltage reference was replaced with the 1.24 V LMV431 to reduce the supply current requirement of this component from 1 mA to $100 \mu \mathrm{~A}$

4.1.6 Output Rectifier Choice

- Use of high V_{OR} enabled the use of a 60 V Schottky diode for high efficiency and lower cost

The higher $\mathrm{BV}_{\text {DSs }}$ rating of the TOPSwitch-JX of 725 V (compared to 600 V or 650 V rating of typical power MOSFETs) allowed a higher transformer primary to secondary turns ratio (reflected output voltage or V_{OR}). This reduced the output diode voltage stress and allowed the use of cheaper and more efficient 60 V (vs 80 V or 100 V) Schottky diodes. The efficiency improvement occurs due the lower forward voltage drop of the lower voltage diodes. Two parallel connected axial $5 \mathrm{~A}, 60 \mathrm{~V}$ Schottky rectifier diodes were selected for both low cost and high efficiency. This allowed PCB heatsinking of the diode for low cost while maintaining efficiency compared to a single higher current TO220 packaged diode mounted on a heatsink. For this configuration the recommendation is that each diode is rated at twice the output current and that the diodes share a common cathode PCB area for heatsinking so that their temperatures track. In practice the diodes current share quite effectively as can be demonstrated by monitoring their individual temperatures.

4.2 Function Block Descriptions

4.2.1 Input EMI Filtering

Common-mode inductors L1 and X capacitor C1 provides CM and DM noise filtering. The frequency jittering feature of the TOPSwitch-JX allows a very small X capacitor (100 nF) to be used in meeting Class B Emission limits. This also eliminates the need for discharge resistors required for meeting safety standards.

Y capacitor C 11 , connected between the primary and secondary side in conjunction with T1 shield and cancellation windings provides common mode filtering.

4.2.2 TOPSwitch-JX Primary

The EcoSmart feature of U1 automatically provides constant efficiency over the entire load range. It uses a proprietary Multi-Cycle-Modulation (MCM) function to eliminate the need for special operating modes triggered at specific loads. This simplifies circuit design since it removes the need to design for aberrant or specific operating conditions or load thresholds.

Capacitor C 10 provides the auto-restart timing for U1. At startup this capacitor is charged through the DRAIN (D) pin. Once it is charged U1 begins to switch. Capacitor C10 stores enough energy to ensure the power supply starts up. After start-up the bias winding powers the controller via the CONTROL pin. Bypass capacitor C9 is placed as physically close as possible to U1. Resistor R16 provides additional compensation to the feedback loop.

4.2.3 Thermal Overload Protection

IC U1 has an integrated accurate hysteretic thermal overload protection function. When the junction temperature of U 1 reaches $+142{ }^{\circ} \mathrm{C}$ (typical temperature shutdown threshold) during a fault condition, the IC shuts down. It automatically recovers once the junction temperature has decreased by $75^{\circ} \mathrm{C}$.

4.2.4 Output Overvoltage Protection

Open-loop faults cause the output voltage to exceed the specified maximum value. To prevent excessive output voltage levels in such cases, U1 utilizes an output overvoltage shutdown function. An increase in output voltage causes an increase in the bias winding on the primary side, sensed by VR3. A sufficient rise in the bias voltage causes VR3 to conduct and inject current into the VOLTAGE (V) pin of U 1 . When the current exceeds $336 \mu \mathrm{~A}$ for more than $100 \mu \mathrm{~s}$, U1 enters the latching overvoltage shutdown mode.

4.2.5 Output Power Limiting with Line Voltage

Resistors R3, R4, and R15 reduce the external current limit of U1 as the line voltage increases. This allows the supply to limit the output power to <100 VA at high line while still delivering the rated output at low line, and to provide a nearly constant output power level with changing line voltages. The line sensing resistors R1 and R2, in conjunction with R12, set the undervoltage and overvoltage thresholds for U1. R12 provides
additional current to V pin from the bias supply and together with R 1 and R 2 sets the threshold current for V pin with reduced power loss and thus helps further improvement on the no-load input power.

4.2.6 Output Feedback

Schottky diodes D8 and D9 rectify the output. A snubber network (C12, R17) dampens ringing across the diodes and reduces high frequency conducted and radiated noise. Capacitors C14 and C15 provide output filtering. Resistors R21 and R23 provide a voltage divider and set the DC set point of the output. C20, R21, and R19 provide compensation for the feedback control loop and C18 and R18 is a phase boost network to improve the phase margin of the unit. Resistor R19 limits the gain of the feedback system to ensure power supply stability throughout the range of operation. Diode D10 provides a fast discharge path for C20 when the output turns-off and to allow smooth rise of the output voltage when the unit is turned on again.

4.2.7 Output Inductor Post Filter Soft-Finish

To prevent output overshoot during start-up the voltage that appears across L2 was used to provide a soft-finish function. When the voltage across L2 exceeds the forward drop of U2A and D10 current flows though the optocoupler LED and provides feedback to the primary. This arrangement acts to limit the rate of rise of the output voltage until it reaches regulation and eliminates the capacitor that is typically placed across U3 to provide the same function.

5 PCB Layout

Figure 4 - Printed Circuit Board Layout.

6 Bill of Materials

Item	Qty	Ref Des	Description	Part Number	Mfg
1	1	C1	100 nF, 275VAC, Film, X2	LE104	OKAYA ELECT
2	1	C3	$82 \mu \mathrm{~F}, 400 \mathrm{~V}$, Electrolytic, Low ESR, (18×25)	EKXG401ELL820MM25S	Nippon ChemiCon
3	1	C4	4700 pF, 1 kV, Disc Ceramic	562R5GAD47	Vishay
4		C5	Not Used		
5	2	$\begin{aligned} & \text { C7, } \\ & \text { C10 } \end{aligned}$	$47 \mu \mathrm{~F}, 25 \mathrm{~V}$, Electrolytic, Very Low ESR, $300 \mathrm{~m} \Omega$, (5×11)	EKZE250ELL470ME11D	Nippon ChemiCon
6		C8	Not Used		
7	1	C9	$100 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R, 0805	ECJ-2YB1H104K	Panasonic
8	1	C11	1 nF , Ceramic, Y1	440LD10-R	Vishay
9	1	C12	$1 \mathrm{nF}, 200 \mathrm{~V}$, Ceramic, X7R, 0805	08052C102KAT2A	AVX Corp
10		$\begin{aligned} & \text { C13 } \\ & \text { C17 } \end{aligned}$	Not Used		
11	2	$\begin{aligned} & \hline \text { C14 } \\ & \text { C15 } \end{aligned}$	$680 \mu \mathrm{~F}, 25 \mathrm{~V}$, Electrolytic, Very Low ESR, $23 \mathrm{~m} \Omega$, (10 $\times 20$)	EKZE250ELL681MJ20S	Nippon ChemiCon
12	1	C16	$100 \mu \mathrm{~F}, 25 \mathrm{~V}$, Electrolytic, Gen. Purpose, (6.3×11)	EKMG250ELL101MF11D	Nippon ChemiCon
13	1	C18	$47 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R, 0805	ECJ-2YB1H473K	Panasonic
14	1	C20	$33 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R, 0805	ECJ-2VB1H333K	Panasonic
15		C21	Not Used		
16	4	$\begin{aligned} & \text { D1 D2 } \\ & \text { D3 D4 } \end{aligned}$	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay
17	1	D5	Rectifiers 1A 1000 V 150 ns	FR107G-B	Rectron
18	1	D6	$100 \mathrm{~V}, 0.2 \mathrm{~A}$, Fast Switching, 50 ns , SOD-323	BAV19WS-7-F	Diode Inc.
19	1	D7	$250 \mathrm{~V}, 0.2 \mathrm{~A}$, Fast Switching, 50 ns , SOD-323	BAV21WS-7-F	Diode Inc.
20	2	D8 D9	$60 \mathrm{~V}, 5 \mathrm{~A}$, Schottky, DO-201AD	SB560	Vishay
21	1	D10	$75 \mathrm{~V}, 0.15 \mathrm{~A}$, Fast Switching, 4 ns , MELF	LL4148-13	Diode Inc.
22	1	F1	3.15 A, 250 V , Slow, TR5	3721315041	Wickman
23	1	J1	3 Position (1×3) header, 0.156 pitch, Vertical	26-48-1031	Molex
24	1	J2	2 Position (1×2) header, 0.156 pitch, Vertical	26-48-1021	Molex
25	1	JP1	$0 \mathrm{R}, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEY0R00V	Panasonic
26	1	JP2	Wire Jumper, Non insulated, 22 AWG, 0.2 in	298 SV005	Alpha
27	1	JP3	Wire Jumper, Non insulated, 22 AWG, 0.9 in	298 SV005	Alpha
28	1	JP4	Wire Jumper, Non insulated, 22 AWG, 0.6 in	298 SV005	Alpha
29	1	JP5	$0 \mathrm{R}, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEY0R00V	Panasonic
30	1	L1	$14 \mathrm{mH}, 0.7 \mathrm{~A}$, Common Mode Choke	ELF-17N007A	Panasonic
31	1	L2	$3.3 \mu \mathrm{H}, 5.5 \mathrm{~A}$	RL622-3R3K-RC	JW Miller
32		Q1	Not Used		
33		Q2	Not Used		
34	2	R1 R2	$5.1 \mathrm{M} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ515V	Panasonic
35	2	R3 R4	$10 \mathrm{M} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ106V	Panasonic
36	1	R5	$10 \mathrm{k} \Omega, 5 \%, 1 / 2 \mathrm{~W}$, Carbon Film	CFR-50JB-10K	Yageo
37	1	R9	$10 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ100V	Panasonic

38		R10	Not Used		
39		R11	Not Used		
40	1	R12	191 k $\Omega, 1 \%$, 1/16 W, Thick Film, 0603	ERJ-3EKF1913V	Panasonic
41		R13	Not Used		
42	1	R15	$14.3 \mathrm{k} \Omega, 1 \%$, 1/8 W, Thick Film, 0805	ERJ-6ENF1432V	Panasonic
43	1	R16	$6.8 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ6R8V	Panasonic
44	1	R17	$22 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ220V	Panasonic
45	1	R18	$110 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ111V	Panasonic
46	1	R19	$470 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ470V	Panasonic
47	1	R21	86.6 k $\Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF8662V	Panasonic
48		R22	Not Used		
59	1	R23	$10 \mathrm{k} \Omega$, 1\%, 1/8 W, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
50	1	T1	Bobbin, EF25, Horizontal, 12 pins	$\begin{gathered} \text { YC2504 } \\ \text { SNX-R1521 } \\ \hline \end{gathered}$	Ying Chin Santronics
51	1	U1	TOP266VG, eDIP-12P	TOP266VG	Power Integrations
52	1	U2	Optocoupler, 35 V, CTR 300-600\%, 4-DIP	LTV-817D	Liteon
53	1	U3	1.24V Shunt Reg IC	LMV431ACZ	National Semiconductor
54	1	VR1	$180 \mathrm{~V}, 5 \mathrm{~W}, 5 \%$, TVS, DO204AC (DO-15)	P6KE180ARLG	On Semi
55		VR2	Not Used		
56	1	VR3	$15 \mathrm{~V}, 5 \%, 500 \mathrm{~mW}, \mathrm{DO}-213 \mathrm{AA}$ (MELF)	ZMM5245B-7	Diodes Inc

7 Transformer Specification

7.1 Electrical Diagram

Figure 5 - Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1-6 to pins 7-12	3000 VAC
Primary Inductance	Pins 4-6, all other windings open, measured at $100 \mathrm{kHz}, 0.4 \mathrm{VRMS}$	$712 \mu \mathrm{H} \pm 10 \%$
Resonant Frequency	Pins 4-6, all other windings open	$300 \mathrm{kHz}(\mathrm{Min})$.
Primary Leakage Inductance	Pins 4-6, with pins 7-12 shorted, measured at $100 \mathrm{kHz}, 0.4 \mathrm{VRMS}$	$25 \mu \mathrm{H}(\mathrm{Max})$.

7.3 Materials

Item	Description
$[1]$	Core: PC44 EF25, TDK or equivalent Gapped for AL of 215 nH/T${ }^{2}$
$[2]$	Bobbin: BEF25, Horizontal, 12 pins, 6/6. Manufacture\#: YC-2504.
$[3]$	Magnet Wire: \#30 AWG.
$[4]$	Magnet Wire: \#29 AWG
$[5]$	Magnet Wire: \#23 AWG.
$[6]$	Magnet Wire: \#24 AWG.
$[7]$	Margin tape: 3M, Polyester web. 3.0 mm wide.
$[8]$	Teflon Tube.
$[9]$	Tape: 3M 1298 Polyester Film, 15.3 mm wide.
$[10]$	Tape: 3M 1298 Polyester Film, 9.3 mm wide.
$[11]$	Tape: 3M 1298 Polyester Film, 14.0 mm wide.
$[\mathbf{1 2]}$	Copper Foil Tape: 2.0 mils thick, 9.0 mm wide. See Figure 7 below to prepare.
$[13]$	Varnish.

7.4 Transformer Build Diagram

Figure 6 - Transformer Build Diagram.

Figure 7 - Shield.

7.5 Transformer Construction

Winding preparation	Place the bobbin item [2] on the mandrel such that primary side on the left and secondary side on the right. Winding direction is clockwise direction.
Margin	Apply margin tape item [7] on both sides of bobbin and for all windings.
WD1 (Cancel)	Start at pin 6, apply Teflon tubes item [8] at start ends, wind 13 bifilar turns of item [4] from left to right. At the last turn, cut the wires and leave no connect.
Insulation	Apply 1 layer of tape item [9].
WD2 (Primary)	Start at pin 4, apply Teflon tube item [8] at start end, wind 29 turns of item [3] from left to right, place 1 layer of tape item [10]. Continue winding from right to left with another 29 turns, at the last turn also apply Teflon tube item [8] and end at pin 6.
Insulation	Apply 1 layer of tape item [9].
WD3 (Shielding)	Use copper foil tape item [12], see figure 3 above, start with no connect; wind 1 turn (over lapped- but separate with tape to avoid shortage), and end with pin 6.
Insulation	Apply 3 layers of tape item [8].
WD4 (Secondary)	Start at pin 7, 8, apply Teflon tubes item [8] at start ends, wind 6 bifilar turns of item [5] from right to left, at the last turn bring the wires back to the left, also apply Teflon tubes at the wire ends, and finish at pin 11,12.
Insulation	Apply 3 layers of tape item [9].
WD5 (Bias)	Start at pin 1, apply Teflon tubes item [8] at start ends, wind 6 bifilar turns of item [6] from left to right, at the last turn bring the wires back to the left, also apply Teflon tubes at the wire ends, and finish at pin 1.
Outer insulation	Apply 2 layers of tape item [9].
Final Assembly	Grind core. Cover outside the core with tape item [11]. Assemble core and varnish [13]

Figure 8 - Completed Transformer.

8 Transformer Design Spreadsheet

ACDC TOPSwitchJX 020 110; Rev.1.2; Copyright Power Integrations 2010	INPUT	INFO	OUTPUT	UNIT	TOP JX 020110: TOPSwitch-JX Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABLES					Design title
VACMIN	85			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	12.00			Volts	Output Voltage (main)
PO_AVG	30.00	Warning		Watts	!!! For low line (VMIN < 200 VDC) designs: Reduce PO_AVG<28.5 W (or use larger device)
PO_PEAK			30.00	Watts	Peak Output Power
Heatsink Type	PCB		PCB		Heatsink Type
Enclosure	Open Frame				Open Frame enclosure assume sufficienct airflow while adapter means a sealed enclosure.
n	0.80			\%/100	Efficiency Estimate
Z	0.50				Loss Allocation Factor
VB	15			Volts	Bias Voltage - Verify that VB is $>8 \mathrm{~V}$ at no load and VMAX
tC	3.00			ms	Bridge Rectifier Conduction Time Estimate
CIN	82.0		82	uFarads	Input Filter Capacitor
ENTER TOPSWITCH-JX VARIABLES					
TOPSwitch-JX	TOP266V			Universal / Peak	115 Doubled/230V
Chosen Device		TOP266V	Power Out	$\begin{gathered} 28.5 \mathrm{~W} / \\ 86 \mathrm{~W} \end{gathered}$	39W
KI	0.4725				External llimit reduction factor ($\mathrm{KI}=1.0$ for default ILIMIT, KI <1.0 for lower ILIMIT)
ILIMITMIN_EXT			1.120	Amps	Use 1\% resistor in setting external ILIMIT
ILIMITMAX_EXT			1.289	Amps	Use 1\% resistor in setting external ILIMIT
$\begin{aligned} & \text { Frequency }(F)=132 \mathrm{kHz}, \\ & (\mathrm{H})=66 \mathrm{kHz} \end{aligned}$	F		F		Select 'H' for Half frequency - 66kHz, or 'F' for Full frequency - 132 kHz
fS			132000	Hertz	TOPSwitch-JX Switching Frequency: Choose between 132 kHz and 66 kHz
fSmin			119000	Hertz	TOPSwitch-JX Minimum Switching Frequency
fSmax			145000	Hertz	TOPSwitch-JX Maximum Switching Frequency
High Line Operating Mode			FF		Full Frequency, Jitter enabled
VOR	120.00			Volts	Reflected Output Voltage
VDS			10	Volts	TOPSwitch on-state Drain to Source Voltage
VD	0.50			Volts	Output Winding Diode Forward Voltage Drop
VDB	0.70			Volts	Bias Winding Diode Forward Voltage Drop
KP	0.62				$\begin{aligned} & \text { Ripple to Peak Current Ratio }(0.3<K R P< \\ & 1.0: 1.0<K D P<6.0) \end{aligned}$
PROTECTION FEATURES					
LINE SENSING					V pin functionality

VUV_STARTUP			95	Volts	Minimum DC Bus Voltage at which the power supply will start-up
VOV_SHUTDOWN			445	Volts	Typical DC Bus Voltage at which power supply will shut-down (Max)
RLS			4.0	M-ohms	Use two standard, 2 M-Ohm, 5% resistors in series for line sense functionality.
OUTPUT OVERVOLTAGE					
VZ			27	Volts	Zener Diode rated voltage for Output Overvoltage shutdown protection
RZ			5.1	k-ohms	Output OVP resistor. For latching shutdown use 20 ohm resistor instead
OVERLOAD POWER LIMITING					X pin functionality
Overload Current Ratio at VMAX			1.2		Enter the desired margin to current limit at VMAX. A value of 1.2 indicates that the current limit should be 20% higher than peak primary current at VMAX
Overload Current Ratio at VMIN			1.11		Margin to current limit at low line.
ILIMIT_EXT_VMIN			1.01	A	Peak primary Current at VMIN
ILIMIT_EXT_VMAX			0.97	A	Peak Primary Current at VMAX
RIL			12.88	k-ohms	Current limit/Power Limiting resistor.
RPL			N/A	M-ohms	Resistor not required. Use RIL resistor only
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES					
Core Type	Auto		EF25		Core Type
Core		EF25		P/N:	PC40EF25-Z
Bobbin		$\begin{gathered} \text { EF25_BO } \\ \text { BBIN } \end{gathered}$		P/N:	*
AE			0.518	$\mathrm{cm}^{\wedge} 2$	Core Effective Cross Sectional Area
LE			5.78	cm	Core Effective Path Length
AL			2000	$\mathrm{nH} / \mathrm{T}^{\wedge} 2$	Ungapped Core Effective Inductance
BW			15.6	mm	Bobbin Physical Winding Width
M	0.00			mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	2.00				Number of Primary Layers
NS			6		Number of Secondary Turns
DC INPUT VOLTAGE PARAMETERS					
VMIN			90	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE PARAMETERS					
DMAX			0.60		Maximum Duty Cycle (calculated at PO_PEAK)
IAVG			0.42	Amps	Average Primary Current (calculated at average output power)
IP			1.01	Amps	Peak Primary Current (calculated at Peak output power)
IR			0.63	Amps	Primary Ripple Current (calculated at average output power)
IRMS			0.56	Amps	Primary RMS Current (calculated at average output power)

Power Integrations, Inc.

TRANSFORMER PRIMARY DESIGN PARAMETERS					
LP			712	uHenries	Primary Inductance
LP Tolerance			10		Tolerance of Primary Inductance
NP			58		Primary Winding Number of Turns
NB			8		Bias Winding Number of Turns
ALG			215	nH/T^2	Gapped Core Effective Inductance
BM			2412	Gauss	$\begin{aligned} & \text { Maximum Flux Density at PO, VMIN } \\ & (\mathrm{BM}<3000) \end{aligned}$
BP			3384	Gauss	Peak Flux Density (BP<4200) at ILIMITMAX and LP_MAX. Note: Recommended values for adapters and external power supplies <=3600 Gauss
BAC			751	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur			1776		Relative Permeability of Ungapped Core
LG			0.27	mm	Gap Length (Lg > 0.1 mm)
BWE			31.2	mm	Effective Bobbin Width
OD	0.32		0.32	mm	Maximum Primary Wire Diameter including insulation
INS			0.05	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA			0.27	mm	Bare conductor diameter
AWG			30	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM			102	Cmils	Bare conductor effective area in circular mils
CMA		Warning	182	$\begin{gathered} \text { Cmils/A } \\ \mathrm{mp} \end{gathered}$!!! INCREASE CMA>200 (increase L(primary layers),decrease NS,larger Core)
Primary Current Density (J)			11.00		!!! Decrease current density Use larger wire diameter, increase L or increase core size.
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)					
Lumped parameters					
ISP			9.70	Amps	Peak Secondary Current
ISRMS			4.36	Amps	Secondary RMS Current
IO_PEAK			2.50	Amps	Secondary Peak Output Current
10			2.50	Amps	Average Power Supply Output Current
IRIPPLE			3.57	Amps	Output Capacitor RMS Ripple Current
CMS			872	Cmils	Secondary Bare Conductor minimum circular mils
AWGS			20	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
DIAS			0.81	mm	Secondary Minimum Bare Conductor Diameter
ODS			2.60	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS			0.89	mm	Maximum Secondary Insulation Wall Thickness

VOLTAGE STRESS PARAMETERS				
VDRAIN		611	Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)
PIVS		51	Volts	Output Rectifier Maximum Peak Inverse Voltage
PIVB		64	Volts	Bias Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)				
1st output				
VO1		12	Volts	Output Voltage
IO1_AVG		2.50	Amps	Average DC Output Current
PO1_AVG		30.00	Watts	Average Output Power
VD1		0.5	Volts	Output Diode Forward Voltage Drop
NS1		6.00		Output Winding Number of Turns
ISRMS1		4.361	Amps	Output Winding RMS Current
IRIPPLE1		3.57	Amps	Output Capacitor RMS Ripple Current
PIVS1		51	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS1		872	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS1		20	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1		0.81	mm	Minimum Bare Conductor Diameter
ODS1		2.60	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output				
VO2			Volts	Output Voltage
IO2_AVG			Amps	Average DC Output Current
PO2_AVG		0.00	Watts	Average Output Power
VD2		0.7	Volts	Output Diode Forward Voltage Drop
NS2		0.34		Output Winding Number of Turns
ISRMS2		0.000	Amps	Output Winding RMS Current
IRIPPLE2		0.00	Amps	Output Capacitor RMS Ripple Current
PIVS2		2	Volts	Output Rectifier Maximum Peak Inverse Voltage
CMS2		0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS2		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2		N/A	mm	Minimum Bare Conductor Diameter
ODS2		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire
3rd output				
VO3			Volts	Output Voltage
IO3_AVG			Amps	Average DC Output Current
PO3_AVG		0.00	Watts	Average Output Power
VD3		0.7	Volts	Output Diode Forward Voltage Drop
NS3		0.34		Output Winding Number of Turns
ISRMS3		0.000	Amps	Output Winding RMS Current
IRIPPLE3		0.00	Amps	Output Capacitor RMS Ripple Current
PIVS3		2	Volts	Output Rectifier Maximum Peak Inverse Voltage

Power Integrations, Inc.
Tel: +1 4084149200 Fax: +1 4084149201
www.powerint.com

CMS3			0	Cmils	Output Winding Bare Conductor minimum circular mils
AWGS3			N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS3			N/A	mm	Minimum Bare Conductor Diameter
ODS3		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire	
Total Continuous Output Power			30	Watts	Total Continuous Output Power
Negative Output			N/A		If negative output exists enter Output number; eg: If VO2 is negative output, enter 2

Note: The warning displayed for PO_AVG indicates the possibility of a thermal issue however thermal results showed that the selected device could deliver the rated output power at the specified maximum ambient temperature. $\underline{\underline{\bar{"}}}$

9 Performance Data

All measurements were performed at room temperature, 60 Hz input frequency. All output measurements were taken at the output terminals.

9.1 Active Mode Efficiency

Figure 9 - Efficiency vs. Input Voltage, Room Temperature, 60 Hz .

Load (\%)	$\mathbf{I}_{\text {OUT }}$ (Meas)	$\mathbf{V}_{\text {out }}(\mathrm{V}$)	$\mathbf{P}_{\text {out }}(\mathbf{W})$	$\mathbf{P}_{\text {in }}(\mathbf{W})$	Efficiency (\%)
0	0.000	11.99	0.0000	0.062	
1	0.025	11.99	0.30	0.423	71.00
2	0.050	11.98	0.60	0.782	76.60
3	0.075	11.98	0.90	1.141	78.85
4	0.100	11.98	1.20	1.491	80.43
5	0.125	11.98	1.50	1.831	81.79
10	0.250	11.98	3.00	3.549	84.39
15	0.375	11.98	4.49	5.267	85.30
25	0.625	11.98	7.49	8.760	85.47
30	0.750	11.98	8.99	10.510	85.49
40	1.000	11.98	11.98	14.030	85.39
50	1.249	11.98	14.96	17.480	85.60
60	1.499	11.98	17.96	21.100	85.11
75	1.876	11.98	22.47	26.550	84.65
80	2.005	11.98	24.02	28.400	84.58
90	2.250	11.98	26.96	31.940	84.39
100	2.499	11.98	29.94	35.580	84.14

Table 1 - Data at 115 VAC / 60 Hz for Figure 9.

Load (\%)	$\mathrm{I}_{\text {OUT }}$ (Meas)	$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{P}_{\text {OUT }}(\mathbf{W})$	$\mathbf{P}_{\text {IN }}(\mathbf{W})$	Efficiency (\%)
0	0.000	11.99	0.0000	0.075	
1	0.025	11.99	0.30	0.456	65.52
2	0.050	11.99	0.60	0.837	71.77
3	0.075	11.99	0.90	1.216	73.95
4	0.100	11.98	1.20	1.600	75.10
5	0.125	11.98	1.50	1.946	76.95
10	0.250	11.98	3.00	3.647	82.12
15	0.375	11.98	4.49	5.357	83.86
25	0.625	11.98	7.49	8.860	84.51
30	0.750	11.98	8.99	10.600	84.76
40	1.000	11.98	11.98	14.080	85.09
50	1.250	11.98	14.98	17.610	85.04
60	1.500	11.98	17.97	20.980	85.65
75	1.875	11.98	22.46	26.470	84.86
80	1.999	11.98	23.95	28.450	84.18
90	2.249	11.98	26.94	31.620	85.21
100	2.499	11.98	29.94	34.760	86.13

Table 2 - Data at 230 VAC / 50 Hz for Figure 9.

Percent of Full Load	Efficiency (\%)	
	$\mathbf{1 1 5}$ VAC	$\mathbf{2 3 0}$ VAC
25	85.47	84.51
50	85.60	85.04
75	84.65	84.86
100	84.14	86.13
Average	$\mathbf{8 4 . 9 7}$	$\mathbf{8 5 . 1 3}$
US EISA (2007) requirement	$\mathbf{8 1}$	
ENERGY STAR 2.0 requirement	$\mathbf{8 3}$	

9.2 Energy Efficiency Requirements

The external power supply requirements below all require meeting active mode efficiency and no-load input power limits. Minimum active mode efficiency is defined as the average efficiency of $25,50,75$ and 100% of output current (based on the nameplate output current rating).

For adapters that are single input voltage only then the measurement is made at the rated single nominal input voltage (115 VAC or 230 VAC), for universal input adapters the measurement is made at both nominal input voltages (115 VAC and 230 VAC).

To meet the standard the measured average efficiency (or efficiencies for universal input supplies) must be greater than or equal to the efficiency specified by the standard.

The test method can be found here:

http://www.energystar.gov/ia/partners/prod development/downloads/power supplies/EP SupplyEffic TestMethod 0804.pdf

For the latest up to date information please visit the PI Green Room:

http://www.powerint.com/greenroom/regulations.htm

9.2.1 USA Energy Independence and Security Act 2007

This legislation mandates all single output single output adapters, including those provided with products, manufactured on or after July $1^{\text {st }}, 2008$ must meet minimum active mode efficiency and no load input power limits.

Active Mode Efficiency Standard Models

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
$<1 \mathrm{~W}$	$0.5 \times \mathrm{P}_{\mathrm{O}}$
$\geq 1 \mathrm{~W}$ to $\leq 51 \mathrm{~W}$	$0.09 \times \ln \left(\mathrm{P}_{\mathrm{O}}\right)+0.5$
$>51 \mathrm{~W}$	0.85
$\ln =$ natural logarithm	

No-load Energy Consumption

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS
All	$\leq 0.5 \mathrm{~W}$

This requirement supersedes the legislation from individual US States (for example CEC in California).

9.2.2 ENERGY STAR EPS Version 2.0

This specification takes effect on November $1^{\text {st }}, 2008$.
Active Mode Efficiency Standard Models

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
$\leq 1 \mathrm{~W}$	$0.48 \times \mathrm{P}_{\mathrm{O}}+0.14$
$>1 \mathrm{~W}$ to $\leq 49 \mathrm{~W}$	$0.0626 \times \ln \left(\mathrm{P}_{\mathrm{O}}\right)+0.622$
$>49 \mathrm{~W}$	0.87
$\mathrm{In}=$ natural logarithm	

Active Mode Efficiency Low Voltage Models ($\mathrm{V}_{0}<6 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{O}} \geq 550 \mathrm{~mA}$)

Nameplate Output (Po)	Minimum Efficiency in Active Mode of Operation
$\leq 1 \mathrm{~W}$	$0.497 \times \mathrm{P}_{\mathrm{O}}+0.067$
$>1 \mathrm{~W}$ to $\leq 49 \mathrm{~W}$	$0.075 \times \ln \left(\mathrm{P}_{\mathrm{O}}\right)+0.561$
$>49 \mathrm{~W}$	0.86
$\mathrm{In}=$ natural logarithm	

No-load Energy Consumption (both models)

Nameplate Output (Po)	Maximum Power for No-load AC-DC EPS
0 to $<50 \mathrm{~W}$	$\leq 0.3 \mathrm{~W}$
$\geq 50 \mathrm{~W}$ to $\leq 250 \mathrm{~W}$	$\leq 0.5 \mathrm{~W}$

9.3 No-load Input Power

Figure 10 - Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz .

$\mathbf{V}_{\text {OUt }}$	Input Line	$\mathbf{P}_{\text {IN }}(\mathbf{m W})$
12	$85 \mathrm{~V} / 50 \mathrm{~Hz}$	63.36
12	$100 \mathrm{~V} / 50 \mathrm{~Hz}$	64.10
12	$115 \mathrm{~V} / 60 \mathrm{~Hz}$	65.00
12	$132 \mathrm{~V} / 60 \mathrm{~Hz}$	66.27
12	$180 \mathrm{~V} / 50 \mathrm{~Hz}$	71.33
12	$230 \mathrm{~V} / 50 \mathrm{~Hz}$	77.23
12	$240 \mathrm{~V} / 50 \mathrm{~Hz}$	79.36
12	$264 \mathrm{~V} / 50 \mathrm{~Hz}$	88.03

Table 3 - No-load Input Power vs. Input Voltage.

9.4 Available Standby Output Power

The chart below shows the available output power vs. line voltage for an input power of $1 \mathrm{~W}, 2 \mathrm{~W}$ and 3 W .

Figure 11 - Available Standby Power.

9.5 Regulation

9.5.1 Load

Figure 12 - Load Regulation, Room Temperature.
9.5.2 Line

Figure 13 - Line Regulation, Room Temperature, Full Load.

9.6 Efficiency

9.6.1 Load

Figure 14 - Load Efficiency, Room Temperature.
10.6.2 Line

Figure 15 - Line Efficiency at Full-load, Room Temperature.

10 Power Limit

Figure 16 - Maximum Output Power vs. Line Voltage.

11 Thermal Performance

The power supply was placed inside a small box and then placed inside the chamber. The box protects the unit from being blown directly by the fan inside the chamber. The chamber temperature was controlled to maintain a constant temperature of $40{ }^{\circ} \mathrm{C}$ inside the box. The supply was operated at its rated output power (30 W). The transformer winding temperature was taken on the outermost layer.

Item	Ref Des	Description	$\mathbf{8 5} \mathrm{VAC}, \mathbf{4 7 ~ H z ; ~}$ $\mathbf{T}_{\mathbf{A}}=\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{2 6 4 ~ V A C , 5 0 ~ H z ; ~}$ $\mathbf{T}_{\mathbf{A}}=\mathbf{4 0}{ }^{\circ} \mathbf{C}$
1	L 1	Common Mode Choke Core	81	52
2	L 1	Common Mode Choke Wire	92	54
3	D 1	Bridge Diode	79	54
4	U 1	TOPSwitch	107	78
5	T 1	Transformer wire	86	82
6	T 1	Transformer core	75	74
7	C 14	Output Capacitor	54	54
8	C 15	Output Capacitor	61	60
9	D 8	Output Diode	81	80
10	D 9	Output Diode	80	80
11	VR1	Zener Clamp	70	63

12 Waveforms

12.1 Drain Voltage and Current, Normal Operation

Figure 17 - 85 VAC 47 Hz , Full Load.
Upper: $\mathrm{V}_{\text {DRAIN, }} 100 \mathrm{~V} / \mathrm{div}$.

Figure 19 - 230 VAC 50 Hz , Full Load.
Upper: $\mathrm{V}_{\text {DRain, }} 100 \mathrm{~V} / \mathrm{div}$.
Lower: $\mathrm{I}_{\mathrm{DRAIN}}, 0.2 \mathrm{~A}, 5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 18-115 VAC 60 Hz, Full Load. Upper: $\mathrm{V}_{\text {DRAIN }}, 100 \mathrm{~V} /$ div.

Figure 20 - 264 VAC 50 Hz, Full Load. Upper: $\mathrm{V}_{\text {drain }} 100 \mathrm{~V} /$ div. Lower: $\mathrm{I}_{\mathrm{DRA}} \mathrm{N}, 0.2 \mathrm{~A}, 5 \mu \mathrm{~s} / \mathrm{div}$.
12.2 Vout and Drain Current Start-up Profile

Figure 21 - 85 VAC 47 Hz, Full Load.
Upper: $I_{\text {DRAIN }}, 0.5 \mathrm{~A} / \mathrm{div}$.
Lower: Vout, $2 \mathrm{~V}, 5 \mathrm{~ms} /$ div.

Figure 23 - 264 VAC 50 Hz, Full Load.
Upper: $I_{\text {DRAIN }}, 0.5 \mathrm{~A} / \mathrm{div}$.
Lower: $\mathrm{V}_{\text {Out, }} 2 \mathrm{~V}, 5 \mathrm{~ms}$ / div.

Figure 22 - 85 VAC 47 Hz , No-load.
Upper: IDRAIN, $0.5 \mathrm{~A} / \mathrm{div}$.
Lower: $\mathrm{V}_{\text {out, }} 2 \mathrm{~V}, 5 \mathrm{~ms} / \mathrm{div}$.

Figure 24 - 264 VAC 50 Hz , Full Load.
Upper: $I_{\text {DRAIN }}, 0.5 \mathrm{~A} / \mathrm{div}$.
Lower: $\mathrm{V}_{\text {out, }} 2 \mathrm{~V}, 5 \mathrm{~ms} /$ div.

12.3 V оит and Drain Voltage Start-up Profile

Figure 25 - 85 VAC 47 Hz , Full Load. Upper: V Lower: $\mathrm{V}_{\text {Out, }} 2 \mathrm{~V}, 5 \mathrm{~ms} /$ div.

Figure 27 - 264 VAC 50 Hz, Full Load. Upper: V ${ }_{\text {DRAIN }} 100 \mathrm{~V} /$ div.
Lower: $\mathrm{V}_{\text {Out }} 2 \mathrm{~V}, 5 \mathrm{~ms} / \mathrm{div}$.

Figure 26 - 85 VAC 47 Hz, No-load.
Upper: V
Lower: $\mathrm{V}_{\text {OUT, }} 2 \mathrm{~V}, 5 \mathrm{~ms} /$ div.

Figure 28 - 264 VAC 50 Hz , No-load.
Upper: V
Lower: $\mathrm{V}_{\text {Out, }} 2 \mathrm{~V}, 5 \mathrm{~ms} /$ div.

12.4 Over Current Protection

The waveform below shows $V_{\text {DRAIN }}, I_{\text {DRAIN }}, I_{\text {lout, }}$ and $V_{\text {OUt }}$ when output is shorted.
Maximum $V_{\text {DRAIN }}$ and $I_{\text {DRAIN }}$ are within the maximum allowable limits.

Figure 29-85 VAC 60 Hz .
CH1: V
CH3: $\mathrm{I}_{\text {DRAIN }}, 0.25 \mathrm{~A} / \mathrm{div}$.
CH2: Iout, 1 A / div. CH4: $\mathrm{V}_{\text {OUt }}, 2 \mathrm{~V} / \mathrm{div}$. Input Power = 2.2 W.

Figure $\mathbf{3 0}$ - 264 VAC 63 Hz .
CH1: V ${ }_{\text {DRAIN }}, 100 \mathrm{~V} / \mathrm{div}$.
CH3: IDRAIN, 0.25 A / div.
CH2: Iout, 1 A / div.
CH4: $\mathrm{V}_{\text {OUT }}, 2 \mathrm{~V} / \mathrm{div}$.
Input Power $=0.4 \mathrm{~W}$.

The output diodes had the highest recorded temperature during an output short circuit at $85 \mathrm{VAC}, 60 \mathrm{~Hz}$ (input power of 2.2 W). A temperature of $45^{\circ} \mathrm{C}$ was well within the temperature limits of the diodes.

Figure 31 - 85 VAC 60 Hz Short Circuit
$\mathrm{D} 8, \mathrm{D} 9: 45.2^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.

Figure 32 - 85 VAC 60 Hz Short Circuit U1: $34.6^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.

12.5 VDS \& ID at Maximum Power

Figure 34-~55.32 W at 264 VAC .
CH1: V DRAIN, $100 \mathrm{~V} /$ div.
CH3: $\mathrm{I}_{\text {DRAIN }}, 0.25 \mathrm{~A} / \mathrm{div}$.
CH2: lout, 1 A / div.
CH4: Vout, $2 \mathrm{~V} /$ div.

Max (C4) $57.0833 \cup$
Figure 36 - 264 VAC Max Power.
$V_{\text {DRain: }} 637.5 \mathrm{~V}$.
PIVS: 57.08 V .

12.7 Overvoltage Protection (Open Loop Test)

OVP is initiated by shorting the LED of U2. This constitutes an open loop condition and causes the output voltage, and bias voltage to rise. OVP is sensed in the primary by sensing the bias winding.

Figure 37 - OVP at 85 VAC, No-load. OVP Trip Point $=18.75 \mathrm{~V}$.

Figure 39 - OVP at 264 VAC, No-load. OVP Trip Point $=18.96 \mathrm{~V}$.

Figure 38 - OVP at 85 VAC, Full Load. OVP Trip Point $=16.67 \mathrm{~V}$.

Figure 40 - OVP at 264 VAC, Full Load. OVP Trip Point $=17.92 \mathrm{~V}$.

12.8 Load Transient Response

In the figures shown below, the output was AC coupled to view the load transient response. The oscilloscope was triggered using the load current step as a trigger source.

Figure 41 - Transient Response, 115 VAC, $50 \% \leftrightarrow 100 \%$ Step Load. Top: Load Current, $0.5 \mathrm{~A} / \mathrm{div}$. Bottom: $\mathrm{V}_{\text {Out }}, 200 \mathrm{mV} /$ div.
Time Scale: $2 \mathrm{~ms} / \mathrm{div}$.

Figure 43 - Transient Response, 230 VAC $50 \% \leftrightarrow 100 \%$ Step Load. Top: Load Current, 0.5 A / div. Bottom: Vout , $200 \mathrm{mV} /$ div.
Time Scale: $2 \mathrm{~ms} / \mathrm{div}$.

Figure 42 - Transient Response, 115 VAC, $75 \% \leftrightarrow 100 \%$ Step Load.
Top: Load Current, $0.5 \mathrm{~A} / \mathrm{div}$. Bottom: $\mathrm{V}_{\text {Out }}, 100 \mathrm{mV} / \mathrm{div}$. Time Scale: $2 \mathrm{~ms} / \mathrm{div}$.

Figure 44 - Transient Response, 230 VAC, $75 \% \leftrightarrow 100 \%$ Step Load.
Top: Load Current, 0.5 A / div. Bottom: $\mathrm{V}_{\text {Out }}, 100 \mathrm{mV}$ / div.
Time Scale: $2 \mathrm{~ms} / \mathrm{div}$.

12.9 Output Ripple Measurements

12.9.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the Figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic type and one (1) $47.0 \mu \mathrm{~F} / 50 \mathrm{~V}$ aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

Figure 45 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 46 - Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)
12.9.2 Ripple and Noise Measurement Results

Figure 47 - Ripple, 85 VAC 47 Hz, Full Load. $500 \mathrm{~ms}, 100 \mathrm{mV} / \mathrm{div}$.

Figure 49 - Ripple, 264 VAC 50 Hz, Full Load. $500 \mathrm{~ms}, 50 \mathrm{mV} / \mathrm{div}$.

Figure 48 - Ripple, 85 VAC 47 Hz, Full Load.
$10 \mathrm{~ms}, 100 \mathrm{mV} / \mathrm{div}$.

Figure 50 - Ripple, 264 VAC 50 Hz, Full Load. $10 \mathrm{~ms}, 50 \mathrm{mV} / \mathrm{div}$.

Figure 51 - Ripple, 85 VAC, No-load. $10 \mathrm{~ms}, 20 \mathrm{mV} / \mathrm{div}$.

Figure 53- Ripple, 230 VAC, No-load. $10 \mathrm{~ms}, 20 \mathrm{mV} / \mathrm{div}$.

Figure 52 - Ripple, 115 VAC, No-load. $10 \mathrm{~ms}, 20 \mathrm{mV} / \mathrm{div}$.

Figure 54 - Ripple, 264 VAC, No-load. $10 \mathrm{~ms}, 20 \mathrm{mV} / \mathrm{div}$.

13 Control Loop Measurements

13.1 115 VAC Maximum Load

Figure 55 - Gain-Phase Plot, 115 VAC, Maximum Steady State Load. Crossover Frequency $=3.5 \mathrm{kHz}$ Phase Margin $=51.5^{\circ}$.

13.2 230 VAC Maximum Load

Figure 56 - Gain-Phase Plot, 230 VAC, Maximum Steady State Load. Crossover Frequency $=637.8 \mathrm{~Hz}$, Phase Margin $=71.7^{\circ}$.

14 Conducted EMI

Conducted EMI were measured using a resistive load of 4.8Ω. Measurements were taken with output grounded and with output floating conditions. Quasi peak and average measurement have both $\geq 10 \mathrm{~dB}$ of margin to Class B limits.

14.1 Output Grounded

Figure 57 - Phase L1: Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Output Terminal Grounded.

Figure 58 - Phase N: Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz , and EN55022 B Limits. Output Terminal Grounded.

Figure 59 - Phase L1: Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Output Terminal Grounded

Figure 60 - Phase N: Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz , and EN55022 B Limits. Output Terminal Grounded.

14.2 Output Floating

Figure 61 - Phase L1: Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Output Terminal Floating.

Figure 62 - Phase N: Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Output Terminal Floating.

Figure 63 - Phase L1: Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Output Terminal Floating.

Figure 64 - Phase N: Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Output Terminal Floating.

15 AC Surge

The input voltage for the supply under test was 115 VAC and 230 VAC, and the supply was loaded to the maximum continuous output power using resistive loads on each output. An LED was used to monitor the presence of output voltage and to detect output interruptions. A test failure was defined as a non-recoverable interruption of output voltage requiring supply repair or recycling of input $A C$ voltage.
15.1 Common Mode Surge, 1.2 / $50 \mu \mathrm{sec}$

Surge Voltage $(\mathbf{k V})$	Phase Angle $\left({ }^{\circ}\right)$	Generator Impedance (Ω)	Number of Strikes	Test Result
2	90	12	10	PASS
2	270	12	10	PASS
2.2	90	12	10	PASS
2.2	270	12	10	PASS
2.4	90	12	10	PASS
2.4	270	12	10	PASS

15.2 Differential Mode Surge, 1.2 / $50 \mu \mathrm{sec}$

Surge Voltage $(\mathbf{k V})$	Phase Angle $\left({ }^{\circ}\right)$	Generator Impedance (Ω)	Number of Strikes	Test Result
1	90	2	10	PASS
1	270	2	10	PASS
1.2	90	2	10	PASS
1.2	270	2	10	PASS

16 Appendix A: Fast AC Reset

The TOPSwitch-JX family has a simplified fast AC Reset Function which can be configured on the X pin. Should a latching OVP condition occur, the circuit below connected to the X pin will force I_{X} to exceed $\mathrm{I}_{\mathrm{X}(\mathrm{TH})}=-27 \mu \mathrm{~A}$ (typ) and reset the latch when the $A C$ input is disconnected or falls below a set threshold value.

In the circuit below R1, R2 and C1 sets the time after AC is removed before the latch is reset. A higher gain BJT Q_{R} is desirable to allow using a higher resistance R1 and lower capacitance C 1 , and thus minimize the circuit dissipation.

Figure 65 - Fast AC Reset Circuit Implementation for TOPSwitch-JX.

17 Appendix B: Circuit Modification for Reduced No-load Input Power and Enhanced Output OVP Performance

The TOPSwitch-JX family is designed to achieve very low no-load input power by reducing the CONTROL pin current $I_{\text {C(OFF) }}=3.5 \mathrm{~mA}$ (typical for TOP266VG, 132 kHz) during MCM operation. The value of $\mathrm{I}_{\mathrm{C}(\mathrm{OFF})}$ and the bias voltage dictates the power loss in the primary control circuit which contributes to no-load input power losses. This primary circuit loss can be optimized by properly selecting bias voltage to be low enough to minimize the $\mathrm{V}_{\text {BIAS }} \times \mathrm{I}_{\mathrm{C}(\mathrm{OFF})}$ product but high enough to maintain supply on the CONTROL pin, typically $\mathrm{V}_{\text {Bias(Valley) }} \sim 7 \mathrm{~V}$. Note that the bias voltage is at minimum during no-load condition at highest AC input/

Another circuit block to look for power savings is the secondary control circuit dissipation during no-load. Power loss associated with the secondary control circuit is related to the output voltage and the control current that flows in the optocoupler diode. The optocoupler diode current is inversely proportional to the CTR of the optocoupler (IDOPTO $\sim I_{\text {C(OFF) }} / C T R$), and therefore a higher CTR optocoupler will result in lower secondary side power consumption. In the circuit below, Q2 is added to form a Darlington pair with the optocoupler transistor which now gives a very high equivalent CTR and thus reduces the optocoupler current. This configuration will dramatically improve the no-load power loss savings as shown in the data below. Note that this configuration will result in a higher open loop gain and thus compensation circuit must be redesigned to maintain the necessary stability margins (increasing the value of R19).

Figure 66 - Optocoupler Darlington Configuration to Reduce Feedback Current and No-load Input Power.

Figure 67 - Zero Load Input Power with Darlington Configuration.

$\mathbf{V}_{\text {OUT }}$	Input Line	$\mathbf{P}_{\text {IN }}(\mathbf{m W})$
12	$85 \mathrm{~V} / 50 \mathrm{~Hz}$	46.30
12	$100 \mathrm{~V} / 50 \mathrm{~Hz}$	47.52
12	$115 \mathrm{~V} / 60 \mathrm{~Hz}$	48.46
12	$132 \mathrm{~V} / 60 \mathrm{~Hz}$	50.00
12	$180 \mathrm{~V} / 50 \mathrm{~Hz}$	55.21
12	$230 \mathrm{~V} / 50 \mathrm{~Hz}$	62.92
12	$240 \mathrm{~V} / 50 \mathrm{~Hz}$	64.28
12	$264 \mathrm{~V} / 50 \mathrm{~Hz}$	67.17

Table 4 - No-load Input Power vs. Input Voltage.

17.1 Enhanced Output OVP Latch Sensitivity

The network of Q1, R10, R100, C8, and VR2 in Figure 66 guarantees that OVP will latch during low-line over load condition. This circuit will ensure that the required latching current $\operatorname{lov(Ls)}=336 \mu \mathrm{~A}(\mathrm{typ})$ is delivered to the V pin for at least $100 \mu \mathrm{~s}$.

18 Revision History

Date	Author	Revision	Description \& changes	Reviewed
01-Mar-10	CA	1.2	Initial Release	Apps \& Mktg

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2010 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765 e-mail:
usasales@powerint.com

CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
chinasales@powerint.com

CHINA (SHENZHEN)
Rm A, B \& C $4^{\text {th }}$ Floor, Block C,
Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031

Phone: +86-755-8379-3243
Fax: +86-755-8379-5828 e-mail:
chinasales@powerint.com

GERMANY
Rueckertstrasse 3 D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
eurosales@powerint.com

INDIA
\#1, $14^{\text {th }}$ Main Road Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
indiasales@powerint.com

ITALY

Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
eurosales@powerint.com

JAPAN

Kosei Dai-3 Building
2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@powerint.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@powerint.com

TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
taiwansales@powerint.com

UNITED KINGDOM

1st Floor, St. James's House
East Street,
Farnham Surrey, GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689 e-mail:
eurosales@powerint.com

SINGAPORE

51 Newton Road,
\#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
singaporesales@powerint.com

APPLICATIONS HOTLINE
World Wide +1-408-414-9660
APPLICATIONS FAX
World Wide +1-408-414-9760

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Power Integrations manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP21021.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV

