Title	Reference Design Report for a 12 W Power Supply Using TinySwitch
Specification	85 VAC

Summary and Features

- EcoSmart ${ }^{\text {TM }}$ - meets all existing and proposed energy efficiency standards including U.S. DOE EISA2007 (Level VI) and European Commission Code of Conduct (Version 5)
- No-load consumption <140 mW at 265 VAC (no bias winding required)
- $>83 \%$ average active-mode efficiency
- BP/M capacitor value selects power MOSFET current limit for greater design flexibility
- Output overvoltage protection (OVP) using primary bias winding sensed shutdown feature
- Tightly toleranced $I^{2} f$ parameter ($-10 \%,+12 \%$) reduces system cost
- Increases MOSFET and magnetics power delivery
- Reduces overload power, which lowers output diode and capacitor costs
- Integrated TinySwitch-4 Safety/Reliability features
- Accurate ($\pm 5 \%$), auto-recovering, hysteretic thermal shutdown function maintains safe PCB temperatures under all conditions
- Auto-restart protects against output short-circuit and open loop fault conditions
- $\quad>3.2 \mathrm{~mm}$ creepage on package enables reliable operation in high humidity and high pollution environments
- Meets EN550022 and CISPR-22 Class B conducted EMI with $>12 \mathrm{~dB} \mu \mathrm{~V}$ margin
- Meets IEC61000-4-5 Class 3 AC line surge

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

Power Integrations

5245 Hellyer Avenue, San J ose, CA 95138 USA.
Tel: +1 4084149200 Fax: +1 4084149201
www.power.com

Table of Contents

1 Introduction 4
2 Power Supply Specification 5
3 Schematic 6
4 Circuit Description 7
4.1 Input Rectification and Filtering 7
4.2 TNY288PG Operation 7
4.3 Output Rectification and Filtering 8
4.4 Feedback and Output Voltage Regulation 8
4.5 Output Overvoltage Shutdown 8
4.6 EMI Design Aspects 8
4.7 Peak Primary Current Limit Selection 9
4.8 Undervoltage Lockout 9
5 PCB Layout 10
6 Bill of Materials 11
7 Transformer Specification 12
7.1 Electrical Diagram 12
7.2 Electrical Specifications 12
7.3 Material List 12
7.4 Transformer Build Diagram 13
7.5 Transformer Construction. 13
8 Transformer Design Spreadsheet 14
9 Performance Data 17
9.1 Efficiency 17
9.2 Active Mode Measurement Data 18
9.3 No-Load Input Power (R8 Not Installed: No Bias Winding Supplementation) 19
9.4 No-Load Input Power (with R8 and IC supplied from bias winding) 20
9.5 Available Standby Output Power 21
9.6 Regulation 22
9.6.1 Load and Line 22
10 Thermal Performance 23
11 Waveforms 24
11.1 Drain Voltage and Current, Normal Operation 24
11.2 Output Voltage Start-Up Profile 25
11.3 Drain Voltage and Current Start-Up Profile 25
11.4 Load Transient Response (50\% to 100\% Load Step) 26
11.5 Output Ripple Measurements. 27
11.5.1 Ripple Measurement Technique 27
11.5.2 Measurement Results 28
11.6 Overvoltage Shutdown 28
12 Line Surge 29
13 Conducted EMI 30
13.1115 VAC, Full Load 30
13.2 230 VAC, Full Load 31
14 Audible Noise 32
15 Extended and Reduced Current Limit (I Іміт) Operation 33
16 TNY287PG and TNY289PG Operation in RD-399 33
17 OVP Operation Verification 34
18 Revision History 35

I mportant Note:

Although this board was designed to satisfy safety isolation requirements, it has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the power supply.

1 Introduction

This report describes a universal input, 12 V , 1 A flyback power supply using a TNY288PG device from the TinySwitch-4 family of ICs. It contains the complete specification of the power supply, a detailed circuit diagram, the entire bill of materials required to build the supply, extensive documentation of the power transformer, along with test data and oscillographs of the most important electrical waveforms. The board provides a number of user configurable options which are designed to demonstrate the features and flexibility of the TinySwitch-4 family. These include easy adjustment of the device current limit for increased output power or higher efficiency operation, and a latched output overvoltage shutdown.

Figure 1 - RD-399 Populated Circuit Board Photograph.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Typ	Max	Units	Comment
I nput Voltage Frequency No-load Input Power (230 VAC) No-load Input Power (230 VAC)	$\begin{gathered} \mathbf{V}_{\text {IN }} \\ \mathbf{f}_{\text {LINE }} \end{gathered}$	$\begin{aligned} & 85 \\ & 47 \end{aligned}$	50/60	$\begin{gathered} 265 \\ 64 \\ 0.15 \\ 0.025 \\ \hline \end{gathered}$	$\begin{gathered} \text { VAC } \\ \mathrm{Hz} \\ \mathrm{w} \\ \mathrm{~W} \\ \hline \end{gathered}$	2 Wire - no P.E. w/o UVLO resistor or bias winding With bias winding support
Output Output Voltage Output Ripple Voltage Output Current Total Output Power Continuous Output Power Overvoltage Shutdown	$V_{\text {Out }}$ $\mathbf{V}_{\text {RIPPLE }}$ Iout Pout Vov	$\begin{gathered} 11 \\ 1 \\ 12 \\ 15 \\ \hline \end{gathered}$	12	$\begin{gathered} 13 \\ 100 \end{gathered}$ 18	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \\ \mathrm{~A} \\ \\ \mathrm{~W} \\ \mathrm{~V} \end{gathered}$	$\pm 8 \%$ 20 MHz bandwidth With bias sense
Efficiency Full Load Required average efficiency at 25,50, 75 and 100% of Pout	$\begin{gathered} \eta \\ \eta_{\text {DOE }} \end{gathered}$	$\begin{aligned} & 84 \\ & 83 \end{aligned}$			$\begin{aligned} & \text { \% } \\ & \text { \% } \end{aligned}$	Measured at Pour $25^{\circ} \mathrm{C}$ Per DOE EISA2007 (Level VI) with TNY278 \& standard current limit
Environmental Conducted EMI Safety		Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II				
Surge (Differential)		1			kV	1.2/50 $\mu \mathrm{S}$ surge, IEC $1000-$ 4-5, Series Impedance: Differential Mode: 2Ω Common Mode: 12Ω
Surge (Common mode)		2			kV	
Ambient Temperature	$\mathrm{T}_{\text {AMB }}$	0		50	${ }^{\circ} \mathrm{C}$	Free convection, sea level

3 Schematic

Figure 2 - Schematic.

4 Circuit Description

This circuit is configured as a flyback topology power supply utilizing the TNY288PG. Secondary side constant voltage (CV) regulation is accomplished through optocoupler feedback with a Zener reference.

4.1 Input Rectification and Filtering

The AC input voltage is rectified by input bridge D1 - D4. The rectified DC is then filtered by the bulk storage capacitors C 1 and C 2 . Inductor $\mathrm{L} 1, \mathrm{C} 1$ and C 2 form an input pi filter, which attenuates differential mode conducted EMI.

4.2 TNY288PG Operation

The TNY288PG device U1 integrates the power switching device, oscillator, control, startup, and protection functions.

The rectified and filtered input voltage is applied to the primary winding of T1. One side of the power transformer (T 1) primary winding is connected to the positive leg of C 2 , and the other side is connected to the DRAIN (D) pin of U1. At the start of a switching cycle, the controller turns the power MOSFET on and current ramps up in the primary winding, delivering energy from bulk capacitor to transformer. When that current reaches the limit threshold, the controller turns the power MOSFET off. Due to the phasing of the transformer windings and the orientation of the output diode, the stored energy is delivered to the output capacitor during flyback time.

When the power MOSFET turns off, the leakage inductance of the transformer induces a voltage spike on the drain node. The amplitude of that spike is limited by an RCD clamp network that consists of D5, C4 and R2. Resistor R2 and R1 not only damp the high frequency leakage ring that occurs when the power MOSFET turns off, but also limit the reverse current through D5 when the power MOSFET turns on. This allows a slow, lowcost, glass passivated diode (with a recovery time of $\leq 2 \mu$ s.) to be used for D5. The slow diode also improves conducted EMI and efficiency. Zener diode VR1 defines the lowest voltage across C4 when the average switching frequency is low, preventing the clamp becoming a significant load. This increases light load efficiency and reduces standby input power. As the current through VR1 is limited by R1 a low cost standard Zener may be used in place of the TVS type shown.

Using ON/OFF control, U1 skips switching cycles to regulate the output voltage, based on feedback to its ENABLE/UNDERVOLTAGE (EN/UV) pin. The EN/UV pin current is sampled, just prior to each switching cycle, to determine if that switching cycle should be enabled or disabled. If the EN/UV pin current is $<115 \mu \mathrm{~A}$, the next switching cycle begins, and is terminated when the current through the MOSFET reaches the internal current limit threshold. To evenly spread switching cycles, preventing group pulsing, the EN/UV pin threshold current is modulated between $115 \mu \mathrm{~A}$ and $60 \mu \mathrm{~A}$ based on the state during the
previous cycle. An internal state machine sets the current limit to one of 4 levels appropriate for the operating conditions, ensuring that the switching frequency remains above the audible range until the transformer flux density is low enough to prevent audible noise. This practically eliminates audible noise when standard dip varnishing of the transformer is used.

4.3 Output Rectification and Filtering

Output rectification is provided by D7. Low ESR capacitor C10 achieves minimum output voltage ripple and noise in a small can size for the rated ripple current specification.

A post filter (ferrite bead L2 and C11) attenuates noise and ripple further to meet the specification.

4.4 Feedback and Output Voltage Regulation

The supply's output voltage regulation set point is set by the voltage that develops across Zener diode VR3, R6 and the LED in optocoupler U2. The value of R4 was calculated to bias VR3 to about 0.5 mA when it goes into reverse avalanche conduction. This ensures that it is operating close to its rated knee current. Resistor R6 limits the maximum current during load transients. The values of R4 and R6 can both be varied slightly to fine-tune the output regulation set point. When the output voltage rises above the set point, the LED in U2 becomes forward biased. On the primary-side, the phototransistor of U2 turns on and draws current out of the EN/UV pin of U1. J ust before the start of each switching cycle, the controller checks the EN/UV pin current. If the current flowing out of the EN/UV pin is greater than $115 \mu \mathrm{~A}$, that switching cycle will be disabled. As switching cycles are enabled and disabled, the output voltage is kept very close to the regulation set point. For greater output voltage regulation accuracy, a reference IC such as a TL431 can be used in place of VR3.

4.5 Output Overvoltage Shutdown

Overvoltage detection is accomplished by sensing the rectified bias winding voltage. The overvoltage threshold is the sum of VR2 and the BYPASS (BP) pin voltage ($15 \mathrm{~V}+5.8 \mathrm{~V}$). When an overvoltage condition occurs such that the bias winding output voltage exceeds the threshold voltage, current begins to flow into the BYPASS pin. When this current exceeds 5 mA the internal shutdown circuit in U1 is activated. Reset is accomplished by removing input power and allowing the BYPASS pin voltage to drop below 2 V . Resistors R7 and R3 provide additional filtering of the bias voltage, with R3 also limiting the maximum current into the BYPASS pin in an OV condition

4.6 EMI Design Aspects

In addition to the simple input π filter (C1, L1 and C2) for differential mode EMI, this design makes use of shielding techniques in the transformer to reduce common mode EMI displacement currents. Resistor R2 and C4 are added to act as a damping network
to reduce high frequency transformer ringing. These techniques combined with the frequency jitter of TNY288PG gives excellent conducted and radiated EMI performance.

4.7 Peak Primary Current Limit Selection

The schematic shows three possible values for the capacitor connected to the $B P / M$ pin, C7, C8 and C9. These different capacitor values can be used to exercise the current limit selection feature of the TinySwitch-4 family.

This feature allows the designer to select the current limit appropriate for the application.

- Nominal current limit is selected with a $0.1 \mu \mathrm{FBP} / \mathrm{M}$ pin capacitor and is the normal choice for typical enclosed adapter applications.
- When a $1 \mu \mathrm{~F} P / \mathrm{M}$ pin capacitor is used, the current limit is reduced offering reduced RMS device currents and therefore improved efficiency, at the expense of maximum power capability.
- If a $10 \mu \mathrm{FBP} / \mathrm{M}$ pin capacitor is used, the current limit is increased above nominal, extending the power capability for applications requiring higher power where the thermal conditions allow.

The RD-399 demonstration board comes with a $0.1 \mu \mathrm{~F}$ capacitor installed as C7, which causes U1 to select the standard current limit specified in the TinySwitch-4 data sheet. If C 7 were replaced by a $1 \mu \mathrm{~F}$ capacitor (C8 in the BOM, Section 6), the current limit of U1 will be the same as the standard current limit for a TNY287PG device. If a $10 \mu \mathrm{~F}$ capacitor is installed, the current limit of U1 will be the same as the standard current limit for a TNY289PG device. The flexibility of this option enables the designer to do three things. First, it allows to measure the effect of switching to an adjacent device without actually removing and replacing the IC. Second, it allows a larger device to be used with a lower current limit, for higher efficiency. Third, it allows a smaller device to be used with a higher current limit in a design when higher power is not required on a continual basis, which effectively lowers the cost of the supply.

4.8 Undervoltage Lockout

The RD-399 circuit board has a location where an optional undervoltage (UV) lockout detection resistor (R5) can be installed. When installed, MOSFET switching is disabled at start-up until current into the EN/UV pin exceeds $25 \mu \mathrm{~A}$. This allows the designer to set the input voltage at which MOSFET switching will be enabled by choosing the value of R5. For example, a value of $3.6 \mathrm{M} \Omega$ requires an input voltage of 65 VAC (92 VDC across C2) before the current into the EN/UV pin exceeds $25 \mu \mathrm{~A}$. The UV detect function also prevents the output of the power supply from glitching (trying to restart) after output regulation is lost (during shutdown), by disabling MOSFET switching until the input voltage rises above the undervoltage lockout threshold.

5 PCB Layout

Figure 3 - Printed Circuit Board Layout (3.2×1.8 Inches).

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	C1	$6.8 \mu \mathrm{~F}, 400 \mathrm{~V}$, Electrolytic, (10×16),	EKXG401ELL6R8MJ 16S	Nippon Chemi-Con
2	1	C2	$\begin{aligned} & 22 \mu \mathrm{~F}, 400 \mathrm{~V} \text {, Electrolytic, Low ESR, } 901 \mathrm{~m} \Omega \text {, (16 } \\ & \times 20 \text {) } \end{aligned}$	EKMX401ELL220ML20S	Nippon Chemi-Con
3	1	C4	$10 \mathrm{nF}, 1 \mathrm{kV}$, Disc Ceramic	562R5HKMS10	Vishay
4	1	C5	2.2 nF, Ceramic, Y1	440LD22-R	Vishay
5	1	C6	$\begin{aligned} & 22 \mu \mathrm{~F}, 50 \mathrm{~V} \text {, Electrolytic, Very Low ESR, } 340 \mathrm{~m} \Omega \text {, } \\ & (5 \times 11) \end{aligned}$	EKZE500ELL220ME11D	Nippon Chemi-Con
6	1	C7	$100 \mathrm{nF}, 50 \mathrm{~V}$, Ceramic, X7R	RPER71H104K2K1A03B	Murata
7	1	C8*	$1 \mu \mathrm{~F}, 50 \mathrm{~V}$, Electrolytic, Gen. Purpose, (5×11)	EKMG500ELL1R0ME11D	Nippon Chemi-Con
8	1	C9	$10 \mu \mathrm{~F}, 50 \mathrm{~V}$, Electrolytic, Gen. Purpose, (5 x 11)	EKMG500ELL100ME11D	Nippon Chemi-Con
9	1	C10	$\begin{aligned} & \hline 1000 \mu \mathrm{~F}, 25 \mathrm{~V} \text {, Electrolytic, Very Low ESR, } 21 \mathrm{~m} \Omega \text {, } \\ & (12.5 \times 20) \end{aligned}$	EKZE250ELL102MK20S	Nippon Chemi-Con
10	1	C11	$100 \mu \mathrm{~F}, 25 \mathrm{~V}$, Electrolytic, Very Low ESR, $130 \mathrm{~m} \Omega$, (6.3×11)	EKZE250ELL101MF11D	Nippon Chemi-Con
11	4	$\begin{aligned} & \hline \text { D1 D2 } \\ & \text { D3 D4 } \end{aligned}$	1N4007, 1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay
12	1	D5	1N4007GP, 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41	1N4007GP	Vishay
13	1	D6	200 V, 1 A, Ultrafast Recovery, 50 ns , DO-41	UF4003-E3	Vishay
14	1	D7	100 V, 3 A, Schottky, DO-201AD	SB3100DICT-ND	Diodes, Inc.
15	1	F1	$1 \mathrm{~A}, 250 \mathrm{~V}$, Slow, TR5	37211000411	Wickman
16	2	J1J4	Test Point, BLK, THRU-HOLE MOUNT	5011	Keystone
17	1	J2	Test Point, WHT, THRU-HOLE MOUNT	5012	Keystone
18	1	J3	Test Point, RED, THRU-HOLE MOUNT	5010	Keystone
19	1	JP1	Wire Jumper, Non insulated, 22 AWG, 0.7 in	298	Alpha
20	1	L1	$1 \mathrm{mH}, 350 \mathrm{~mA}$	744731102	Wurth
21	1	L2	$3.5 \mathrm{~mm} \times 7.6 \mathrm{~mm}$, 75 Ohms at $25 \mathrm{MHz}, 22$ AWG hole, Ferrite Bead	2743004112	Fair-Rite
22	1	R1	$1 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Carbon Film	CFR-25J B-1K0	Yageo
23	1	R2	$100 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Carbon Film	CFR-25J B-100R	Yageo
24	1	R3	$47 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Carbon Film	CF18JT47R0	Stackpole
25	1	R4	$2 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Carbon Film	CF18J T2K00	Stackpole
26	1	R5*	3.6 M, 5\%, 1/4 W, Carbon Film	CFR-25J B-3M6	Yageo
27	1	R6	390 , 5\%, 1/8 W, Carbon Film	CF18JT390R	Stackpole
28	1	R7	$2.2 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Carbon Film	CFR-25J B-2R2	Yageo
29	1	R8*	$6.81 \mathrm{k} \Omega, 1 \%, 1 / 4 \mathrm{~W}$, Metal Film	MFR-25FBF-6K81	Yageo
30	1	RV1	$275 \mathrm{~V}, 45 \mathrm{~J}, 10 \mathrm{~mm}$, RADIAL	V275LA10P	Littlefuse
31	1	T1	Bobbin, 10 Pins, Vertical Transformer Transformer	YW-360-02B SNX-R1735 PNY-28812	Yih-Hwa Enterprises Santronics USA Premier Magnetics
32	1	U1	TinySwitch-4, DIP-8C	TNY288PG	Power Integrations
33	1	U2	Optocoupler, 80 V, CTR 80-160\%, 4-DIP	PS2501-1-H-A	CEL
34	1	VR1	$150 \mathrm{~V}, 5 \mathrm{~W}, 5 \%$, TVS, DO204AC (DO-15)	P6KE150A	LittlleFuse
35	1	VR2	$15 \mathrm{~V}, 5 \%, 500 \mathrm{~mW}, \mathrm{DO}-35$	1N5245B-T	Diodes, Inc.
36	1	VR3	$11 \mathrm{~V}, 500 \mathrm{~mW}, 5 \%$, DO-35	BZX55C11	Vishay

*Optional components

7 Transformer Specification

7.1 Electrical Diagram

Figure 4 - Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz , from pins 1-5 to pins 6-10.	3000 VAC
Primary I nductance	Pins $1-3$, all other windings open, measured at $100 \mathrm{kHz}, 0.4 \mathrm{~V}_{\text {RMS. }}$	$1189 \mu \mathrm{H} \pm 10 \%$
Resonant Frequency	Pins 1-3, all other windings open.	500 kHz (Min.)
Primary Leakage I nductance	Pins $1-3$, with pins 6-8 shorted, measured at $100 \mathrm{kHz}, 0.4 \mathrm{~V}_{\text {RMS. }}$	$50 \mu \mathrm{H}$ (Max.)

7.3 Material List

Item	Description
[1]	Core: PC40EE25-Z, TDK or equivalent Gapped for A_{L} of $379.1 \mathrm{nH} / \mathrm{T}^{2 .}$
[2]	Bobbin: EE25, Vertical, 10 pin - Yih-Hwa part \# YW-360-02B.
[3]	Magnet Wire: \#30 AWG.
[4]	Magnet Wire: \#27 AWG.
[5]	Triple Insulated Wire: \#24 AWG.
[6]	Tape: 3M \# 44 Polyester web. 2.0 mm wide.
[7]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 8.6 mm wide.
[8]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 10.7 mm wide.
[9]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 4.0 mm wide.
[10]	Varnish (applied by dipping only, not vacuum impregnation).

7.4 Transformer Build Diagram

Figure 5 - Transformer Build Diagram.

7.5 Transformer Construction

Bobbin Set-Up Orientation	Set up the bobbin with its pins oriented to the left hand side.
Margin Tape	Apply 2.0 mm margin at the pin side of bobbin using item [6]. Match combined height of shield, primary, and bias windings.
WD1 Cancellation Winding	Start at pin 1. Wind 14 bifilar turns of item [3] from left to right. Wind with tight tension across entire bobbin evenly. Cut the ends of the bifilar and leave floating.
Insulation	1 layer of tape [7] for insulation.
WD \#2 Primary Winding	Start at pin 3. Wind 28 turns of item [3] from left to right. Apply 1 layer of tape [7] for insulation. Wind another 28 turns from right to left. Wind with tight tension across entire bobbin evenly. Finish at pin 1.
Insulation	1 layer of tape [7] for insulation.
WD \#3	Start at pin 4, wind 7 trifilar turns of item [4]. Wind from left to right with tight tension. Wind uniformly, in a single layer across entire width of bobbin. Finish on pin 5.
Bias Winding	1 layer of tape [8] for insulation.
Margin Tape	Apply 2.0 mm margin at the pin side of bobbin using item [6]. Match combined height of secondary windings.
WD \#4	Start at pin 8, wind 9 turns of item [5] from left to right. Wind uniformly, in a single layer across entire bobbin evenly. Finish on pin 6.
Secondary Winding	3 layers of tape [8] for insulation.
Outer Insulation	Assemble and secure core halves using item [1] and item [9].
Core Assembly	Aarnish
Dip varnish using item [10] (do not vacuum impregnate).	

8 Transformer Design Spreadsheet

ACDC_TinySwitch4_121812; Rev.1.1; Copyright Power Integrations 2012	INPUT	INFO	OUTPUT	UNIT	ACDC_TinySwitch-4_121812_Rev1-1.xIs; TinySwitch-4 Continuous/ Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARI ABLES					
VACMIN	85		85	Volts	Minimum AC Input Voltage
VACMAX	265		265	Volts	Maximum AC Input Voltage
fL	50		50	Hertz	AC Mains Frequency
VO	12.00		12.00	Volts	Output Voltage (at continuous power)
10	1.07		1.07	Amps	Power Supply Output Current (corresponding to peak power)
Power			12.84	Watts	Continuous Output Power
n	0.80		0.80		Efficiency Estimate at output terminals. Under 0.7 if no better data available
Z	0.50		0.50		Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available
tC	2.77		2.77	$\begin{gathered} \hline \text { mSeco } \\ \text { nds } \end{gathered}$	Bridge Rectifier Conduction Time Estimate
CIN	28.80		28.8	uFara ds	Input Capacitance
ENTER TinySwitch-4 VARI ABLES					
TinySwitch-4	TNY288P		$\begin{gathered} \hline \text { TNY288 } \\ \hline \mathbf{P} \end{gathered}$		User-defined TinySwitch-4
Chose Configuration	STD		Standard Current Limit		Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)
ILIMITMIN			0.512	Amps	Minimum Current Limit
ILIMITTYP			0.550	Amps	Typical Current Limit
ILIMITMAX			0.588	Amps	Maximum Current Limit
fSmin			124000	Hertz	Minimum Device Switching Frequency
1^2fmin			35.937	$\begin{gathered} \mathrm{A}^{\wedge} 2 \mathrm{k} \\ \mathrm{~Hz} \end{gathered}$	I^2f (product of current limit squared and frequency is trimmed for tighter tolerance)
VOR	79.00		79	Volts	Reflected Output Voltage (VOR < 135 V Recommended)
VDS			10	Volts	TinySwitch-4 on-state Drain to Source Voltage
VD			0.7	Volts	Output Winding Diode Forward Voltage Drop
KP			0.51		Ripple to Peak Current Ratio ($\mathrm{KP}<6$)
KP_TRANSIENT			0.27		Transient Ripple to Peak Current Ratio. Ensure KP TRANSIENT > 0.25
ENTER BI AS WI NDI NG VARI ABLES					
VB	10.00		10.00	Volts	Bias Winding Voltage
VDB			0.70	Volts	Bias Winding Diode Forward Voltage Drop
NB			7.09		Bias Winding Number of Turns
VZOV			16.00	Volts	Over Voltage Protection zener diode voltage.
UVLO VARI ABLES					
V_UV_TARGET			87.94	Volts	Target DC under-voltage threshold, above which the power supply with start
V_UV_ACTUAL			84.70	Volts	Typical DC start-up voltage based on standard value of RUV ACTUAL
RUV_IDEAL			3.43	Mohm s	Calculated value for UV Lockout resistor
RUV_ACTUAL			3.30	Mohm s	Closest standard value of resistor to RUV_IDEAL
ENTER TRANSFORMER CORE/ CONSTRUCTI ON VARI ABLES					
Core Type	EE25		EE25		Enter Transformer Core
Core		EE25		P/N:	PC40EE25-Z
Custom core				P / N :	EE25_BOBBIN

AE			0.404	$\mathrm{cm}^{\wedge} 2$	Core Effective Cross Sectional Area
LE			7.34	cm	Core Effective Path Length
AL			1420	$\begin{gathered} \hline \mathrm{nH} / \mathrm{T}^{\wedge} \\ 2 \end{gathered}$	Ungapped Core Effective Inductance
BW			10.2	mm	Bobbin Physical Winding Width
M	1.00		1	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	2.00		2		Number of Primary Layers
NS	9		9		Number of Secondary Turns
DC INPUT VOLTAGE PARAMETERS					
VMIN			80	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE PARAMETERS					
DMAX			0.53		Duty Ratio at full load, minimum primary inductance and minimum input voltage
IAVG			0.23	Amps	Average Primary Current
IP			0.51	Amps	Minimum Peak Primary Current
IR			0.26	Amps	Primary Ripple Current
IRMS			0.33	Amps	Primary RMS Current
TRANSFORMER PRIMARY DESI GN PARAMETERS					
LP			1189	uHenri es	Typical Primary Inductance. +/- 10\% to ensure a minimum primary inductance of 1069 uH
LP_TOLERANCE	10.00		10	\%	Primary inductance tolerance
NP			56		Primary Winding Number of Turns
ALG			379	$\begin{gathered} \hline \mathrm{nH} / \mathrm{T}^{\wedge} \\ 2 \\ \hline \end{gathered}$	Gapped Core Effective Inductance
BM			3090	Gauss	Maximum Operating Flux Density, BM<3100 is recommended
BAC			783	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur			2053		Relative Permeability of Ungapped Core
LG		Warning	0.10	mm	!!! INCREASE GAP>>0.1. Increase NS, increase VOR, bigger Core
BWE			16.4	mm	Effective Bobbin Width
OD			0.29	mm	Maximum Primary Wire Diameter including insulation
INS			0.05	mm	Estimated Total Insulation Thickness ($=2$ * film thickness)
DIA			0.24	mm	Bare conductor diameter
AWG			31	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
CM			81	Cmils	Bare conductor effective area in circular mils
CMA			248	Cmils/ Amp	Primary Winding Current Capacity (200 < CMA < 500)
TRANSFORMER SECONDARY DESI GN PARAMETERS					
Lumped parameters					
ISP			3.18	Amps	Peak Secondary Current
ISRMS			1.91	Amps	Secondary RMS Current
IRIPPLE			1.58	Amps	Output Capacitor RMS Ripple Current
CMS			381	Cmils	Secondary Bare Conductor minimum circular mils
AWGS			24	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
VOLTAGE STRESS PARAMETERS					
VDRAIN			561	Volts	Maximum Drain Voltage Estimate (Assumes 20\% zener clamp tolerance and an additional 10% temperature tolerance)
PIVS			72	Volts	Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESI GN PARAMETERS (MULTI PLE OUTPUTS)					
1st output					

VO1			12	Volts	Main Output Voltage (if unused, defaults to single output design)		
IO1			1.070	Amps	Output DC Current		
PO1			12.84	Watts	Output Power		
VD1			0.7	Volts	Output Diode Forward Voltage Drop		
NS1			9.00		Output Winding Number of Turns		
ISRMS1			1.907	Amps	Output Winding RMS Current		
IRIPPLE1			7.58	Amps	Output Capacitor RMS Ripple Current		
PIVS1			1 N5820, SB320		Volts	Output Rectifier Maximum Peak Inverse Voltage	Recommended Diodes for this output
:---							
Recommended Diodes							
CMS1							
AWGS1							
DIAS1							
ODS1							

Note: Warning shown for gap size should be ignored. It is the result of rounding of the parameter.

9 Performance Data

The ON/OFF control scheme employed by TinySwitch-4 yields virtually constant efficiency across the 25% to 100% load range required for compliance with worldwide energy efficiency standards for external power supplies (EPS). Even at loads below 10\% of the supply's full rated output power, efficiency remains above 70\%, providing excellent standby performance for applications that require it. This performance is automatic with ON/OFF control. There are no special burst modes that require the designer to consider specific thresholds within the load range in order to achieve compliance with global energy efficiency standards.

All measurements performed at room temperature, 60 Hz input frequency.

9.1 Efficiency

Figure 6 - Efficiency vs. Output Current, Room Temperature, 60 Hz .

9.2 Active Mode Measurement Data

As this design could be used for an external power supply (vs internal) the efficiency requirements for the two toughest external power supply standards (in effect at time of writing) are shown blow.

This design meets both the U.S. DOE EISA2007 (Level VI) and European Code of Conduct (Version 5) limits.

For other standard and the latest, up-to-date information on energy efficiency regulations, please visit the PI Green Room, at:
http://www.powerint.com/greenroom/regulations.htm

Measured Performance				Standards			
		$\mathrm{V}_{\text {IN }}$ (VAC)		El SA2007		EC CoC (v5)	
		115	230	2016 Direct operation	2016 Indirect operation	$\begin{gathered} 2014 \\ \text { Tier } 1 \end{gathered}$	$\begin{gathered} 2016 \\ \text { Tier } 2 \end{gathered}$
		Efficiency (\%)		Efficiency (\%)			
Percent of Full Load	10	80.5	82			70	73
	25	83.5	82.6				
	50	83.9	84.3				
	75	84.4	84.3				
	100	84.4	84				
	Ave	84	84	83	72	80	83
No-Load Input Power ${ }^{\dagger}$ (mW)		$\begin{gathered} 70 \\ (22) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 125 \\ & (24) \\ & \hline \end{aligned}$	100	500	150	75
		Compliant		Y	Y	Y	Y

${ }^{\dagger}$ Numbers in parenthesis with IC supplied from optional bias winding.

9.3 No-Load Input Power (R8 Not Installed: No Bias Winding Supplementation)

Figure 7 - No-load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz .

Figure 8 - No-load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz , with Bias Winding.

9.5 Available Standby Output Power

The chart below shows the available output power versus line voltage at input power consumption levels of 1,2 and 3 watts (respectively). Again, this performance illustrates the value of ON/OFF control, as it automatically maintains a high efficiency, even during very light loading. This simplifies complying with standby requirements that specify that a fair amount of power be available to the load at low input power consumption levels. The TinySwitch-4 ON/OFF control scheme maximizes the amount of output power available to the load in standby operation when the allowable input power is fixed at a low value. This simplifies the design of products such as printers, set-top boxes, DVD players, etc. that must meet stringent standby power consumption requirements.

Figure 9 - Available Output Power for 1 W, 2 W and 3 W of Input Power.

9.6 Regulation

9.6.1 Load and Line

Figure 10 - Load and Line Regulation, Room Temperature.

10 Thermal Performance

Temperature measurements of key components were taken using T-type thermocouples. The thermocouples were soldered directly to a SOURCE pin of the TNY288PG device and to the cathode of the output rectifier. The thermocouples were glued to the output capacitor and to the external core and winding surfaces of transformer T1.

The unit was sealed inside a large box to eliminate any air currents. The box was placed inside a thermal chamber. The ambient temperature within the large box was raised to $50^{\circ} \mathrm{C}$. The unit was then operated at full load and the temperature measurements were taken after they stabilized for 1 hour at $50^{\circ} \mathrm{C}$.

Temperature (${ }^{\circ} \mathbf{C}$)		
Item	$\mathbf{8 5}$ VAC	$\mathbf{2 6 5}$ VAC
Ambient	50^{*}	50^{*}
TNY288PG (U1)	83.9	80.9
Transformer Core(T1)	68	71.1
Transformer Winding (T1)	72.3	72.9
Output Rectifier (D7)	79.7	79.5
Output Capacitor (C10)	60.2	60.2

*To simulate operation inside sealed enclosure at $40^{\circ} \mathrm{C}$ external ambient.
These results show that all key components have an acceptable rise in temperature.

Figure 11 - Infrared Thermograph of Open Frame Operation, at Room Temperature. 85 VAC, 12 W Load, $22{ }^{\circ} \mathrm{C}$ Ambient.

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

Figure 12-115 VAC, Full Load.
Upper: $I_{\text {Drain }}, 0.1 \mathrm{~A} /$ div.
Lower: $V_{\text {DRAIN }} 50 \mathrm{~V}, 500 \mathrm{~ns} /$ div.

Figure 14-115 VAC, Full Load.
$V_{\text {DRAIN, }} 50 \mathrm{~V}, 20 \mu \mathrm{~s} / \mathrm{div}$.

Figure 13-230 VAC, Full Load. Upper: $I_{\text {DRAIN }}, 0.1 \mathrm{~A} /$ div. Lower: $V_{\text {Draln }} 100 \mathrm{~V} /$ div.

Figure 15-230 VAC, Full Load.
$V_{\text {DRAN }} 100 \mathrm{~V}, 20 \mu \mathrm{~s} / \mathrm{div}$.

11.2 Output Voltage Start-Up Profile

Start-up into full resistive load and no-load were both verified. A 12Ω resistor was used for the load, to maintain 1 A under steady-state conditions.

Figure 16 - Start-Up Profile, 115 VAC. Fast trace is No-load Rise Time. Slower Trace is Maximum Load (12Ω) $2 \mathrm{~V}, 5 \mathrm{~ms} / \mathrm{div}$.

Figure 17 - Start-Up Profile, 230 VAC. Fast trace is No-load Rise Time. Slower Trace is Maximum Load (12Ω) $2 \mathrm{~V}, 5 \mathrm{~ms} / \mathrm{div}$.

11.3 Drain Voltage and Current Start-Up Profile

Figure 18-90 VAC Input and Maximum Load. Upper: V ${ }_{\text {DRAIN }} 100 \mathrm{~V} \& 100 \mu \mathrm{~s} / \mathrm{div}$. Lower: $\mathrm{I}_{\text {DRAN }}, 0.5 \mathrm{~A} / \mathrm{div}$.

Figure 19-265 VAC Input and Maximum Load. Upper: $V_{\text {DRAIN }} 200 \mathrm{~V}$ \& $100 \mu \mathrm{~s} / \mathrm{div}$. Lower: $I_{\text {DRAIN }}, 0.5 \mathrm{~A} /$ div.

11.4 Load Transient Response (50\% to 100\% Load Step)

Figure 20 - Transient Response, 115 VAC, 50-100-50\% Load Step. Upper: Vou $50 \mathrm{mV} / \mathrm{div}$. Lower: Iour $0.5 \mathrm{~A}, 1 \mathrm{~ms} / \mathrm{div}$.

Figure 21 - Transient Response, 230 VAC, 50-100-50\% Load Step. Upper: Vou $50 \mathrm{mV} / \mathrm{div}$. Lower: Iour $0.5 \mathrm{~A}, 1 \mathrm{~ms} / \mathrm{div}$.

11.5 Output Ripple Measurements

11.5.1 Ripple Measurement Technique

A modified oscilloscope test probe was used to take output ripple measurements, in order to reduce the pickup of spurious signals. Using the probe adapter pictured in Figure 22, the output ripple was measured with a $1 \mu \mathrm{~F}$ electrolytic, and a $0.1 \mu \mathrm{~F}$ ceramic capacitor connected as shown.

Figure 22 - Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

11.5.2 Measurement Results

Figure 23 - Ripple, 85 VAC, Full Load.
$20 \mu \mathrm{~s}, 50 \mathrm{mV} /$ div.

11.6 Overvoltage Shutdown

Figure 25 - Overvoltage Shutdown.
265 VAC, No Load.
$50 \mathrm{~ms}, 5 \mathrm{~V} / \mathrm{div}$.

Figure 24 - Ripple, 115 VAC, Full Load. $20 \mu \mathrm{~s}, 50 \mathrm{mV} / \mathrm{div}$.

Figure 26 - Overvoltage Shutdown.
265 VAC, Full Load.
$50 \mathrm{~ms}, 5 \mathrm{~V} / \mathrm{div}$.

12 Line Surge

Differential input line surge ($1.2 / 50 \mu \mathrm{~s}$) testing was completed on a single test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz . Output was loaded at full load and operation was verified following each surge event.

Surge Voltage	Phase Angle $\mathbf{(0)}$	Generator I mpedance (Ω)	Number of Strikes	Test Result
1 kV Differential	90	2	10	PASS
2 kV Common Mode	90	12	10	PASS

Unit passed under all test conditions.

13 Conducted EMI

Conducted emissions tests were performed at 115 VAC and 230 VAC at full load (12 V, 1 A). Measurements were taken with an Artificial Hand connected and a floating DC output load resistor. A DC output cable was included.

Composite EN55022B / CISPR22B conducted limits are shown. In all cases there was excellent ($>10 \mathrm{~dB}$) margin.

13.1 115 VAC, Full Load

Figure 27 - Conducted EMI at 115 VAC.

13.2 230 VAC, Full Load

Figure 28 - Conducted EMI at 230 VAC.

14 Audible Noise

An open-frame (no enclosure) unit was tested with an audio precision analyzer, using a microphone positioned one inch from the core of transformer T1. The test was done with the unit in an acoustically isolated and dampened chamber. The load was adjusted until a maximum reading was obtained.

35 dBrA is considered the acceptable limit for frequencies below 18 kHz . An enclosure will typically further reduce measurable acoustic noise levels by an additional 10 dBrA .

Figure 29 - Audible Noise $\mathrm{V}_{\mathrm{IN}}=120$ VAC; $I_{\text {out }}=350 \mathrm{~mA}$.

Figure 31 - Audible Noise $\mathrm{V}_{\mathrm{IN}}=230$ VAC;
$I_{\text {out }}=930 \mathrm{~mA}$.

Figure 30 - Audible Noise $\mathrm{V}_{\mathrm{IN}}=120$ VAC; $I_{\text {out }}=860 \mathrm{~mA}$.

Figure 32 - Audible Noise $\mathrm{V}_{\mathrm{IN}}=230$ VAC;
$I_{\text {out }}=880 \mathrm{~mA}$.

15 Extended and Reduced Current Limit ($I_{\text {Lіміт }}$) Operation

Capacitors (C8 and C9 on the BOM in Section 6) can be added to the board to try out the $\mathrm{I}_{\text {имIT+1 }}$ and $\mathrm{I}_{\text {umit-1 }}$ operation of TNY288PG. When C7 $(0.1 \mu \mathrm{~F})$ is replaced with a $10 \mu \mathrm{~F}$ capacitor (C9), the TNY288PG will operate in the $\mathrm{I}_{\text {LMIT+1 }}$ mode, which increases the maximum primary current limit from the standard maximum limit of 0.55 A to 0.65 A (equal to that of a TNY289PG). This allows a TNY288PG to deliver from 15% to 25% more output power (depending on the output voltage and current).

CAUTI ON: Because RD-399 was designed for standard I Lіміт operation, It should not be loaded with more than 1.25 A at an elevated temperature for very long (a few minutes) when verifying the performance of TNY288PG in the lumit+1 mode, since the other power components (transformer, input bulk capacitors, output diode, output capacitors and primary clamp network) are not sized for sustained operation at more than 12 W .

When C7 is replaced with a $1 \mu \mathrm{~F}$ capacitor (C8), the TNY288PG will operate in the I Iumit-1 mode, which reduces the maximum current limit from the standard maximum limit of 0.55 A to 0.45 A (equal to that of a TNY277PG). Although this reduces the maximum output power that the supply can deliver, it typically will increase the efficiency, especially at lower output power levels. To take the fullest advantage of the increase in efficiency that can be obtained from lumit-1 operation, the power transformer would need to be redesigned slightly.

16 TNY287PG and TNY289PG Operation in RD-399

A TNY287PG device used in the $\mathrm{I}_{\mathrm{Lmilt+1}}$ mode (a $10 \mu \mathrm{~F}$ installed in place of C 7) will work in the RD-399 reference board, and deliver output power equal to that of a TNY288PG device. This flexibility allows a design engineer the option of using a lower cost part in applications with less demanding thermal requirements.

A TNY289PG device used in the lumit-1 mode (a $1 \mu \mathrm{~F}$ installed in place of C7) will deliver the same output power as a TNY288PG in the standard I IUMIT Configuration. This can improve efficiency and lower the temperature rise of the device, which can give greater thermal margin to a design that must operate in high ambient temperature environments.

17 OVP Operation Verification

While the RD-399 is in normal operation, monitor the output with a storage oscilloscope. To cause an overvoltage condition to occur, short-circuit the optocoupler LED (as shown below) to open the feedback control loop. The oscilloscope will capture the output voltage rising until the increasing voltage across VR2 causes it to conduct, and the TNY288PG device latches off. To reset the OVP latch, the AC input power must be removed long enough to allow the input bulk capacitors to fully discharge.

Figure 33 - Point on PCB to Apply Short-Circuit to Trigger OV Shutdown.

18 Revision History

Date	Author	Revision	Description an Changes	Approved
02-J ul-14	RJ	1.1	Initial Release	Apps \& Mktg
09-Oct-15	KM	1.2	Updated Brand Style and added Transformer Supplier	

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent I nformation

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www. power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwtich, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2015 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San J ose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@power.com

CHI NA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: chinasales@power.com

CHI NA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

GERMANY

Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-527-39110
Fax: +49-895-527-39200
e-mail: eurosales@power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: indiasales@power.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. FI.
20099 Sesto San Giovanni (MI)
Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail: eurosales@power.com

J APAN

Kosei Dai-3 Building
2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@power.com

TAI WAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
taiwansales@power.com

UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5,
2nd Floor
Milton Road
Cambridge CB4 IYG
Phone: +44 (0) 1223-446483
e-mail: eurosales@power.com

SI NGAPORE

51 Newton Road,
\#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: singaporesales@power.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Power Integrations manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3-EVALZ ADP1716-2.5EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ

