

| Title              | Reference Design Report for a 150 W<br>Power Factor Corrected LLC Power Supply<br>Using HiperPFS <sup>TM</sup> -4 PFS7625H and<br>HiperLCS <sup>TM</sup> LCS702HG |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Specification      | 100 VAC - 300 VAC Input;<br>39 V - 54 V at 0 - 2.75 A Output (Constant<br>Current)                                                                                |  |  |
| Application        | LED Streetlight                                                                                                                                                   |  |  |
| Author             | Applications Engineering Department                                                                                                                               |  |  |
| Document<br>Number | RDR-648                                                                                                                                                           |  |  |
| Date               | September 2, 2020                                                                                                                                                 |  |  |
| Revision           | 1.4                                                                                                                                                               |  |  |

#### **Summary and Features**

- Integrated PFC and LLC stages for a very low component count design
- Continuous mode PFC using low cost ferrite core
- High frequency (120 kHz) LLC for small transformer size.
- >94% full load PFC efficiency at 115 VAC
- >94% full load LLC efficiency
  - System efficiency 89% / 92% at 115 VAC / 230 VAC
- Start-up circuit eliminates the need for a separate bias supply
- On-board current regulation, PWM dimming, and LLC inhibit

#### PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <a href="http://www.powerint.com/ip.htm">http://www.powerint.com/ip.htm</a>.

#### **Table of Contents** Introduction ......6 2 Power Supply Specification ......8 3 Schematic ......9 Input Filter / Boost Converter / Bias Supply......10 4.1 EMI Filtering / Inrush Limiting ......10 4.2 Main PFC Stage .......10 4.3 4.4 Primary Bias Supply / Start-up......11 4.5 4.6 4.7 Output Rectification ......14 4.8 Output Current and Voltage Control......14 5 6 7 Constant Voltage Load......22 8.1 8.2 9 PFC Choke (L2) Specification ......26 9.1.1 9.1.2 Electrical Specifications.......26 9.1.3 Build Diagram ......27 9.1.4 9.1.5 Winding Instructions .......27 9.1.6 Winding Illustrations ......28 9.2 9.2.1 Electrical Diagram ......33 9.2.2 Electrical Specifications......33 9.2.3 9.2.4 Build Diagram ......34 Winding Instructions ......34 9.2.5 9.2.6 Winding Illustrations ......35 9.3 9.3.1 Electrical Diagram .......38 9.3.2 9.3.3 9.3.4 9.4 Output High Frequency Common Mode Choke......39 9.4.1 Electrical Diagram ......39 9.4.2 Electrical Specifications......39 9.4.3



|      | PFC Design Spreadsheet                                                |     |
|------|-----------------------------------------------------------------------|-----|
| 11 L | LC Transformer Design Spreadsheet                                     |     |
| 11.1 | Component Adjustments Needed for Voltage Doubler Design               | 45  |
| 11.2 | Warning Messages                                                      | 46  |
| 11.3 | Nominal Output Voltage (46 V) Spreadsheet                             | 47  |
| 11.4 | Maximum Output Voltage / Output Power (54 V) Spreadsheet              | 54  |
| 11.5 | Minimum Output Voltage / Power (39 V) Spreadsheet                     | 61  |
| 12 F | Heat Sinks                                                            | 68  |
| 12.1 | Primary Heat Sink                                                     | 68  |
| 12.  | 1.1 Primary Heat Sink Sheet Metal                                     | 68  |
| 12.  | 1.2 Primary Heat Sink with Fasteners                                  | 69  |
| 12.  | 1.3 Primary Heat Sink Assembly                                        | 70  |
| 12.2 | Secondary Heat Sink                                                   | 71  |
| 12.  | 2.1 Secondary Heat Sink Sheet Metal                                   | 71  |
| 12.  | 2.2 Secondary Heat Sink with Fasteners                                | 72  |
| 12.  | 2.3 Secondary Heat Sink Assembly                                      |     |
| 13 F | Performance Data                                                      | 74  |
| 13.1 | LLC Stage Efficiency                                                  | 74  |
| 13.2 | PFC Stage Efficiency                                                  | 75  |
| 13.3 | Total Efficiency                                                      |     |
| 13.4 | No-Load Input Power                                                   | 77  |
| 13.5 | Power Factor                                                          | 78  |
| 13.6 | THD vs. Output Power                                                  | 79  |
| 13.7 | Output Current vs. Dimming PWM Duty Cycle                             | 80  |
| 13.8 | Output V-I Characteristic                                             |     |
| 14 V | Naveforms                                                             | 84  |
| 14.1 | Input Current, 100% Load                                              | 84  |
| 14.2 | LLC Primary Voltage and Current                                       | 86  |
| 14.3 | Output Rectifier Peak Reverse Voltage                                 | 88  |
| 14.4 | PFC Voltage and Current, 100% Load                                    |     |
| 14.5 | AC Input Current and PFC Output Voltage during Start-up               | 90  |
| 14.6 | LLC Start-up Waveforms Using Electronic Load Set for Constant Voltage |     |
| 14.7 | Output Short-Circuit                                                  |     |
| 14.8 | Output Ripple Measurements                                            |     |
| 14.  | 8.1 Ripple Measurement Technique                                      | 93  |
| 14.  | 8.2 Ripple Measurements                                               | 94  |
| 15 T | Temperature Profiles                                                  |     |
| 15.1 | 100 VAC, 50 Hz, 150 W Output, Room Temperature                        | 95  |
| 15.2 | 115 VAC, 60 Hz, 150 W Output, Room Temperature                        | 96  |
| 15.3 | 230 VAC, 50 Hz, 150 W Output, Room Temperature                        |     |
| 15.4 | 277 VAC, 60 Hz, 150 W Output, Room Temperature                        |     |
| 16 ( | Conducted EMI                                                         |     |
| 17 L | ine Surge Testing                                                     | 101 |

| 17.1 | Line Surge Test Set-up                 | . 101 |
|------|----------------------------------------|-------|
|      | Differential Mode Surge, 1.2 / 50 μsec |       |
|      | Common Mode Surge, 1.2 / 50 μsec       |       |
|      | Revision History                       |       |

#### **Important Notes:**

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. All testing should be performed using an isolation transformer to provide the AC input to the prototype board.

Since there is no separate bias converter in this design,  $\sim\!280$  VDC is present on bulk capacitor C19 immediately after the supply is powered down. For safety, this capacitor must be discharged with an appropriate resistor (10 k / 2 W is adequate), or the supply must be allowed to stand  $\sim\!10$  minutes before handling.

9201 r.com

#### 1 Introduction

This engineering report describes a 39 V to 54 V, 150 W reference design for a power supply for 100 VAC to 300 VAC LED street lights and other high power lighting applications. The power supply is designed with a constant current output in order to directly drive a 150 W LED panel at 46 V (nominal, 39 V min, 54 V max).

The design is based on the PFS7625H for the PFC front end with a Qspeed LXA03T600 output diode and a LCS702HG for the LLC output stage.



**Figure 1** – Top View.

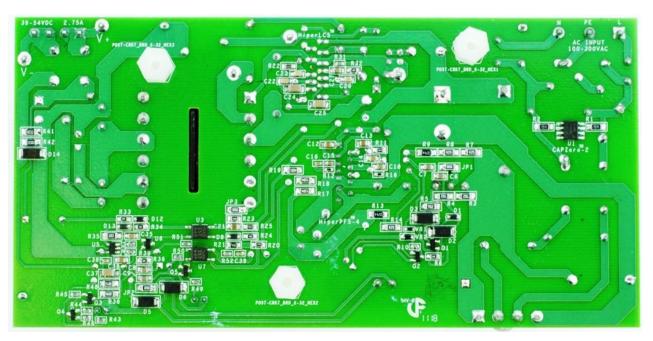



Figure 2 – Bottom View.

## **2 Power Supply Specification**

The table below represents the minimum acceptable performance for the design. Actual performance is listed in the results section.

| Description                                                                             | Symbol                                         | Min              | Тур        | Max         | Units               | Comment                                                                                                                                              |
|-----------------------------------------------------------------------------------------|------------------------------------------------|------------------|------------|-------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Voltage Frequency Power Factor                                                    | V <sub>IN</sub><br>f <sub>LINE</sub><br>PF     | 100<br>47<br>0.9 | 50/60      | 300<br>64   | VAC<br>Hz           | 3 Wire Input.<br>Full Load, 277 VAC.                                                                                                                 |
| Main Converter Output Output Voltage                                                    | V <sub>LG</sub>                                | 39               | 46         | 54          | V                   | 46 VDC Nominal – test with LED<br>Load or LED emulator (see<br>sections 7 & 8) Output voltage<br>defined by LED load – protected<br>against no load. |
| Output Ripple<br>Output Current                                                         | $oldsymbol{V_{RIPPLE(LG)}}{oldsymbol{I_{LG}}}$ | 0.00             | 2.75       | 300         | mV <sub>PK-PK</sub> | 20 MHz Bandwidth Constant Current Supply Protected                                                                                                   |
| •                                                                                       | LG                                             | 0.00             | 2.73       |             | A                   | for No-load Condition.                                                                                                                               |
| <b>Total Output Power</b> Continuous Output Power Peak Output Power No-Load Input Power | P <sub>OUT</sub><br>P <sub>OUT(PK)</sub>       |                  | 150        | N/A<br><0.5 | W<br>W<br>W         | Tested with LLC inhibited via<br>inhibit input                                                                                                       |
| Efficiency Total system at Full Load                                                    | $\eta_{Main}$                                  |                  | 89.5<br>92 |             | %                   | Measured at 115 VAC, Full Load.<br>Measured at 230 VAC, Full Load.                                                                                   |
| Environmental Conducted EMI Safety Surge Differential Common Mode                       |                                                | 4<br>4           | Des        |             |                     | / EN55022B $0$ / UL1950 Class II $1.2/50~\mu s$ Surge, IEC 1000-4-5, Differential Mode: 2 $\Omega$ . Common Mode: 12 $\Omega$ .                      |
| Ambient Temperature                                                                     | T <sub>AMB</sub>                               | 0                |            | 60          | oC.                 | See Thermal Section for<br>Conditions.                                                                                                               |

#### 3 **Schematic**

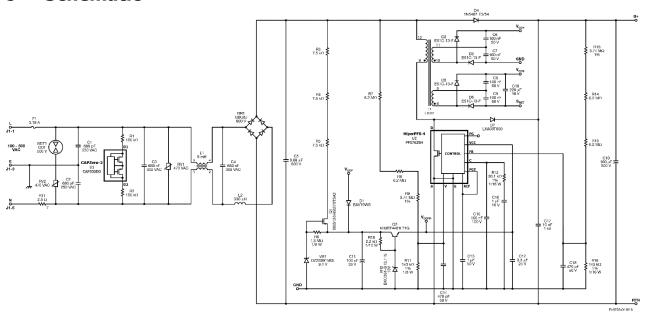



Figure 3 – Schematic - Input Filter, PFC Power Stage, and Bias Supplies.

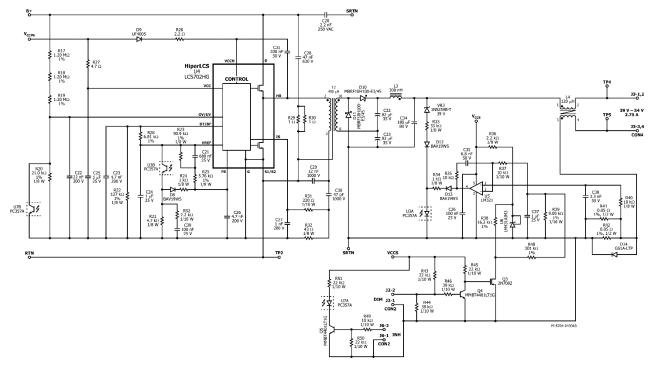



Figure 4 - Schematic - LLC Stage.

#### 4 **Circuit Description**

#### 4.1 Input Filter / Boost Converter / Bias Supply

The schematic in Figure 3 shows the input EMI filter, PFC stage, and primary bias supply/startup circuit. The power factor corrector utilizes the PFS7625H. The primary and secondary bias supplies are derived from windings on the PFC inductor (T1).

#### 4.2 **EMI Filtering / Inrush Limiting**

Capacitors C1 and C2 are used to control common mode noise, while C3-4 and L2 control differential mode EMI. Fuse F1 protects in case of a primary side fault/failure. Resistors R1-2 and U1 discharge C3-4 when AC power is removed. Inductor L1 controls common mode EMI. The heat sink for U2, U4, D7, and BR1 is connected to primary return to eliminate the heat sink as a source of radiated/capacitively coupled noise. Thermistor RT1 limits inrush current at startup. Capacitor C20 (Figure 4) filters common mode EMI. Inductor L4 (Figure 4) filters common-mode noise at the supply output and prevents an EMI peak at ~15 MHz. Varistors RV1 and RV2, with gas tube GDT1, protect against differential mode line surge.

#### 4.3 *Main PFC Stage*

Components R13-16 (filtered by C18) provide output voltage feedback to U2. PFC output voltage is set at 440 VDC (nom). Components R12 and C15-16 are for frequency compensation. Resistors R7-9 and R11 (filtered by C14) convey input voltage information to U2. Capacitor C13 bypasses the U2 voltage reference pin. This capacitor is sized at 1uF to select "FULL" operating mode for U2. The PGT pin of U2 is tied to the REF pin in order to disable the internal power good function, which is not used in this application.

Capacitor C12 provides local bypassing for the U2 Vcc supply. Diode D4 charges the PFC output capacitor (C19) when AC is first applied, routing the inrush current away from PFC inductor T1 and output diode D7. Capacitor C17 is used to reduce the area of the high frequency loop around components U2 and C19, reducing EMI and U2 peak drain voltage. The incoming AC is rectified by BR1 and filtered by C5. Capacitor C5 is a low-loss polypropylene type to accommodate the high instantaneous current through T1 during U2 on-time.

#### 4.4 Primary Bias Supply / Start-up

Components R3-6, Q1, and VR1 provide startup bias for U2. Once U2 starts, components D2, D3, C6-7 and C11 generate a primary-referred bias supply via a winding on PFC choke T1. This is used to power both the PFC and LLC stages of the power supply via D1. The bias supply is set up as a voltage doubler, so that the bias voltage tracks the regulated B+ output from the PFC. Auxiliary winding turns can be calculated from the equation:

$$Nb = Np \ X \left( \frac{Vbias + 2Vd}{VB +} \right)$$

 $N_b$  is the number of bias turns,  $N_p$  is the number of turns on the main winding of the PFC choke,  $V_{B+}$  is the PFC output voltage, and  $V_d$  is the voltage drop of the bias rectifiers.  $N_b$  should be rounded up to the nearest whole number in the case of a fractional solution.

Once the primary bias supply voltage is established, it is used to turn off MOSFET Q1 via diode VR1, reducing power consumption. Resistors R3-5 protect Q1 from excessive power dissipation if the power supply fails to start.

Components R10, VR2, and Q2 regulate the bias supply voltage for U2 and U4. Components D5-6 and C8-10 generate a bias supply for the secondary control circuitry via a triple insulated winding on T2 and a voltage doubler circuit.

#### 4.5 *LLC Converter*

The schematic in Figure 4 depicts a 39-54 V, 150 W LLC DC-DC converter with constant current output implemented using the LCS702HG.

#### 4.6 **Primary**

Integrated circuit U4 incorporates the control circuitry, drivers and output MOSFETs necessary for an LLC resonant half-bridge (HB) converter. The HB output of U4 drives output transformer T1 via a blocking/resonating capacitor (C29). This capacitor is a polypropylene film type rated for the operating ripple current and to withstand the high voltages present during fault conditions.

Transformer T2 was designed for a leakage inductance of 124  $\mu$ H. This, along with resonating capacitor C29, sets the primary series resonant frequency at ~120 kHz according to the equation:

$$f_R = \frac{1}{6.28 \sqrt{L_L \times C_R}}$$

P

Where  $f_R$  is the series resonant frequency in Hertz,  $L_L$  is the transformer leakage inductance in Henries, and  $C_R$  is the value of the resonating capacitor (C29) in Farads.

The transformer turns ratio was set by adjusting the primary turns such that the operating frequency at nominal output voltage (46V) and full load is close to, but slightly less than, the previously described resonant frequency. The operating frequency will move up or down to accommodate LED panels that have voltage drops different than the nominal case.

An operating frequency of 120 kHz for the 46 V nominal output voltage was found to be a good compromise between transformer size, output filter capacitance, and efficiency.

The number of secondary winding turns and wire size were chosen to provide a good compromise between core and copper losses. AWG #42 Litz wire was used for the primary and AWG #40 Litz wire for the secondary. This combination provides high efficiency at the operating frequency ( $\sim$ 120 kHz). The number of strands within each gauge of Litz wire was chosen in order to achieve a balance between winding fit and copper losses.

Ferroxcube 3C97 was selected as the T2 core material for its low loss.

Components D9, R26, and C31 comprise the bootstrap circuit to supply the internal high-side driver of U4.

Components R27 and C25 provide filtering and bypassing of the  $V_{CC}$  supply for U4. *Note:*  $V_{CC}$  voltage of >15 V may damage U4. Capacitor C24 provides filtering and bypass for the U4 Vref pin.

Voltage divider resistors R17-20 set the high-voltage turn-on, turn-off, and overvoltage thresholds of U4. The voltage divider values are chosen to set the LLC turn-on point at 416 VDC and the turn-off point at 330 VDC, with an input overvoltage turn-off point at 548 VDC. Built-in hysteresis sets the input undervoltage turn-off point at 330 VDC. Capacitor C22 filters the signal for the OV/UV pin.

Capacitor C28 is a high-frequency bypass capacitor for the +440 V input, connected with short traces between the D and S1/S2 pins of U4. Series resistors R29-30 damp EMI.

Capacitor C30 forms a current divider with C29, and is used to sample a portion of the T2 primary current. Resistor R32 senses this sampled current, and the resulting signal is filtered by R31 and C27. Capacitor C30 should be rated for the peak voltage present during fault conditions, and should use a stable, low-loss dielectric such as metalized film, SL ceramic, or NPO/COG ceramic. The capacitor used for C30 is a ceramic disc with NPO/COG temperature characteristic. The value chosen for R32 sets the one-cycle (fast)

current limit at 5.4 A, and the seven-cycle (slow) current limit at 3.0 A, according to the equation:

$$I_{CL} = \frac{0.5}{\left(\frac{C30}{C29 + C30}\right) \times R32}$$

 $I_{\text{CL}}$  is the seven-cycle current limit in amperes, R32 is the current limit resistor in ohms, and C29 and C30 are the values of the resonating and current sampling capacitors in nanofarads, respectively. For the one-cycle current limit, substitute 0.9 V for 0.5 V in the above equation.

Resistor R31 and capacitor C27 filter the primary current signal to the IS pin. Resistor R31 is set to 220  $\Omega$ , the minimum recommended value. The value of C27 is set to 1 nF to avoid nuisance tripping due to noise, but not so high as to substantially affect the current limit set values as calculated above. These components should be placed close to the IS pin for maximum effectiveness. The IS pin can tolerate negative currents, so the current sense does not require a complicated rectification scheme.

The Thevenin equivalent combination of R22 and R28 sets the dead time at 320 ns and maximum operating frequency for U4 at 847 kHz. The DT/BF input of U4 is filtered by C23. The combination of R22 and R28 also selects burst mode "1" for U4. This sets the lower and upper burst threshold frequencies at 382 kHz and 437 kHz, respectively.

The FEEDBACK pin has an approximate characteristic of 2.6 kHz per  $\mu A$  into the FEEDBACK pin. As the current into the FEEDBACK pin increases so does the operating frequency of U4, reducing the output voltage. The series combination of R23 and R25 sets the minimum operating frequency for U4 at ~94 kHz. This value was set to be slightly lower than the frequency required for regulation at full load and minimum bulk capacitor voltage. Resistor R23 is bypassed by C21 to provide output soft start during start-up by initially allowing a higher current to flow into the FEEDBACK pin when the feedback loop is open. This causes the switching frequency to start high and then decrease until the output voltage reaches regulation. Resistor R28 is typically set at the same value as the parallel combination of R23 and R25 so that the initial frequency at soft-start is equal to the maximum switching frequency as set by R23 and R25. If the value of R28 is less than this, it will cause a delay before switching occurs when the input voltage is applied.

Optocoupler U3 drives the U4 FEEDBACK pin through R24, which limits the maximum optocoupler current into the FEEDBACK pin. Capacitor C26 filters the FEEDBACK pin. Resistor R21 loads the optocoupler output to force it to run at a relatively high quiescent current, increasing its gain. Resistor R21 also improves large signal step response and burst mode output ripple. Diode D8 isolates R24 from the  $F_{MAX}/soft$  start network.

#### 4.7 **Output Rectification**

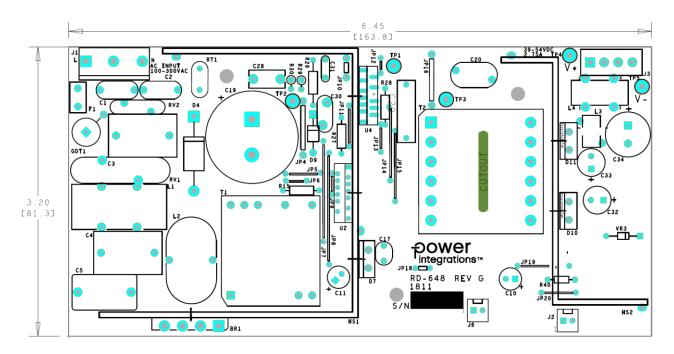
The output of transformer T2 is rectified and filtered by D10-11 and C32-33, arranged as a voltage doubler. For C32-33, aluminum polymer capacitors were used for small size, long life, and high ripple current rating. Output rectifiers D10-11 are 100 V Schottky rectifiers chosen for high efficiency.

The output rectifier and filter were arranged as a voltage doubler to enable use of a single secondary winding rather than a center tapped winding. This eliminates the need to twist secondary windings together to balance the currents between the phases. It also eliminates the manufacturing variability (especially variable stray capacitance) introduced by the twisted wires. The voltage doubler allows use of lower voltage devices for both D10-11 and C32-33. The downside of this approach is higher peak current in the transformer secondary, with a small reduction of efficiency.

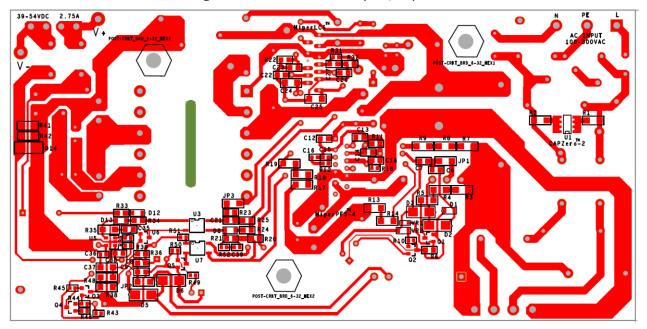
Additional output filtering is provided by L3 and C34. Capacitor C34 also damps the LLC output impedance peak at ~30 kHz caused by the LLC "virtual" output series R-L and output capacitors C32-33.

#### 4.8 **Output Current and Voltage Control**

Output current is sensed via resistors R41-42. These resistors are clamped by diode D14 to avoid damage to the current control circuitry during an output short circuit. Components R36 and U6 provide a voltage reference for current sense amplifier U5. The reference voltage is divided down by R38-39 and R48, and filtered by C37. Voltage from the current sense resistor is filtered by R40 and C38 and applied to the non-inverting input of U5. Opamp U5 drives optocoupler U3 via D13 and R34. Components R35, R37, R40, R52, C35, and C38 are used for frequency compensation of the current loop. Components VR3 and R33 provide output voltage regulation to protect the power supply in case the output load is removed. These components were selected using a relatively large value for R33 and a relatively low voltage for VR3 to provide a soft voltage limiting characteristic. This helps prevent oscillation at the knee of the V-I characteristic curve and improves the start-up characteristics of the supply into the specified LED load. Diode D12 prevents reverse current through VR3 when the output voltage is less than the VR3 zener voltage. Components J2, Q3-4, R43-46, and C37 are used to provide a remote dimming capability via a PWM input signal. The PWM signal is used to modify the reference voltage for the current sense amplifier to program an output current limit linearly dependent on the PWM signal duty cycle.


With no signal present at J2, Q4 is biased on by resistor network R43-44 and R46. This removes drive from MOSFET Q3 and allows maximum output current (100% output with no dimming signal). A dimming signal with 0% duty cycle (essentially grounding the dimming input) will turn off Q4, turning on Q3 and pulling down the reference voltage that programs the output current via current sense amplifier U5. Higher duty factors charge and discharge capacitor C37 via resistors R38-39 and R48, generating a variable

current limit reference voltage with a small ripple component. This scheme allows adjustment from near zero output current to 100%, or to default to 100% output with no dimming signal present. Voltage divider R43-44 biases Q4 on when there is no dimming signal connected, so that the default is 100% output. This divider also limits the voltage present at the dimming input to accommodate low voltage logic.


Components J6, R49-51, Q5, and U7 comprise a remote inhibit circuit for the LLC stage, which can be used to turn off the output while still allowing the PFC stage to run and provide bias voltage for supervisory functions. The circuit inhibits U4 by shorting the bottom resistor R20 in the LLC UV/OV voltage divider network.

tions 9201 er.com

## 5 **PCB Layout**



**Figure 5** – Printed Circuit Layout, Top Side.



**Figure 6** – Printed Circuit Layout, Bottom Side.

## 6 **Bill of Materials**

| Item | Qty    | Ref Des                                        | Description Mfg Part Number                                                            |                                             | Mfg                   |
|------|--------|------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|
| 1    | 1      | BR1                                            | 600 V, 8 A, Bridge Rectifier, GBU Case GBU8J-BP                                        |                                             | Micro                 |
|      |        |                                                |                                                                                        |                                             | Commercial            |
| 2    | 2      | C1 C2                                          | 680 pF, Ceramic, Y1                                                                    | 440LT68-R                                   | Vishay                |
| 3    | 2      | C3 C4                                          | 680 nF, ±20%,305 VAC, Polypropylene (PP)Film, X2                                       | B32922C3684M000                             | TDK                   |
| 4    | 1<br>4 | C5                                             | FILM, 0.68 μF, 5%, 630VDC, RAD                                                         | ECW-FA2J684J                                | Panasonic             |
| 5    | 4      | C6 C7 C8 C9                                    | 100 nF, 50 V, Ceramic, X7R, 0805                                                       | CC0805KRX7R9BB104                           | Yageo                 |
| 6    | 1      | C10                                            | 220 μF, 16 V, Electrolytic, Low ESR, 180 m $\Omega$ , (6.3 x 15)                       | ELXZ160ELL221MF15D                          | Nippon Chemi-<br>Con  |
| 7    | 1      | C11                                            | 100 μF, 35 V, Electrolytic, Low ESR, 180 mΩ, (6.3 x 15)                                | ELXZ350ELL101MF15D                          | Nippon Chemi-<br>Con  |
| 8    | 1      | C12                                            | 3.3 μF, 25 V, Ceramic, X7R, 0805                                                       | C2012X7R1E335K                              | TDK                   |
| 9    | 1      | C13                                            | 1 μF,50 V, Ceramic, X7R, 0805                                                          | C2012X7R1H105M085AC<br>CGA4J3X7R1H105M125AE | TDK<br>TDK            |
| 10   | 2      | C14 C18                                        | 470 pF, 50 V, Ceramic, X7R, 0805                                                       | CC0805KRX7R9BB471                           | Yageo                 |
| 11   | 1      | C15                                            | 100 nF 100 V, Ceramic, X7R, 0603                                                       | GRM188R72A104KA35D                          | Murata                |
| 12   | 1      | C16                                            | 1 μF, 16 V, Ceramic, X5R, 0603                                                         | GRM188R61C105KA93D                          | Murata                |
| 13   | 1      | C17                                            | 10 nF, 1 kV, Disc Ceramic, X7R                                                         | SV01AC103KAR                                | AVX                   |
| 14   | 1      | C19                                            | $100~\mu F,~\pm 20\%,~500~V,~Electrolytic~,~3000~Hrs~@~105~C,~Radial,~Can~-~Snap-In$   | LGN2H101MELA30                              | Nichicon              |
| 15   | 1      | C20                                            | 2.2 nF, Ceramic, Y1                                                                    | 440LD22-R                                   | Vishay                |
| 16   | 1      | C21                                            | 680 nF,25 V, Ceramic, X7R, 0805                                                        | GRM219R71E684KA88D                          | Murata                |
| 17   | 1      | C22                                            | 22 nF, 200 V, Ceramic, X7R, 0805                                                       | 08052C223KAT2A                              | AVX                   |
| 18   | 2      | C23 C26                                        | 4.7 nF, 200 V, Ceramic, X7R, 0805                                                      | 08052C472KAT2A                              | AVX                   |
| 19   | 3      | C24 C25 C37                                    | 1 μF, 25 V, Ceramic, X7R, 1206                                                         | C3216X7R1E105K                              | TDK                   |
| 20   | 1      | C27                                            | 1 nF, 200 V, Ceramic, X7R, 0805                                                        | 08052C102KAT2A                              | AVX                   |
| 21   | 1      | C28                                            | 47 nF, 630 V, Film                                                                     | MEXPD24704JJ                                | Duratech              |
| 22   | 1      | C29                                            | 12 nF,1000 VDC, Film                                                                   | BFC238330123                                | Vishay                |
| 23   | 1      | C30                                            | 47 pF, 1000 V, Disc Ceramic                                                            | 561R10TCCQ47                                | Vishay                |
| 24   | 1      | C31                                            | 330 nF, 50 V, Ceramic, X7R                                                             | FK24X7R1H334K                               | TDK                   |
| 25   | 2      | C32 C33                                        | 82 μF, 35 V, I Organic Polymer, Gen. Purpose, (8 x 12) 35SEPF82M+TSS                   |                                             | Panasonic             |
| 26   | 1      | C34                                            | 180 μF, 80 V, Electrolytic, 90 mΩ, (12.5 x 17.5)                                       | EKZN800ELL181MK16S                          | Nippon Chemi-<br>Con  |
| 27   | 1      | C35                                            | 6.8 nF, 50 V, Ceramic, X7R, 0805                                                       | CC0805KRX7R9BB682                           | Yageo                 |
| 28   | 2      | C36 C39                                        | 100 nF, 0.1μF, ±10%, 25V, Ceramic Capacitor, X7R, General Purpose, -55°C ~ 125°C, 0603 | CL10B104KA8NFNC                             | Samsung               |
| 29   | 1      | C38                                            | 3.3 nF, 50 V, Ceramic, X7R, 0805                                                       | CC0805KRX7R9BB332                           | Yageo                 |
| 30   | 4      | D1 D8 D12<br>D13                               | 100 V, 0.2 A, Fast Switching, 50 ns, SOD-323                                           | BAV19WS-7-F                                 | Diodes, Inc.          |
| 31   | 4      | D2 D3 D5 D6                                    | 150 V, 1 A, Ultrafast Recovery, 25 ns, DO-214AC                                        | ES1C-13-F                                   | Diodes, Inc.          |
| 32   | 1      | D4                                             | 800 V, 3 A, Recitifier, DO-201AD                                                       | 1N5407-E3/54                                | Vishay                |
| 33   | 1      | D7                                             | 600 V, 3 A, TO-220AC                                                                   | LXA03T600                                   | Power<br>Integrations |
| 34   | 1      | D9                                             | 600 V, 1 A, Ultrafast Recovery, 75 ns, DO-41                                           | UF4005-E3                                   | Vishay                |
| 35   | 2      | D10 D11                                        | 100 V, 10 A, Schottky, ITO-220FPAC                                                     | MBRF10H100-E3/45                            | Vishay                |
| 36   | 1      | D14                                            | 50 V, 1 A, DO-214AC                                                                    | GS1A-LTP                                    | Micro<br>Commercial   |
| 37   | 2      | ESIPCLIP M4<br>METAL1<br>ESIPCLIP M4<br>METAL2 | Heat Sink Hardware, Edge Clip, 20.76 mm L x 8 mm W x 0.015 mm Thk NP975864             |                                             | Aavid<br>Thermalloy   |
| 38   | 1      | F1                                             | 3.15 A, 300 V, Slow, Long Time Lag, RST                                                | 36913150000                                 | Littlefuse            |
| 39   | 1      | GDT1                                           | Gas Discharge Tube, 500 V, 10 kA, ±20%, 2 Pole, Through Hole  B88069X4860T502          |                                             | TDK                   |
| 40   | 1      | GREASE1                                        | Thermal Grease, Silicone, 5 oz Tube                                                    | CT40-5                                      | ITW<br>Chemtronics    |



| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41 | 1 | HEATSHRINK1 | HEAT SHRINK 3/8 IN X 4FT Clear                                 | F221B3/8 CL100          | Alpha Wire     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-------------|----------------------------------------------------------------|-------------------------|----------------|
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |             |                                                                |                         |                |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |             |                                                                | 1110 30                 |                |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |             |                                                                |                         |                |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |             | 1 1076481055                                                   |                         |                |
| 1   33   4   Position (1 x 4)   header, 0.156 pitch, Vertical   26-48-1045   Molex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 | 2 | J2 J6       |                                                                |                         | Molex          |
| 48         3         3 P1_1P2_IP3         RES, 0.1, 5%, 1/4 W, Thick Film, 1206         ERJ-SECYROROV         Panasonic           49         2         3 P4_P16         Wire Jumper, Insulated, #28 AWG, 0.6 in         C2052A-12-02         Alpha Wire           50         1         3P5         Wire Jumper, Insulated, #28 AWG, 0.4 in         2842/1 WH005         Alpha Wire           51         4         JP6_P9_JP12         Wire Jumper, Insulated, #28 AWG, 0.4 in         2842/1 WH005         Alpha Wire           52         1         JP7         Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 WH005         Alpha Wire           53         1         JP8         Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 WH005         Alpha Wire           54         1         JP10         Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 WH005         Alpha Wire           55         2         JP112 Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 WH005         Alpha Wire           56         1         JP12 Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 WH005         Alpha Wire           57         1         JP14 Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 WH005         Alpha Wire           58         1         JP12 Wire Jumper, Insulated, #28 AWG, 0.0 in         2842/1 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | _ |             |                                                                |                         |                |
| 49         2         JP4 JP16         Wire Jumper, Insulated, TEE, ±18 AWG, 0.6 in         C2052A-12-02         Alpha Wire           50         1         JP5         Wire Jumper, Insulated, ±28 AWG, 0.4 in         2842/1 WH005         Alpha Wire           51         4         JP6 JP9 JP13         Wire Jumper, Insulated, ±28 AWG, 1.0 in         2842/1 WH005         Alpha Wire           53         1         JP8         Wire Jumper, Insulated, #28 AWG, 1.2 in         2842/1 WH005         Alpha Wire           54         1         JP10         Wire Jumper, Insulated, #28 AWG, 0.3 in         22652A-12-02         Alpha Wire           55         1         JP81         Wire Jumper, Insulated, #28 AWG, 0.3 in         2842/1 WH005         Alpha Wire           55         1         JP12         Wire Jumper, Insulated, #28 AWG, 0.9 in         2842/1 WH005         Alpha Wire           56         1         JP15         Wire Jumper, Insulated, #28 AWG, 0.9 in         2842/1 WH005         Alpha Wire           57         1         JP14         Wire Jumper, Insulated, #28 AWG, 0.9 in         2842/1 WH005         Alpha Wire           59         1         JP15         Wire Jumper, Insulated, #28 AWG, 0.9 in         2842/1 WH005         Alpha Wire           60         1         L1 <t< td=""><td>48</td><td>3</td><td>JP1 JP2 JP3</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 | 3 | JP1 JP2 JP3 |                                                                |                         |                |
| 50   1   JPS   Wire Jumper, Insulated, #28 AWG, 0.4 in   2842/1 WH005   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 0.3 in   2842/1 WH005   Alpha Wire   P19   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 1.0 in   2842/1 WH005   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 1.0 in   2842/1 WH005   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 0.3 in   C2052A-12-02   Alpha Wire   C2052A-12-02   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 0.3 in   C2052A-12-02   Alpha Wire   S5   2 JP11 JP18   Wire Jumper, Insulated, #28 AWG, 0.3 in   C2052A-12-02   Alpha Wire   S5   2 JP11 JP18   Wire Jumper, Insulated, #28 AWG, 0.2 in   2842/1 WH005   Alpha Wire   S6   1   3P12   Wire Jumper, Insulated, #28 AWG, 0.3 in   2842/1 WH005   Alpha Wire   S7   1   P14   Wire Jumper, Insulated, #28 AWG, 0.3 in   2842/1 WH005   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 0.5 in   2842/1 WH005   Alpha Wire   P19   Wire Jumper, Insulated, #28 AWG, 0.5 in   2842/1 WH005   Alpha Wire   P19   P19   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   P19   P19   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   P19   P19   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   P19   P19   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   P19    | 49 | 2 |             |                                                                | C2052A-12-02            | Alpha          |
| Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50 |   |             |                                                                | 2842/1 WH005            | Alpha Wire     |
| S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 | 4 |             | Wire Jumper, Insulated, #28 AWG, 0.3 in                        | ·                       | Alpha Wire     |
| 53   1   3P8   Wire Jumper, Insulated, #28 AWG, 0.1 in   2842/1 WH005   Alpha Wire   S5   2   3P11 JP18   Wire Jumper, Insulated, #28 AWG, 0.5 in   2842/1 WH005   Alpha Wire   S6   1   3P12   Wire Jumper, Insulated, #28 AWG, 0.6 in   2842/1 WH005   Alpha Wire   S6   1   3P12   Wire Jumper, Insulated, #28 AWG, 0.9 in   2842/1 WH005   Alpha Wire   S6   1   3P14   Wire Jumper, Insulated, #28 AWG, 0.9 in   2842/1 WH005   Alpha Wire   S6   1   3P15   Wire Jumper, Insulated, #28 AWG, 0.9 in   2842/1 WH005   Alpha Wire   S6   1   3P15   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   S6   1   3P20   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   S6   1   12   330 μH, 3.3 A, Vertical Toroidal   2218-V-RC   Bourns   S6   1   12   330 μH, 3.3 A, Vertical Toroidal   2218-V-RC   Bourns   S6   1   14   15 Wire Jumper, Insulated, #28 AWG, 0.7 in   2218-V-RC   Bourns   S6   1   14   15 Wire Jumper, Insulated, #28 AWG, 0.7 in   2218-V-RC   Bourns   S6   1   14   15 Wire Jumper, Insulated, #28 AWG, 0.7 in   2218-V-RC   Bourns   S6   1   14   15 Wire Jumper, Insulated, #28 AWG, 0.7 in   2218-V-RC   Bourns   S6   1   14   15 Wire Jumper, Insulated, #28 AWG, 0.7 in   2218-V-RC   Bourns   S6   1   14   15 Wire Jumper, Insulated, #28 AWG, 0.7 in   2218-V-RC   Bourns   Power   Integrations   Power   Integratio | 52 | 1 | JP7         | Wire Jumper, Insulated, #28 AWG, 1.0 in                        | 2842/1 WH005            | Alpha Wire     |
| 55         2         JP11 JP18         Wire Jumper, Insulated, #28 AWG, 0.6 in         2842/1 WH005         Alpha Wire           56         1         JP12         Wire Jumper, Insulated, #28 AWG, 0.9 in         2842/1 WH005         Alpha Wire           57         1         JP14         Wire Jumper, Insulated, #28 AWG, 0.9 in         2842/1 WH005         Alpha Wire           58         1         JP15         Wire Jumper, Insulated, #28 AWG, 0.8 in         2842/1 WH005         Alpha Wire           60         1         L1         9 mly, 5 A, Common Mode Choke         T22148-9025 P.1. Custom         Fontaline           61         1         L2         330 JH, 3.3 A, Vertical Toroidal         2218-V-RC         Bourns           62         1         L3         300 JH, ±15%, Toroidal Choke, OUTPUT, custom, DER-648         32-00363-00         Power Integrations           63         1         L4         120 JH, ±15%, Toroidal Common Mode Choke, custom, OER-648         32-00362-00         Power Integrations           65         1         Q1         DSST, Circuit Board, Female, Hex, 6-32, snap, 0.50"L, Solade Alexance         561-0500A         Eagle Hardware           65         1         Q1         MOSFET, N-CH, 600 V, 0.021 A (Ta),1.3W (Ta), TO-BSS126H6322XTSA2         Infineon           66         3 <td>53</td> <td>1</td> <td>JP8</td> <td></td> <td>2842/1 WH005</td> <td>Alpha Wire</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53 | 1 | JP8         |                                                                | 2842/1 WH005            | Alpha Wire     |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54 | 1 | JP10        | Wire Jumper, Insulated, TFE, #18 AWG, 0.3 in                   | C2052A-12-02            | Alpha Wire     |
| 57   1   3P14   Wire Jumper, Insulated, #28 AWG, 0.9 in   2842/1 WH005   Alpha Wire   58   1   3P15   Wire Jumper, Insulated, #28 AWG, 0.8 in   2842/1 WH005   Alpha Wire   59   1   3P20   Wire Jumper, Insulated, #28 AWG, 0.7 in   2842/1 WH005   Alpha Wire   60   1   L1   9 mH, 5 A, Common Mode Choke   T22148-9025 P.I. Custom   Fontaine   61   1   L2   330 μH, 3.3 A, Vertical Toroidal   2218-V-RC   Bourns   64   1   L2   330 μH, 3.3 A, Vertical Toroidal   2218-V-RC   Bourns   648   32-00363-00   Integrations   648   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   Integrations   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00362-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, Custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, Custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, Custom, DER-   32-00363-00   Power   120 μH, ±15%, Toroidal Choke, OUTPUT, Custom, DER-   32-00363-00   Power   | 55 | 2 | JP11 JP18   | Wire Jumper, Insulated, #28 AWG, 0.6 in                        | 2842/1 WH005            | Alpha Wire     |
| 58         1         JP15         Wire Jumper, Insulated, #28 AWG, 0.8 in         2842/1 WH005         Alpha Wire           59         1         JP20         Wire Jumper, Insulated, #28 AWG, 0.7 in         2842/1 WH005         Alpha Wire           60         1         L1         9 mH, 5 A, Common Mode Choke         T22148-9025 P.I. Custom         Bourns           61         1         L2         330 µH, 3.3 A, Vertical Toroidal         2218-V-RC         Bourns           62         1         L3         300 nH, ±15%, Toroidal Choke, OUTPUT, custom, DER-648         32-00363-00         Power Integrations           63         1         L4         120 µH, ±15%, Toroidal Common Mode Choke, custom, DER-648         32-00362-00         Power Integrations           64         3         CRKT_BRD_6-32 LEX?         Post, Circuit Board, Female, Hex, 6-32, snap, 0.50°L, Nylon         561-0500A         Eagle Hardware           65         1         Q1         MOSFET, N-CH, 600 V, 0.021 A (Ta), 1.3W (Ta), TO-2         BSS126H6327XTSA2         Infineon           66         3         Q2 Q4 Q5         NPN, Small Signal BIT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G MMBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56 | 1 | JP12        | Wire Jumper, Insulated, #28 AWG, 0.2 in                        | 2842/1 WH005            | Alpha Wire     |
| 59         1         JP20         Wire Jumper, Insulated, #28 AWG, 0.7 in         2842/1 WH005         Alpha Wire           60         1         L1         9 mH, 5 A, Common Mode Choke         T22148-9025 PL, Custom         Fontaine           61         1         L2         330 µH, ±15%, Toroidal Croidal         2218-V-RC         Bourns           62         1         L3         300 nH, ±15%, Toroidal Choke, OUTPUT, custom, DER-648         32-00363-00         Power Integrations           63         1         L4         120 µH, ±15%, Toroidal Common Mode Choke, custom, DER-648         32-00362-00         Power Integrations           64         3         CRKT_BRD_6-32, HEX?         Bost, Circuit Board, Female, Hex, 6-32, snap, 0.50°L, Nylon         561-0500A         Eagle Hardware           65         1         Q1         205-57, SC-59, SOT-23-3         BSS126H6327XTSA2         Infineon           66         3         Q2 Q4 Q5         NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G         Diodes, Inc. On Semi           67         1         Q3         60V, 115MA, SOT23-3         2N7002-7-F         Diodes, Inc. On Semi           68         2         R1 R2         RES, 150 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY)135V         Panasonic           70         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57 | 1 | JP14        | Wire Jumper, Insulated, #28 AWG, 0.9 in                        | 2842/1 WH005            | Alpha Wire     |
| 60         1         L1         9 mH, 5 A, Common Mode Choke         T22148-9025 P.I. Custom         Fontaine           61         1         L2         330 nH, 3.4 S, Vertical Toroidal         2218-V-RC         Bourns           62         1         L3         330 nH, 3.4 S, Vertical Toroidal Choke, OUTPUT, custom, DER-648         32-00363-00         Power Integrations           63         1         L4         120 μH, ±15%, Toroidal Common Mode Choke, custom, DER-648         32-00362-00         Power Integrations           64         3         POST-CRKT_BRD_6-32_HEX?         Post, Circuit Board, Female, Hex, 6-32, snap, 0.50°L, Mylon         561-0500A         Eagle Hardware           65         1         Q1         MSFET, N-CH, 600 V, 0.021 A (Ta),1.3W (Ta), TO-236-3, SC-59, SOT-23-3         BSS126H6327XTSA2         Infineon           66         3         Q2 Q4 Q5         NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G MMBT440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58 | 1 | JP15        | Wire Jumper, Insulated, #28 AWG, 0.8 in                        | 2842/1 WH005            | Alpha Wire     |
| 61         1         L2         330 μł, 3.3 κ, Vertical Toroidal         2218-V-RC         Bourns           62         1         L3         300 nł, ±15%, Toroidal Choke, OUTPUT, custom, DER-648         32-00363-00         Integrations           63         1         L4         120 μł, ±15%, Toroidal Common Mode Choke, custom, DER-648         32-00362-00         Power Integrations           64         3         CRKT_BRD_6-632_HEX?         Post, Circuit Board, Female, Hex, 6-32, snap, 0.50°L, Nylon         561-0500A         Eagle Hardware           65         1         Q1         MOSFET, N-CH, 600 V, 0.021 A (Ta),1.3W (Ta), TO-23         BSS126H6327XTSA2         Infineon           66         3         Q2 Q4 Q5         NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G MMBT4401LT3G On Semi On Sem                                                                                                                                                                                                                                                                                                                                                                                                                             | 59 | 1 | JP20        | Wire Jumper, Insulated, #28 AWG, 0.7 in                        | 2842/1 WH005            | Alpha Wire     |
| 62         1         L3         300 nH, ±15%, Toroidal Choke, OUTPUT, custom, DER-648         32-00363-00         Power Integrations           63         1         L4         120 μH, ±15%, Toroidal Common Mode Choke, custom, DER-648         32-00362-00         Power Integrations           64         3         CRKT_BRD_6-32, HEX?         Post, Circuit Board, Female, Hex, 6-32, snap, 0.50"L, Non         561-0500A         Eagle Hardware           65         1         Q1         MOSFET, N-CH, 600 V, 0.021 A (Ta),1.3W (Ta), TO-236-3, SC-59, SOT-23-3         BSS126H6327XTSA2         Infineon           66         3         Q2 Q4 Q5         NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G         Diodes, Inc. On Semi           67         1         Q3         60V, 115MA, SOT23-3         2N7002-7-F         Diodes, Inc. On Semi           68         2         R1 R2         RES, 150 KΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY1154V         Panasonic           69         3         R3 R4 R5         RES, 7.5 KΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY1355V         Panasonic           70         1         R6         RES, 1.3 MΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEY1355V         Panasonic           71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY3625V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 | 1 | L1          | 9 mH, 5 A, Common Mode Choke                                   | T22148-902S P.I. Custom | Fontaine       |
| Construction   Con | 61 | 1 | L2          | 330 μH, 3.3 A, Vertical Toroidal                               | 2218-V-RC               | Bourns         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62 | 1 | 13          | 300 nH, ±15%,Toroidal Choke, OUTPUT, custom, DER-              | 32-00363-00             | Power          |
| DER-648   32-00362-00   Integrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02 | 1 | LJ          |                                                                | 32 00303 00             |                |
| 64         3         CRKT_BRD_6-32_HEX?         Post, Circuit Board, Female, HeX, 6-32, shap, 0.50°L, pylon         561-0500A         Eagle Hardware           65         1         Q1         MOSFET, N-CH, 600 V, 0.021 A (Ta),1.3W (Ta), TO-236-3, SC-59, SOT-23-3         BSS126H6327XTSA2         Infineon           66         3         Q2 Q4 Q5         NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G MBT4401LT1G On Semi         Diodes, Inc. On Semi           67         1         Q3         60V, 115MA, SOT23-3         2N7002-7-F Diodes, Inc. On Semi           68         2         R1 R2         RES, 150 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY)154V Panasonic           69         3         R3 R4 R5         RES, 7.5 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY)352V Panasonic           70         1         R6         RES, 1.3 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY)365V Panasonic           71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEY)365V Panasonic           72         2         R9 R13         RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8GEY)322V Panasonic           73         2         R10 R52         RES, 2.0, 5%, 1/10 W, Thick Film, 0805         ERJ-6ENF1433V Panasonic           74         1         R11         RES, 143 kΩ, 1%,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63 | 1 |             |                                                                | 32-00362-00             |                |
| 65         1         Q1         236-3, SC-59, SOT-23-3         BSS1261032/X1SA2         Illimetal           66         3         Q2 Q4 Q5         NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23         MMBT4401LT1G         Diodes, Inc. On Semi           67         1         Q3         60V, 115MA, SOT23-3         2N7002-7-F         Diodes, Inc. On Semi           68         2         R1 R2         RES, 150 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ154V         Panasonic           69         3         R3 R4 R5         RES, 7.5 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ752V         Panasonic           70         1         R6         RES, 1.3 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-6GEYJ135V         Panasonic           70         1         R6         RES, 1.3 MΩ, 5%, 1/4 W, Thick Film, 0805         ERJ-6GEYJ135V         Panasonic           71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ625V         Panasonic           72         2         R9 R13         RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206         CRCW12063M74FKEA         Vishay           73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0803         ERJ-3GEYJ222V         Panasonic           74         1         R11 <t< td=""><td>64</td><td>3</td><td>CRKT_BRD_6-</td><td></td><td>561-0500A</td><td>Eagle Hardware</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 | 3 | CRKT_BRD_6- |                                                                | 561-0500A               | Eagle Hardware |
| On Semi   Graph   G | 65 | 1 | Q1          |                                                                | BSS126H6327XTSA2        | Infineon       |
| 68         2         R1 R2         RES, 150 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ154V         Panasonic           69         3         R3 R4 R5         RES, 7.5 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ752V         Panasonic           70         1         R6         RES, 1.3 MΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ135V         Panasonic           71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ625V         Panasonic           72         2         R9 R13         RES, 3.74 MΩ, 1/4 W, Thick Film, 1206         CRCW12063M74FKEA         Vishay           73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 1206         ERJ-3GEYJ222V         Panasonic           74         1         R11         RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0603         ERJ-3GEYJ222V         Panasonic           75         1         R12         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66 | 3 | Q2 Q4 Q5    | NPN, Small Signal BJT, GP SS, 40 V, 0.6 A, SOT-23              |                         |                |
| 69         3         R3 R4 R5         RES, 7.5 kΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ752V         Panasonic           70         1         R6         RES, 1.3 MΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ135V         Panasonic           71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ625V         Panasonic           72         2         R9 R13         RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206         CRCW12063M74FKEA         Vishay           73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0603         ERJ-3GEYJ222V         Panasonic           74         1         R11         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0805         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0803         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 0805         ERJ-6ENF1204V         Panasonic           80         1         R21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67 | 1 | Q3          | 60V, 115MA, SOT23-3                                            | 2N7002-7-F              | Diodes, Inc.   |
| 70         1         R6         RES, 1.3 MΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ135V         Panasonic           71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ625V         Panasonic           72         2         R9 R13         RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206         CRCW12063M74FKEA         Vishay           73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0603         ERJ-3GEYJ222V         Panasonic           74         1         R11         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 0603         ERJ-3EKF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68 | 2 | R1 R2       | RES, 150 kΩ, 5%, 1/4 W, Thick Film, 1206                       | ERJ-8GEYJ154V           | Panasonic      |
| 71         3         R7 R8 R14         RES, 6.2 MΩ, 5%, 1/4 W, Thick Film, 1206         ERJ-8GEYJ625V         Panasonic           72         2         R9 R13         RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206         CRCW12063M74FKEA         Vishay           73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0603         ERJ-3GEYJ222V         Panasonic           74         1         R11         RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 0603         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           81         1         R22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69 | 3 | R3 R4 R5    | RES, 7.5 kΩ, 5%, 1/4 W, Thick Film, 1206                       | ERJ-8GEYJ752V           | Panasonic      |
| 72         2         R9 R13         RES, 3.74 MΩ, 1%, 1/4 W, Thick Film, 1206         CRCW12063M74FKEA         Vishay           73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0603         ERJ-3GEYJ222V         Panasonic           74         1         R11         RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 | 1 | R6          | RES, 1.3 MΩ, 5%, 1/8 W, Thick Film, 0805                       | ERJ-6GEYJ135V           | Panasonic      |
| 73         2         R10 R52         RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0603         ERJ-3GEYJ222V         Panasonic           74         1         R11         RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71 | 3 | R7 R8 R14   |                                                                | ERJ-8GEYJ625V           | Panasonic      |
| 74         1         R11         RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ472V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           84         1         R25         RES, 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |   |             |                                                                |                         |                |
| 74         1         R11         RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1433V         Panasonic           75         1         R12         RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF3012V         Panasonic           76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           84         1         R25         RES, 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73 | 2 | R10 R52     | RES, 2.2 kΩ, 5%, 1/10 W, Thick Film, 0603                      | ERJ-3GEYJ222V           | Panasonic      |
| 76         1         R15         RES, 6.2 MΩ, 5%, 1/4 W, Carbon Film         CFR-25JB-6M2         Yageo           77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ472V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           84         1         R25         RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           85         1         R26         RES, 2.2 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 Ω, 5%, 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74 | 1 | R11         | RES, 143 kΩ, 1%, 1/8 W, Thick Film, 0805                       | ERJ-6ENF1433V           |                |
| 77         1         R16         RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603         ERJ-3EKF1433V         Panasonic           78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ472V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           84         1         R25         RES, 5.76 kΩ, 1% W, Thick Film, 0805         ERJ-6GEYJ102V         Panasonic           85         1         R25         RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           85         1         R26         RES, 2.2 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 Ω, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75 | 1 | R12         | RES, 30.1 kΩ, 1%, 1/16 W, Thick Film, 0603                     | ERJ-3EKF3012V           | Panasonic      |
| 78         3         R17 R18 R19         RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206         ERJ-8ENF1204V         Panasonic           79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ472V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ102V         Panasonic           84         1         R25         RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           85         1         R26         RES, 2.2 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, 6.81 kΩ, 1%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo           88         2         R29 R30         RES, 1 Ω, 5%, 1/4 W, Carbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76 | 1 | R15         | RES, $6.2 \text{ M}\Omega$ , 5%, $1/4 \text{ W}$ , Carbon Film | CFR-25JB-6M2            | Yageo          |
| 79         1         R20         RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF2102V         Panasonic           80         1         R21         RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ472V         Panasonic           81         1         R22         RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ102V         Panasonic           84         1         R25         RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           85         1         R26         RES, 2.2 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, 6.81 kΩ, 1%, 1/4 W, Metal Film         MFR-25FBF-6K81         Yageo           88         2         R29 R30         RES, 1 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77 | 1 |             | RES, 143 kΩ, 1%, 1/16 W, Thick Film, 0603                      | ERJ-3EKF1433V           | Panasonic      |
| 80         1         R21         RES, $4.7 \text{ kΩ}$ , $5\%$ , $1/8 \text{ W}$ , Thick Film, $0805$ ERJ-6GEYJ472V         Panasonic           81         1         R22         RES, $127 \text{ kΩ}$ , $1\%$ , $1/8 \text{ W}$ , Thick Film, $0805$ ERJ-6ENF1273V         Panasonic           82         1         R23         RES, $90.9 \text{ kΩ}$ , $1\%$ , $1/8 \text{ W}$ , Thick Film, $0805$ ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, $1 \text{ kΩ}$ , $5\%$ , $1/8 \text{ W}$ , Thick Film, $0805$ ERJ-6GEYJ102V         Panasonic           84         1         R25         RES, $5.76 \text{ kΩ}$ , $1\%$ , $1/8 \text{ W}$ , Thick Film, $0805$ ERJ-6ENF5761V         Panasonic           85         1         R26         RES, $2.2 \text{ Ω}$ , $5\%$ , $1/4 \text{ W}$ , Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, $4.7 \text{ Ω}$ , $5\%$ , $1/4 \text{ W}$ , Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, $6.81 \text{ kΩ}$ , $1\%$ , $1/4 \text{ W}$ , Carbon Film         CFR-25JB-1R0         Yageo           88         2         R29 R30         RES, $1 \text{ Ω}$ , $5\%$ , $1/4 \text{ W}$ , Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78 | 3 | R17 R18 R19 | RES, 1.20 MΩ, 1%, 1/4 W, Thick Film, 1206                      | ERJ-8ENF1204V           | Panasonic      |
| 81         1         R22         RES, 127 k $\Omega$ , 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF1273V         Panasonic           82         1         R23         RES, 90.9 k $\Omega$ , 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF9092V         Panasonic           83         2         R24 R34         RES, 1 k $\Omega$ , 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ102V         Panasonic           84         1         R25         RES, 5.76 k $\Omega$ , 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           85         1         R26         RES, 2.2 $\Omega$ , 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 $\Omega$ , 5%, 1/4 W, Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, 6.81 k $\Omega$ , 1%, 1/4 W, Metal Film         MFR-25FBF-6K81         Yageo           88         2         R29 R30         RES, 1 $\Omega$ , 5%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79 | 1 | R20         | RES, 21 kΩ, 1%, 1/8 W, Thick Film, 0805                        | ERJ-6ENF2102V           | Panasonic      |
| 82       1       R23       RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805       ERJ-6ENF9092V       Panasonic         83       2       R24 R34       RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805       ERJ-6GEYJ102V       Panasonic         84       1       R25       RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805       ERJ-6ENF5761V       Panasonic         85       1       R26       RES, 2.2 Ω, 5%, 1/4 W, Carbon Film       CFR-25JB-2R2       Yageo         86       1       R27       RES, 4.7 Ω, 5%, 1/4 W, Carbon Film       CFR-25JB-4R7       Yageo         87       1       R28       RES, 6.81 kΩ, 1%, 1/4 W, Metal Film       MFR-25FBF-6K81       Yageo         88       2       R29 R30       RES, 1 Ω, 5%, 1/4 W, Carbon Film       CFR-25JB-1R0       Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 | 1 | R21         | RES, 4.7 kΩ, 5%, 1/8 W, Thick Film, 0805                       | ERJ-6GEYJ472V           | Panasonic      |
| 83         2         R24 R34         RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805         ERJ-6GEYJ102V         Panasonic           84         1         R25         RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805         ERJ-6ENF5761V         Panasonic           85         1         R26         RES, 2.2 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, 6.81 kΩ, 1%, 1/4 W, Metal Film         MFR-25FBF-6K81         Yageo           88         2         R29 R30         RES, 1 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81 | 1 | R22         | RES, 127 kΩ, 1%, 1/8 W, Thick Film, 0805                       | ERJ-6ENF1273V           | Panasonic      |
| 84       1       R25       RES, 5.76 k $\Omega$ , 1%, 1/8 W, Thick Film, 0805       ERJ-6ENF5761V       Panasonic         85       1       R26       RES, 2.2 $\Omega$ , 5%, 1/4 W, Carbon Film       CFR-25JB-2R2       Yageo         86       1       R27       RES, 4.7 $\Omega$ , 5%, 1/4 W, Carbon Film       CFR-25JB-4R7       Yageo         87       1       R28       RES, 6.81 k $\Omega$ , 1%, 1/4 W, Metal Film       MFR-25FBF-6K81       Yageo         88       2       R29 R30       RES, 1 $\Omega$ , 5%, 1/4 W, Carbon Film       CFR-25JB-1R0       Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82 | 1 | R23         | RES, 90.9 kΩ, 1%, 1/8 W, Thick Film, 0805                      | ERJ-6ENF9092V           | Panasonic      |
| 85         1         R26         RES, 2.2 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-2R2         Yageo           86         1         R27         RES, 4.7 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, 6.81 kΩ, 1%, 1/4 W, Metal Film         MFR-25FBF-6K81         Yageo           88         2         R29 R30         RES, 1 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83 | 2 | R24 R34     | RES, 1 kΩ, 5%, 1/8 W, Thick Film, 0805                         | ERJ-6GEYJ102V           | Panasonic      |
| 86         1         R27         RES, 4.7 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-4R7         Yageo           87         1         R28         RES, 6.81 kΩ, 1%, 1/4 W, Metal Film         MFR-25FBF-6K81         Yageo           88         2         R29 R30         RES, 1 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 | 1 | R25         | RES, 5.76 kΩ, 1%, 1/8 W, Thick Film, 0805                      | ERJ-6ENF5761V           | Panasonic      |
| 87         1         R28         RES, 6.81 kΩ, 1%, 1/4 W, Metal Film         MFR-25FBF-6K81         Yageo           88         2         R29 R30         RES, 1 Ω, 5%, 1/4 W, Carbon Film         CFR-25JB-1R0         Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85 | 1 | R26         |                                                                | CFR-25JB-2R2            | Yageo          |
| 88 2 R29 R30 RES, 1 Ω, 5%, 1/4 W, Carbon Film CFR-25JB-1R0 Yageo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86 | 1 | R27         | RES, 4.7 Ω, 5%, 1/4 W, Carbon Film                             | CFR-25JB-4R7            | Yageo          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87 | 1 | R28         | RES, 6.81 kΩ, 1%, 1/4 W, Metal Film                            | MFR-25FBF-6K81          | Yageo          |
| 89 1 R31 RES, 220 Ω, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ221V Panasonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88 | 2 | R29 R30     | RES, 1 Ω, 5%, 1/4 W, Carbon Film                               | CFR-25JB-1R0            | Yageo          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89 | 1 | R31         | RES, 220 Ω, 5%, 1/10 W, Thick Film, 0603                       | ERJ-3GEYJ221V           | Panasonic      |

| 90  | 1 | R32                                                            | RES, 43 Ω, 5%, 1/8 W, Thick Film, 0805                                         | ERJ-6GEYJ430V     | Panasonic             |
|-----|---|----------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------|-----------------------|
| 91  | 1 | R33                                                            | RES, 33 kΩ, 5%, 1/8 W, Thick Film, 0805                                        | ERJ-6GEYJ333V     | Panasonic             |
| 92  | 1 | R35                                                            | RES, $10 \text{ k}\Omega$ , 5%, $1/4 \text{ W}$ , Thick Film, $1206 \text{ m}$ | ERJ-8GEYJ103V     | Panasonic             |
| 93  | 1 | R36                                                            | RES, 2.2 kΩ, 5%, 1/8 W, Thick Film, 0805                                       | ERJ-6GEYJ222V     | Panasonic             |
| 94  | 2 | R37 R49                                                        | RES, $10 \text{ k}\Omega$ , 5%, $1/10 \text{ W}$ , Thick Film, 0603            | ERJ-3GEYJ103V     | Panasonic             |
| 95  | 1 | R38                                                            | RES, 16.2 kΩ, 1%, 1/4 W, Thick Film, 1206                                      | ERJ-8ENF1622V     | Panasonic             |
| 96  | 1 | R39                                                            | RES, $9.09 \text{ k}\Omega$ , 1%, $1/16 \text{ W}$ , Thick Film, $0603$        | ERJ-3EKF9091V     | Panasonic             |
| 97  | 1 | R40                                                            | RES, $10 \text{ k}\Omega$ , 5%, $1/8 \text{ W}$ , Carbon Film                  | CF18JT10K0        | Stackpole             |
| 98  | 2 | R41 R42                                                        | RES, SMD, 0.05 Ω, 1%, ½ W, 1206, ±100ppm/°C, -<br>55°C ~ 155 °C                | CSR1206FT50L0     | Stackpole             |
| 99  | 4 | R43 R45 R50<br>R51                                             | RES, 22 kΩ, 5%, 1/10 W, Thick Film, 0603                                       | ERJ-3GEYJ223V     | Panasonic             |
| 100 | 2 | R44 R46                                                        | RES, 39 kΩ, 5%, 1/10 W, Thick Film, 0603                                       | ERJ-3GEYJ393V     | Panasonic             |
| 101 | 1 | R48                                                            | RES, 301 kΩ, 1%, 1/4 W, Thick Film, 1206                                       | ERJ-8ENF3013V     | Panasonic             |
| 102 | 1 | RT1                                                            | NTC Thermistor, 2.5 $\Omega$ , 5 A                                             | SL10 2R505        | Ametherm              |
| 103 | 1 | RV1                                                            | 470 VAC, 10 kA, 350 J, 900 pF @ 1 kHz, -40 °C ~ 85 °C (TA), 20 mm, RADIAL      | ERZ-V20D471       | Panasonic             |
| 104 | 1 | RV2                                                            | 470 VAC, 125 J, 14 mm, RADIAL                                                  | V14E300P          | Littlefuse            |
| 105 | 6 | SCREW1<br>SCREW2<br>SCREW3<br>SCREW4<br>SCREW5<br>SCREW6       | SCREW MACHINE PHIL 4-40 X 1/4 SS                                               | PMSSS 440 0025 PH | Building<br>Fasteners |
| 106 | 1 | T1                                                             | 489 μH, +5%, PFC Choke, Custom for DER-648,                                    | 30-00475-00       | Power<br>Integrations |
| 107 | 1 | T2                                                             | 490 $\mu$ H, ±10%, LLC XFMR, Custom for DER-648                                | 30-00476-00       | Power<br>Integrations |
| 108 | 4 | TP1 TP2 TP3<br>TP5                                             | Test Point, BLK, THRU-HOLE MOUNT                                               | 5011              | Keystone              |
| 109 | 1 | TP4                                                            | Test Point, RED, THRU-HOLE MOUNT                                               | 5010              | Keystone              |
| 110 | 1 | U1                                                             | CAPZero-2, SO-8C                                                               | CAP200DG          | Power<br>Integrations |
| 111 | 1 | U2                                                             | HiperPFS-4                                                                     | PFS7625H          | Power<br>Integrations |
| 112 | 2 | U3 U7                                                          | Optoisolator, Transistor Output, 3750Vrms, 1 Channel,<br>4-Mini-Flat           | PC357N1J000F      | Sharp                 |
| 113 | 1 | U4                                                             | HiperLCS, ESIP16/13                                                            | LCS702HG          | Power<br>Integrations |
| 114 | 1 | U5                                                             | OP AMP SINGLE LOW PWR SOT23-5                                                  | LM321MF           | National Semi         |
| 115 | 1 | U6                                                             | IC, REG ZENER SHUNT ADJ SOT-23                                                 | LM431AIM3/NOPB    | National Semi         |
| 116 | 1 | VR1                                                            | 9.1 V, 5%, 150 mW, SSMINI-2                                                    | DZ2S091M0L        | Panasonic             |
| 117 | 1 | VR2                                                            | 13 V, 2%, 300 mW, SOD-323                                                      | BZX384-B13,115    | NXP                   |
| 118 | 1 | VR3                                                            | 39 V, 5%, 500 mW, DO-35                                                        | 1N5259B-T         | Diodes, Inc.          |
| 119 | 6 | WASHER1<br>WASHER2<br>WASHER3<br>WASHER4<br>WASHER5<br>WASHER6 | WASHER FLAT #4 Zinc, OD 0.219, ID 0.125, Thk 0.032, Yellow Chromate Finish     | 5205820-2         | Tyco                  |
| 120 | 1 | WASHER7                                                        | Washer, Shoulder, #4, 0.125 Shoulder x 0.150 Dia,<br>Polyphenylene Sulfide PPS | 7721-1PPSG        | Aavid<br>Thermalloy   |



PI-8718-050118

#### 7 LED Panel Characterization

A 150 W LED array was used to test the power supply. The LED array consisted of 42 pieces (3 wide, 14 deep), of LED Engin, Inc. LZ1-10CW02-0065 cool white 1 A LEDs. The array hookup is shown in Figure 6. The V-I characteristic of the LED panel is shown in Figure 7, generated using a constant-current bench supply at room temperature. The V-I characteristic shows a population of LEDs near the median value for voltage drop of 3.3 V, resulting in a 46 V drop at 2.75 A operating current.

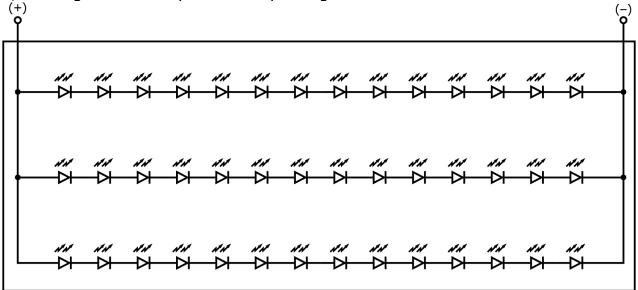
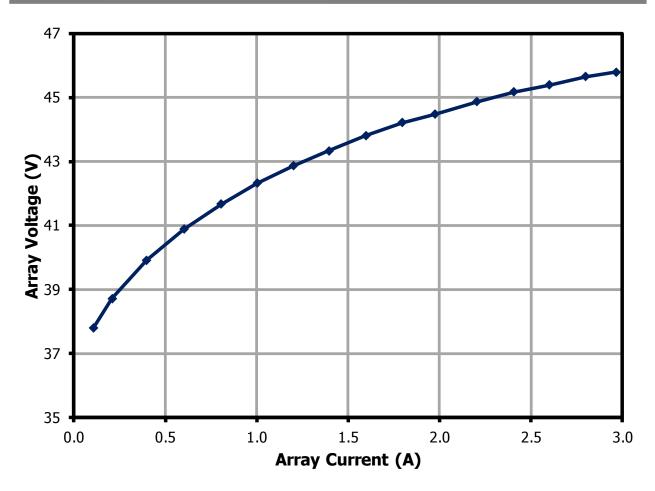




Figure 7— Experimental LED Panel (3 x 14 Array) Schematic.



**Figure 8 –** Streetlight LED Array V-I Characteristic.

The voltage drop limits for high power LEDs can be loosely specified. The specification for the LEDs used in this design example states a voltage drop window of 2.8 V to 3.8 V at rated current and room temperature, not including the effects of temperature drift at  $\sim$ 2 mV / °C. So, at room temperature, a 14-LED string could present a voltage drop anywhere between 39 V to 54 V. This means that both the supply output voltage (39 V to 54 V) and output power (107.25 W to 148.5 W) vary depending on the characteristics of the individual LED panel.

The power supply driving this LED array must be able to provide at least 54 V to light a panel with worst-case maximum voltage, yet also maintain output current control down to 39 V and below for a panel on the low end of the voltage distribution. The power supply also needs to be able to deliver the power to drive a worst-case high-voltage panel without overheating. The median LED voltage drop is 3.3 V, so most panels will operate near the median voltage of 3.3 V X 14, or 46 V. The power supply, though designed to deliver near 150 W to a worst case panel, will in this case be operating at only around 46 V X 2.75 A, or 126.5 W.

#### **8 Constant Voltage Load**

Since this power supply has a constant current output tailored for a relatively fixed constant voltage load, the usual constant current electronic load cannot be used for testing. For bench testing at maximum power, a constant resistance load can be used, set such that the supply output is at maximum output voltage (just before current limit). Other testing, including dimming and gain-phase, will require the actual LED load or a constant voltage load that closely mimics its characteristics.

An actual streetlight luminaire as a load can be unwieldy, and its light output can be distracting. To facilitate EMI and surge testing, a constant voltage load was constructed to emulate the behavior of the LED array in a much smaller package. The circuit is shown in Figure 9. The load consists of paralleled power Darlington transistors O1-5, each with an emitter resistor (R1-5) to facilitate current sharing. Base resistors R6-10 help prevent oscillation. A string of thirteen 3 mm blue LEDs (D1-13) and one yellow-green LED (D14) are used as a voltage reference to mimic the characteristics of the LED panel. Resistor R11 is adjusted adjust the guiescent current though D1-14 to help match the characteristics of the LED panel. Resistors R12-16 add extra impedance in series with the load to approximate the characteristics of the LED panel. The completed array with heat sink is shown in Figure 9. A small 48 V fan is used to cool the heat sink when the load is operated for extended periods at full power. A cowl made of sheet plastic is used to direct the air flow from the fan. The V-I characteristics of the CV load are shown superimposed on those of the LED array in Figure 10. As can be seen from the graph, the emulator is most accurate at high power. An electronic load with appropriate rating and a constant voltage option (with some series resistance) can also be used for testing, but the load shown here has the advantage that no external AC power is needed.

#### CV Load Schematic 8.1

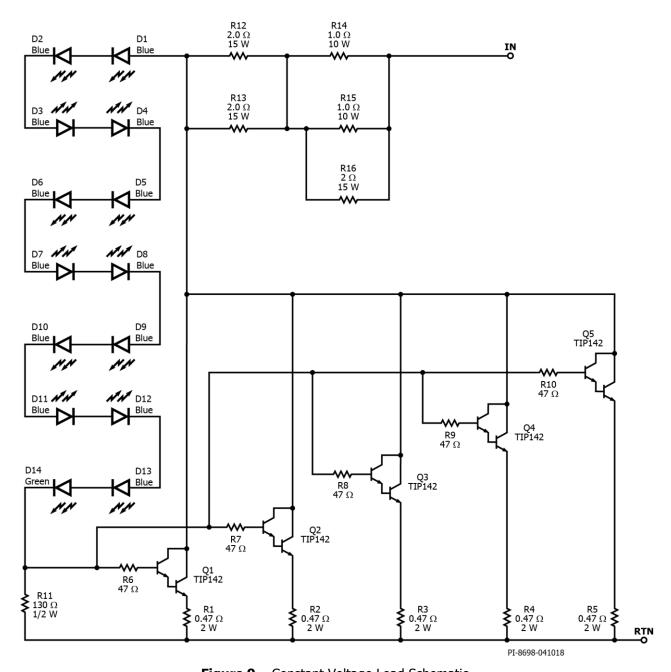
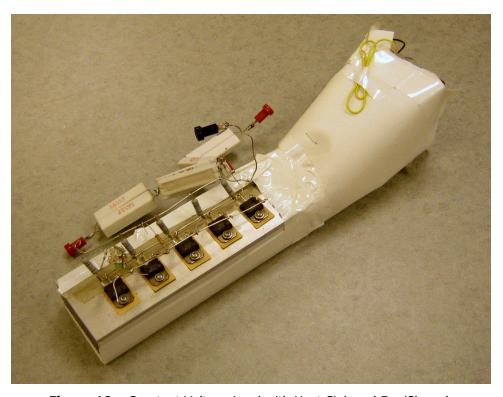




Figure 9 – Constant Voltage Load Schematic.

#### 8.2 CV Load BOM

| Item | Qty | Ref Des                                       | Description                                   | Mfg Part Number | Mfg        |
|------|-----|-----------------------------------------------|-----------------------------------------------|-----------------|------------|
| 1    | 13  | D1 D2 D3 D4 D5 D6 D7<br>D8 D9 D10 D11 D12 D13 | LED, Blue Ultra Bright, 5 mm, 430 nm, 250 mcd | SL905BCE        | Sloan      |
| 2    | 1   | D14                                           | LED, Green, 3 mm, 565 nm, 40 mcd              | SSL-LX3044GD    | Lumex Opto |
| 3    | 5   | Q1 Q2 Q3 Q4 Q5                                | NPN Darlington, Power, 100 V, 10 A, TO-247    | TIP142G         | On Semi    |
| 4    | 5   | R1 R2 R3 R4 R5                                | RES, 0.47 Ω, 5%, 2 W, Metal Oxide             | RSF200JB-0R47   | Yageo      |
| 5    | 5   | R6 R7 R8 R9 R10                               | RES, 47 Ω, 5%, 1/4 W, Carbon Film             | CFR-25JB-47R    | Yageo      |
| 6    | 1   | R11                                           | RES, 130 Ω, 5%, 1/2 W, Carbon Film            | CFR-50JB-130R   | Yageo      |
| 7    | 3   | R12 R13 R16                                   | RES, 2 Ω, 5%, 15 W, Wire Wound                | 280-CR15-2.0-RC | Xicon      |
| 8    | 2   | R14 R15                                       | RES, 1.0 Ω, 5%, 10 W, Wire Wound              | 280-CR10-1.0-RC | Xicon      |



**Figure 10** – Constant Voltage Load with Heat Sink and Fan/Shroud.

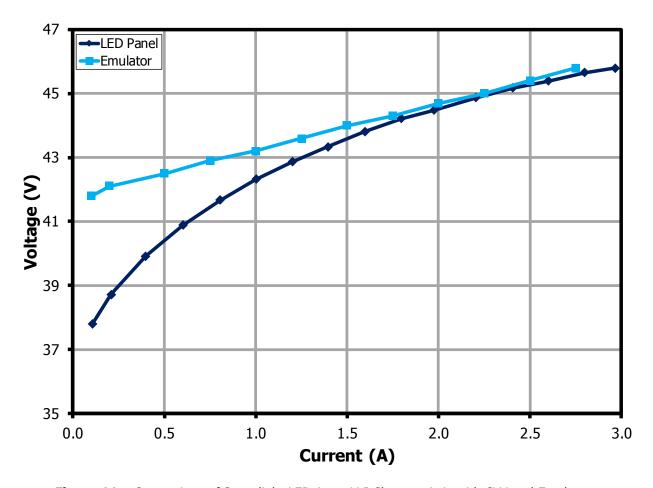



Figure 11 - Comparison of Streetlight LED Array V-I Characteristic with CV Load Emulator.

## 9 **Magnetics**

#### 9.1 **PFC Choke (L2) Specification**

#### 9.1.1 Electrical Diagram

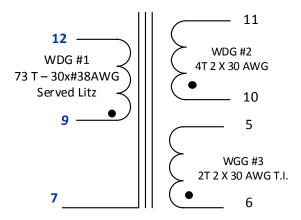
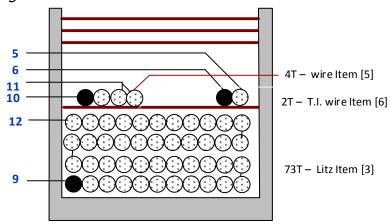



Figure 12 - PFC Choke Electrical Diagram.


## 9.1.2 Electrical Specifications

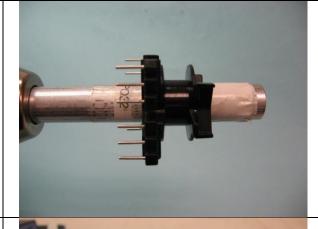
| Inductance | Pins 9-12 measured a | 489 μH +5% |              |
|------------|----------------------|------------|--------------|
| Resonant   | Pins 9-12.           | N/A        | kHz (Min.)   |
| Frequency  | PIIIS 9-12.          | N/A        | KITZ (MIII.) |

#### 9.1.3 *Material List*

| Item | Description                                                   |
|------|---------------------------------------------------------------|
| [1]  | Core: TDK Core: PC44PQ26/25.                                  |
| [2]  | Bobbin: PQ26/25-V-12 Pins (6/6).                              |
| [3]  | Litz Wire: 30 #38 AWG Single Coated Solderable, Served.       |
| [4]  | Tape, Polyester Film: 3M 1350-F1 or equivalent, 13.5 mm Wide. |
| [5]  | Tape. Polyester Web, 3M 44 or equivalent, 6 mm Wide.          |
| [6]  | Magnet Wire, #30 AWG, Solderable Double Coated.               |
| [7]  | Triple Insulated Wire, #30 AWG, Furukawa TEX-E or Equivalent. |
| [8]  | Tape, Copper. 3M 1181 or Equivalent. 6 mm Wide.               |
| [9]  | Varnish: Dolph BC-359, or Equivalent.                         |

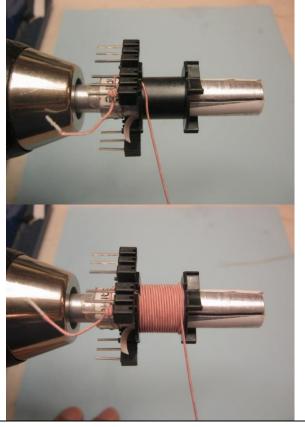
#### Build Diagram 9.1.4




**Figure 13** – PFC Inductor Build Diagram.

#### Winding Instructions 9.1.5

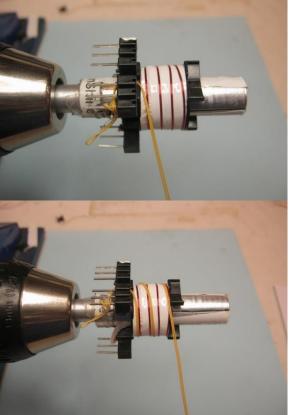
| Winding                                                                                                                                                                                                                    | Place the bobbin on the mandrel with the pin side is on the left side.                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Preparation                                                                                                                                                                                                                | Winding direction is clockwise direction.                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Winding #1                                                                                                                                                                                                                 | Starting at pin 9, wind 73 turns of Litz wire Item [3], finish at pin 12.                                                                                                                                                                                                                                                                                                                        |  |  |
| Insulation                                                                                                                                                                                                                 | Apply one layer of tape Item [4]. Add 15mm length of tape Item [5] over finish lead as shown in pictures for crossover insulation.                                                                                                                                                                                                                                                               |  |  |
| Winding #2 Starting at pin 10, wind 4 bifilar turns of wire, Item [6]. Spread turns evenly across bobbin window. Finish at pin 11. Route start and finish leads away from one another.                                     |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Winding #3  Starting at pin 6, wind 3 bifilar turns of wire, Item [7], directly on top of previous winding. Spread turns evenly across bobbin window. Finish at pin 5. Route start and finish leads away from one another. |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Insulation                                                                                                                                                                                                                 | Apply 3 layers of tape Item [4].                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Final Assembly                                                                                                                                                                                                             | Grind cores to specified inductance. Secure core halves with tape [4]. Apply copper flux band around outside of completed choke as shown using copper tape [8]. Center the copper in the winding window, overlap ends and solder (see figure). Attach 2" wire [6] to copper foil near pin 7, terminate at pin 7. Wrap with 2 layers of tape [4]. Remove pins 1, 2, 3, 4, and 8. Dip varnish [9]. |  |  |


#### 9.1.6 Winding Illustrations

#### **Winding Preparation**



Place the bobbin on the mandrel with the pin side is on the left side. Winding direction is clockwise direction

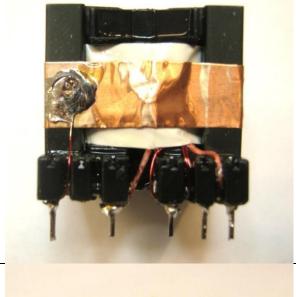

#### Winding 1



Starting at pin 9, wind 73 turns with 30 #38 served Litz wire, Item [3].

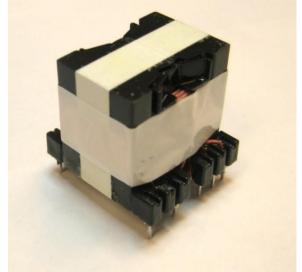
| Insulation | Apply 1 layer of insulating tape, Item [4].  Terminate wire at pin 12                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Add 15 mm length of tape Item [5] over finish lead as shown in pictures for crossover insulation.                                                                           |
| Winding 2  | Starting at pin 10, wind 4 bifilar turns of wire, Item [6]. Spread turns evenly across bobbin window. Finish at pin 11. Route start and finish leads away from one another. |





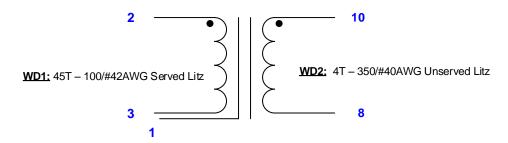

Starting at pin 6, wind 2 bifilar turns with #30 AWG triple insulated wire, Item [6]. Route start and finish leads away from one another.

Winding 3


| Insulation          |      | Apply 3 layers of insulating tape, Item [4]. Terminate wire at pin 5 |
|---------------------|------|----------------------------------------------------------------------|
| Solder Terminations | 3220 | Solder all wire terminations at pins 12, 9, 10, 11, 6, and 5.        |
| Core Grinding       |      | Grind core halves for specified inductance.                          |

#### **Final Assembly**




Secure core halves with tape. Apply copper flux band around outside of completed choke as shown using copper tape [7]. Center the copper in the winding window, overlap ends and solder (see figure). Attach 2" wire [5] to copper foil near pin 7, terminate at pin 7. Wrap with 2 layers of tape [4]. Remove pins 1, 2, 3, 4, and 8. Dip varnish [9].

#### **Finished Part**



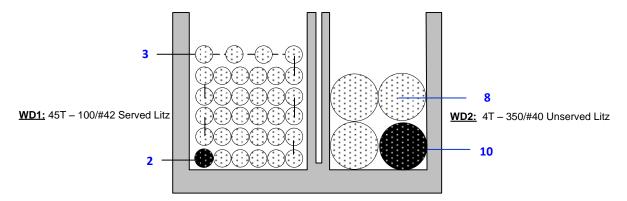
## 9.2 *LLC Transformer (T2) Specification*

## 9.2.1 Electrical Diagram



**Figure 14 –** LLC Transformer Schematic.

## 9.2.2 Electrical Specifications


| Electrical Strength           | 1 second, 60 Hz, from pins 1-3 to 5-8.                                         | 3000 VAC        |
|-------------------------------|--------------------------------------------------------------------------------|-----------------|
| Primary Inductance            | Pins 2-3, all other windings open, measured at 100 kHz, 0.4 $V_{\text{RMS}}$ . | 490 μH ±10%     |
| Resonant Frequency            | Pins 2-3, all other windings open.                                             | 1500 kHz (Min.) |
| Primary Leakage<br>Inductance | Pins 2-3, with 8-10 shorted, measured at 100 kHz, 0.4 $V_{\text{RMS}}$ .       | 124 μH ±5%      |

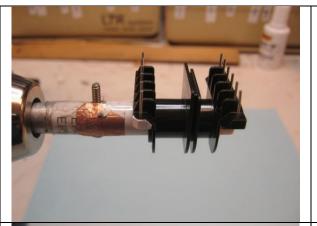
#### 9.2.3 *Material List*

| Item | Description                                                                                            |
|------|--------------------------------------------------------------------------------------------------------|
| [1]  | Core Pair: ETD34 /17/11 Ferroxcube 3C97 material or equivalent. Grind for $A_L = 242 \text{ nH/t}^2$ . |
| [2]  | Bobbin: ETD-34-H-12Pins (6/6), PI#: 25-01048-00.                                                       |
| [3]  | Bobbin Cover: ETD34.                                                                                   |
| [4]  | Tape: Polyester Film, 3M 1350F-1 or equivalent, 24 mm Wide.                                            |
| [5]  | Litz Wire: 350/#40 AWG Single Coated, Unserved .                                                       |
| [6]  | Litz Wire: 100/#42 Single Coated, Served.                                                              |
| [7]  | Copper Tape, 3M-1181; or equivalent, 10 mm Wide.                                                       |
| [8]  | Tinned Bus Wire, #24 AWG, Alpha 299 or Equivalent.                                                     |
| [9]  | Varnish Dolph BC-359 or Equivalent.                                                                    |

P

## 9.2.4 Build Diagram

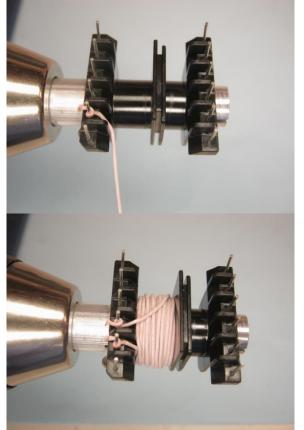



**Figure 15** – LLC Transformer Build Diagram.

## 9.2.5 *Winding Instructions*

| WD1 (Primary)   | Place the bobbin Item [2] on the mandrel with pins 1-6 on the left side.  Note: left-hand bobbin section will be used for primary, right-hand for secondary.  Starting on pin 2, wind 45 turns of served Litz wire Item [6] in left side bobbin section and finish on pin 3.                                                                                                                                                                                                                                       |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WD2 (Secondary) | Using unserved Litz Item [5], start on pin 10, tightly wind 4 turns in right-hand bobbin section and finish on pin 8.                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Bobbin Cover    | Slide bobbin cover [3] into grooves in bobbin flanges as shown. Make sure cover is securely seated.                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Finish          | Grind core halves [1] for specified inductance. Assemble and secure core halves using circumferential turn of copper tape [7]. Overlap copper tape ends and solder. Solder 3/4" termination lead of bus wire Item [8] to copper core band close to pin 1 as shown, and terminate wire at pin 1. Wrap transformer with three turns of tape Item [4]. Fold over the tape wrap as shown to shroud finished transformer, keeping the primary and secondary windings open to air. Remove pins 5 and 6. Dip varnish [9]. |  |

#### 9.2.6 *Winding Illustrations*


#### **Winding Preparation**



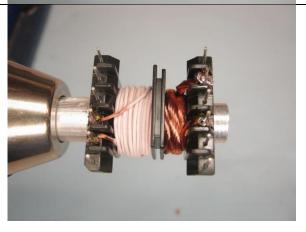
Place the bobbin Item [2] on the mandrel with pins 1-6 on the left side.

Note: left-hand bobbin section will be used for primary, right-hand for secondary.

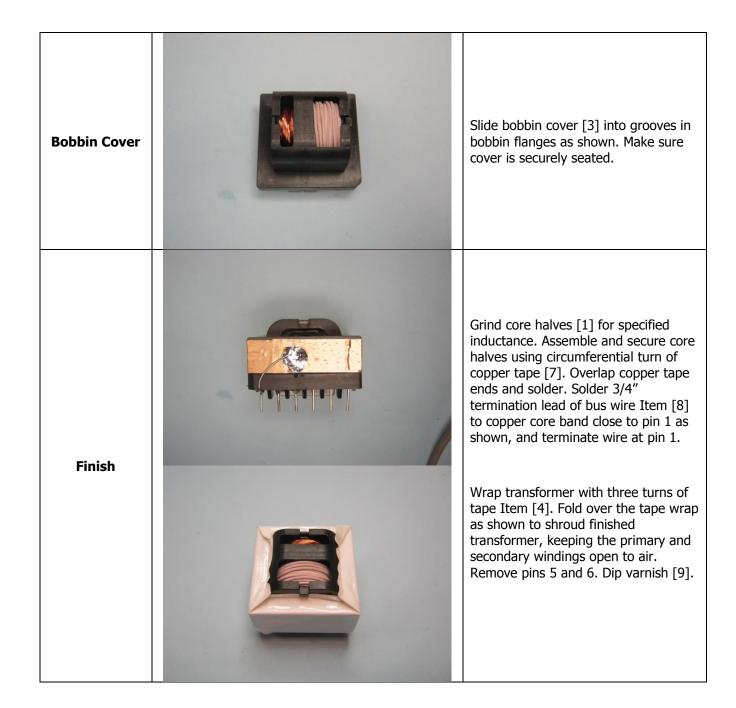
# Winding 1 (Primary)



Starting on pin 2, wind 45 turns of served Litz wire Item [6] in left side bobbin section and finish on pin 3.

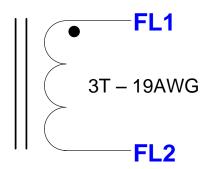

Ð

Using unserved Litz Item [5], start on pin 10, tightly wind 4 turns in right-hand bobbin section and finish on pin 8.


#### **Solder Termination**

Winding 2

(Secondary)




Solder all wire termination at pins 2, 3, 8 and 10.



# 9.3 Output Inductor (L3) Specification

# 9.3.1 Electrical Diagram



**Figure 16** – Inductor Electrical Diagram.

## 9.3.2 *Electrical Specifications*

| Inductance | Pins FL1-FL2, all other windings open, measured at 100 kHz, 0.4 $V_{\text{RMS}}$ . | 300 nH, ±15% |
|------------|------------------------------------------------------------------------------------|--------------|
|------------|------------------------------------------------------------------------------------|--------------|

### 9.3.3 Material List

| Item | Description                                      |
|------|--------------------------------------------------|
| [1]  | Powdered Iron Toroidal Core: Micrometals T30-26. |
| [2]  | Magnet wire: #19 AWG Solderable Double Coated.   |

### 9.3.4 Construction Details



**Figure 17** – Finished Part, Front View. Tin Leads to within  $\sim 1/8"$  of Toroid Body.

# 9.4 Output High Frequency Common Mode Choke

# 9.4.1 Electrical Diagram

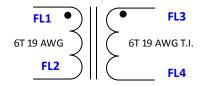



Figure 18 – Inductor Electrical Diagram.

# 9.4.2 *Electrical Specifications*

| <b>Inductance</b> FL1-2 or FL3-4, mea | sured at 100 kHz, 0.4 V <sub>RMS</sub> | 120 μH, ±15% |
|---------------------------------------|----------------------------------------|--------------|
|---------------------------------------|----------------------------------------|--------------|

# 9.4.3 Material List

| Item | Description                                                   |
|------|---------------------------------------------------------------|
| [1]  | Coated Ferrite Toroid: Fair-Rite 5975001121 or Equivalent.    |
| [2]  | Magnet Wire: #19 AWG Solderable Double Coated.                |
| [3]  | Triple Insulated Wire: #19 AWG, Furukawa TEX-E or Equivalent. |



**Figure 19** – Finished Inductor.

P

# 10 PFC Design Spreadsheet

In this design, the spreadsheet generated warnings concerning the high value of KP selected, and for the operating current density of the Litz wire size selected for this design.

A high KP value can impact power factor and distortion, so a design generating this warning should be checked for any adverse impact. This design met the requirements for power factor and harmonic distortion, and the high KP value allowed selection of a PQ26/25 ferrite core for the PFC inductor, with consequent inductor size reduction.

A warning for current density indicates that the design should be checked in its initial stages for excessive temperature rise in the PFC inductor. The guidelines incorporated the spreadsheet are conservative, so that a warning does not necessarily mean that a given design will fail thermally. **The measured temperature rise for this design was satisfactory.** 

| Hiper_PFS-<br>4_Boost_081616; Rev.0.5;<br>Copyright Power<br>Integrations 2016 | INPUT     | INFO | OUTPUT    | UNITS | Continuous Mode Boost Converter<br>Design Spreadsheet                                                                                                                                                                    |  |  |  |  |
|--------------------------------------------------------------------------------|-----------|------|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Enter Application Variables                                                    |           |      |           |       |                                                                                                                                                                                                                          |  |  |  |  |
| Input Voltage Range                                                            | Universal |      | Universal |       | Input voltage range                                                                                                                                                                                                      |  |  |  |  |
| VACMIN                                                                         | 100       |      | 100       | VAC   | Minimum AC input voltage. Spreadsheet simulation is performed at this voltage. To examine operation at other votlages, enter here, but enter fixed value for LPFC_ACTUAL.                                                |  |  |  |  |
| VACMAX                                                                         | 300       |      | 300       | VAC   | Maximum AC input voltage                                                                                                                                                                                                 |  |  |  |  |
| VBROWNIN                                                                       |           | Info | 91        | VAC   | Brown-IN voltage has been modified since the V-pin ratio is no longer 100:1                                                                                                                                              |  |  |  |  |
| VBROWNOUT                                                                      |           | Info | 78        | VAC   | Brown-OUT voltage has been modified since the V-pin ratio is no longer 100:1                                                                                                                                             |  |  |  |  |
| VO                                                                             | 440       | Info | 440       | VDC   | Brown IN/OUT voltage has changed due to modifications in the V-pin ratio from 100:1. Recommend Vpin ratio= FB pin ratio for optimized operation. Check the PF, input current distortion, brown in/out and power delivery |  |  |  |  |
| PO                                                                             | 160       |      | 160       | W     | Nominal Output power                                                                                                                                                                                                     |  |  |  |  |
| fL                                                                             |           |      | 50        | Hz    | Line frequency                                                                                                                                                                                                           |  |  |  |  |
| TA Max                                                                         |           |      | 40        | °C    | Maximum ambient temperature                                                                                                                                                                                              |  |  |  |  |
| n                                                                              | 0.95      |      | 0.95      |       | Efficiency should be between 0.85 and 0.99. Also, refer to the Loss Budget section and ensure that the estimated efficiency is close to the simulated efficiency                                                         |  |  |  |  |
| VO_MIN                                                                         |           |      | 418       | VDC   | Minimum Output voltage                                                                                                                                                                                                   |  |  |  |  |
| VO_RIPPLE_MAX                                                                  |           |      | 20        | VDC   | Maximum Output voltage ripple                                                                                                                                                                                            |  |  |  |  |
| tHOLDUP                                                                        | 15        |      | 15        | ms    | Holdup time                                                                                                                                                                                                              |  |  |  |  |
| VHOLDUP_MIN                                                                    |           |      | 310       | VDC   | Minimum Voltage Output can drop to during holdup                                                                                                                                                                         |  |  |  |  |
| I_INRUSH                                                                       |           |      | 40        | Α     | Maximum allowable inrush current                                                                                                                                                                                         |  |  |  |  |
| Forced Air Cooling                                                             | No        |      | No        |       | Enter "Yes" for Forced air cooling. Otherwise enter "No". Forced air reduces                                                                                                                                             |  |  |  |  |

|                                            |               |              | 1         |                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|---------------|--------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |               |              |           | acceptable choke current density and core                                                                                                                                                                                                                                             |
| KP and INDUCTANCE                          |               |              |           | autopick core size                                                                                                                                                                                                                                                                    |
| KP_TARGET                                  | 0.70          | 0.70         |           | Target ripple to peak inductor current ratio at the peak of VACMIN. Affects inductance value                                                                                                                                                                                          |
| LPFC_TARGET (0 bias)                       |               | 497          | uH        | PFC inductance required to hit KP_TARGET                                                                                                                                                                                                                                              |
| LPFC_DESIRED (0 bias)                      |               | 497          | uH        | at peak of VACMIN and full load  LPFC value used for calculations. Leave blank to use LPFC_TARGET. Enter value to hold constant (also enter core selection) while changing VACMIN to examine brownout operation. Calculated inductance with rounded (integral) turns for powder core. |
| KP_ACTUAL                                  |               | 0.682        |           | Actual KP calculated from LPFC_ACTUAL                                                                                                                                                                                                                                                 |
| LPFC_PEAK                                  |               | 497          | uH        | Inductance at VACMIN, 90°. For Ferrite, same as LPFC_DESIRED (0 bias)                                                                                                                                                                                                                 |
| Basic current parameters                   | 1             |              | T         | 1                                                                                                                                                                                                                                                                                     |
| IAC_RMS                                    |               | 1.68         | Α         | AC input RMS current at VACMIN and Full Power load                                                                                                                                                                                                                                    |
| IO_DC                                      |               | 0.36         | Α         | Output average current/Average diode current                                                                                                                                                                                                                                          |
| PFS Parameters                             |               |              | 1         |                                                                                                                                                                                                                                                                                       |
| PFS Part Number                            | Auto          | PFS7625L/H   |           | If examining brownout operation, over-ride autopick with desired device size                                                                                                                                                                                                          |
| Operating Mode                             | Full<br>Power | Full Power   |           | Mode of operation of PFS. For Full Power mode enter "Full Power" otherwise enter "EFFICIENCY" to indicate efficiency mode                                                                                                                                                             |
| IOCP min                                   |               | 5.5          | Α         | Minimum Current limit                                                                                                                                                                                                                                                                 |
| IOCP typ                                   |               | 5.9          | Α         | Typical current limit                                                                                                                                                                                                                                                                 |
| IOCP max                                   |               | 6.2          | Α         | Maximum current limit                                                                                                                                                                                                                                                                 |
| IP                                         |               | 3.51         | A         | MOSFET peak current                                                                                                                                                                                                                                                                   |
| IRMS<br>RDSON                              |               | 1.50<br>0.59 | A<br>Ohms | PFS MOSFET RMS current Typical RDSon at 100 'C                                                                                                                                                                                                                                        |
| FS_PK                                      |               | 75           | kHz       | Estimated frequency of operation at crest of input voltage (at VACMIN)                                                                                                                                                                                                                |
| FS_AVG                                     |               | 56           | kHz       | Estimated average frequency of operation over line cycle (at VACMIN)                                                                                                                                                                                                                  |
| PCOND_LOSS_PFS                             |               | 1.3          | W         | Estimated PFS conduction losses                                                                                                                                                                                                                                                       |
| PSW_LOSS_PFS                               |               | 1.2          | W         | Estimated PFS switching losses                                                                                                                                                                                                                                                        |
| PFS_TOTAL                                  |               | 2.5          | W         | Total Estimated PFS losses                                                                                                                                                                                                                                                            |
| ТЈ Мах                                     |               | 100          | deg C     | Maximum steady-state junction temperature                                                                                                                                                                                                                                             |
| Rth-JS                                     |               | 2.80         | °C/W      | Maximum thermal resistance (Junction to heatsink)                                                                                                                                                                                                                                     |
| HEATSINK Theta-CA                          |               | 20.75        | °C/W      | Maximum thermal resistance of heatsink                                                                                                                                                                                                                                                |
| INDUCTOR DESIGN  Basic Inductor Parameters |               |              |           |                                                                                                                                                                                                                                                                                       |
| LPFC (0 Bias)                              |               | 497          | uH        | Value of PFC inductor at zero current. This is the value measured with LCR meter. For powder, it will be different than LPFC.                                                                                                                                                         |
| LP_TOL                                     |               | 10.0         | %         | Tolerance of PFC Inductor Value (ferrite only)                                                                                                                                                                                                                                        |
| IL_RMS                                     |               | 1.75         | А         | Inductor RMS current (calculated at VACMIN and Full Power Load)                                                                                                                                                                                                                       |
| <b>Material and Dimensions</b>             |               |              |           |                                                                                                                                                                                                                                                                                       |
| Core Type                                  | Ferrite       | Ferrite      |           | Enter "Sendust", "Pow Iron" or "Ferrite"                                                                                                                                                                                                                                              |
| Core Material                              | Auto          | PC44/PC95    |           | Select from 60u, 75u, 90u or 125 u for<br>Sendust cores. Fixed at PC44/PC95 for<br>Ferrite cores. Fixed at -52 material for Pow<br>Iron cores.                                                                                                                                        |
|                                            |               |              | •         |                                                                                                                                                                                                                                                                                       |



| PQ26/25   Core part number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Core Geometry                     | Auto |          | PQ           |        | Toroid only for Sendust and Powdered Iron; EE or PQ for Ferrite cores.                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|----------|--------------|--------|----------------------------------------------------------------------------------------------|
| S5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Core                              | Auto |          | PQ26/25      |        |                                                                                              |
| AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ae                                |      |          |              | mm^2   | Core cross sectional area                                                                    |
| Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Le                                |      |          | 55.50        |        | Core mean path length                                                                        |
| HT (EE/PQ) / ID (toroid)   S.3.4   mm   Core height/Height of window; ID if toroid   MIT   S.6.2   mm   Mean length per turn   Bebbin width   S.6.2   mm   Mean length per turn   Bebbin width   Sap length (Fertite cores only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AL                                |      |          | 6530.00      | nH/t^2 | Core AL value                                                                                |
| MIT   13.80   mm   800bin width    IG   1.34   mm   50.50   mm   50.50   mm    IF   1.34   mm   50.50   mm   50.50   mm    IF   1.35   mm   50.50   mm   50.50   mm    IF   1.36   mm   50.50   mm   50.50   mm   50.50   mm    IF   1.37   mm   50.50   mm   50.50   mm   50.50   mm    IF   1.38   mm   50.50   mm   50.50   mm   50.50   mm    IF   1.38   mm   50.50   mm   50.50   mm   50.50   mm   50.50   mm    IF   1.37   mm   50.50   mm   50 |                                   |      |          |              | cm^3   |                                                                                              |
| BW   13.30 mm   Sobbin width   Cap   13.41 mm   Cap length (Ferrite cores only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HT (EE/PQ) / ID (toroid)          |      |          |              | mm     |                                                                                              |
| ILG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |      |          |              | mm     |                                                                                              |
| Flux and MMF calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |      |          |              | mm     |                                                                                              |
| BP_TARGET (ferrite only)  B_CAP(For BP)  B_CAP(For BP)  B_MAX  B_COP(For BP)  B_MAX  B |                                   |      |          | 1.34         | mm     | Gap length (Ferrite cores only)                                                              |
| BP_TARGET (ferrite only)  B_OCP (or BP)  3879  Gauss only) - drives turns and gap  Target flux density at worst case: IOCP and maximum tolerance inductance (ferrite only)  B_MAX  2084  Gauss only) - drives turns and gap  Peak flux density at worst case: IOCP and maximum tolerance inductance (ferrite only) - drives turns and gap  Peak flux density at AC peak, VACMIN and peak flux density at AC peak peak flux density at AC peak, VACMIN and peak flux density at AC peak peak flux density at A | Flux and MMF calculations         | T    |          |              |        |                                                                                              |
| B_OCP (or BP)    3879   Gauss   maximum tolerance inductance (ferrite only) - drives turns and gap   peak flux density at AC peak, VACMIN and Full Power Load, nominal inductance target µ at peak current divided by µ at zero current, at VACMIN, full load (powder only)   m/A   we target µ at peak current divided by µ at zero current, at VACMIN, full load (powder only) - drives act very large core. Please verify   p_OCP (powder only)   m/A   we we well a to core selection   mu_max_greater than 75% indicates a very large core. Please verify   p_OCP (powder only)   m/A   we we well at IOCPtyp divided by µ at zero current   Current at which B_TEST and H_TEST are calculated, for checking flux at a current other than 10CP or 1P; if blank 10CP_typ is used.    B_TEST   3691   Gauss   Flux density at I_TEST and maximum tolerance inductance   p at IOCP divided by µ at zero current, at IOCPtyp   maximum tolerance inductance   p at IOCP divided by µ at zero current, at IOCPtyp   maximum tolerance inductance   p at IOCP divided by µ at zero current, at IOCPtyp   maximum tolerance inductance   p at IOCP divided by µ at zero current, at IOCPtyp   maximum tolerance inductance   p at IOCP divided by µ at zero current, at IOCPtyp   maximum tolerance inductance   p at IOCP divided by µ at zero current, at IOCPtyp   maximum tolerance inductance   p at IOCPtyp   maximum tolerance inductance   maximu | BP_TARGET (ferrite only)          |      |          | 3900         | Gauss  | maximum tolerance inductance (ferrite only) - drives turns and gap                           |
| D_mink   Power Load, nominal inductance   Full Power Load, nominal inductance   Tull Power Load, nominal Power Load, non Induct    | B_OCP (or BP)                     |      |          | 3879         | Gauss  | maximum tolerance inductance (ferrite only) - drives turns and gap                           |
| μ_MAX (powder only)   N/A   %   zero current, at VACMIN, full load (powder only) - drives auto core selection   nu_max greater than 75% indicates a very   arge core. Please verify   μ_OCP (powder only)   N/A   %   μ at 10CPtyp divided by μ at zero current   LTEST   S.9   A   Current at which B_TEST and H_TEST are calculated, for checking flux at a current other than 10CP or 1P; if blank 10CP_typ is used.   Flux density at 1_TEST and H_TEST are calculated, for checking flux at a current other than 10CP or 1P; if blank 10CP_typ is used.   Flux density at 1_TEST and maximum tolerance inductance   μ_TEST (powder only)   N/A   %   μ at 10CP (powder only)   μ at     | B_MAX                             |      |          | 2084         | Gauss  | Full Power Load, nominal inductance                                                          |
| Link (powder only)   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μ_TARGET (powder only)            |      |          | N/A          | %      | zero current, at VACMIN, full load (powder only) - drives auto core selection                |
| I_TEST  S.9 A Current at which B_TEST and H_TEST are calculated, for checking flux at a current other than IOCP or IP; if blank IOCP_typ is used.  B_TEST  3691 Gauss Flux density at I_TEST and maximum tolerance inductance  µ_TEST (powder only)  N/A % IOCP divided by µ at zero current, at IOCPtyp  Wire  TURNS  74 BP_TARGET (ferrite) or µ_TARGET (powder)  ILRMS  1.75 A Inductor RMS current  Wire type Litz Litz Select between "Litz" or "Magnet" for double coated magnet wire  AWG 38 38 38 AWG Inductor wire quarber of single strand of wire  OD (per strand)  OD (per strand)  OD bundle (Litz only)  DCR  0.39 Ohm Choke DC Resistance  P AC Resistance Ratio  Warning 7.18 A/mm^2 bid indirect wire, more strands, or larger core  FIT  97% % Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers  BAC-p-p  1.50 W Estimated Inductor copper losses  DFC_COPPER_LOSS  LFST and H_TEST are calculated, of checking flux at a current of the wind the power of the than IOCP or pips in subset. In Just 10CP pips in subset. In Just 20CP (power)  Current density is high, if copper loss is light of total Cu loss including window for EE/PQ core. Full window approx. 90%  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS  LFFC_CORE_LOSS    | "                                 |      |          | N/A          |        | large core. Please verify                                                                    |
| I_TEST  S.9  A calculated, for checking flux at a current other than IOCP or IP; if blank IOCP_typ is used.  B_TEST  3691  Gauss Flux density at I_TEST and maximum toterance inductance  µ_TEST (powder only)  N/A  % µ at IOCP divided by µ at zero current, at IOCP typ  Wire  TURNS  74  Inductor turns. To adjust turns, change BP_TARGET (ferrite) or µ_TARGET (powder)  IIRMS  1.75  A Inductor RMS current  Select between "Litz" or "Magnet" for double coated magnet wire  AWG  38  38  38  AWG  Inductor wire gauge  Filar  30  30  Inductor wire number of parallel strands. Leave blank to auto-calc for Litz  OD (per strand)  OD bundle (Litz only)  OCAS  P AC Resistance Ratio  P AC Resistance Ratio  TILES  Warning  7.18  A/mm^2  Gauss  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT  97%  A/mm^2  Gauss  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS  LPFC_CORE_LOSS  LPFC_CORE_LOSS  LPFC_CORE_LOSS  LPFC_CORE_LOSS  LPFC_CORE_LOSS  LPFC_CORPE_LOSS  LPFC_CORPE_LOSS  LPFC_CORE_LOSS  LPFC_CORE_LOSS  LPFC_CORPE_LOSS  LPFC_CORPE_LOS  | μ_OCP (powder only)               |      |          | N/A          | %      |                                                                                              |
| Delication   De    | I_TEST                            |      |          | 5.9          | А      | calculated, for checking flux at a current other than IOCP or IP; if blank IOCP_typ is used. |
| Wire  TURNS  74  BP_TARGET (ferrite) or µ_TARGET (powder)  ILRMS  1.75  A Inductor turns. To adjust turns, change BP_TARGET (ferrite) or µ_TARGET (powder)  ILRMS  1.75  A Inductor RMS current  Select between "Litz" or "Magnet" for double coated magnet wire  AWG  38  38  38  AWG  Inductor wire gauge  Filar  30  30  Inductor wire number of parallel strands. Leave blank to auto-calc for Litz  OD (per strand)  OD bundle (Litz only)  DCR  0.78  MMI be different than OD if Litz  DCR  PAC Resistance Ratio  PAC Resistance Ratio  PAC Resistance Ratio  Turned density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT  97%  A/mm^2  BA/mm be different than OD if Litz  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT  97%  Gauss  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPPC_CORE_LOSS  LPPC_CORE_LOSS  LPPC_CORPER_LOSS  1.50  W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B_TEST                            |      |          | 3691         | Gauss  | tolerance inductance                                                                         |
| TURNS  TURNS  TURNS  TIRMS  TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS TIRMS |                                   |      |          | N/A          | %      |                                                                                              |
| TURNS  ILITY  ILITY  Wire type  Litz  Litz  Litz  AWG  38  38  38  AWG  Inductor Wire gauge  Filar  30  30  Core AC Pepex  FIT  1979  1459  Gauss  Lend  BP_TARGET (ferrite) or µ_TARGET (powder)  Inductor RMS current  Select between "Litz" or "Magnet" for double coated magnet wire  AWG  AWG  38  AWG  Inductor wire gauge  Inductor wire number of parallel strands. Leave blank to auto-calc for Litz  DO (per strand)  0.102  mm  Outer diameter of single strand of wire  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for Litz  Outer diameter of single strands.  Leave blank to auto-calc for L | Wire                              |      |          |              | _      |                                                                                              |
| Select between "Litz" or "Magnet" for double coated magnet wire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TURNS                             |      |          | 74           |        | BP_TARGET (ferrite) or μ_TARGET (powder)                                                     |
| AWG 38 38 38 AWG Inductor wire gauge  Filar 30 30 30 Inductor wire number of parallel strands. Leave blank to auto-calc for Litz  OD (per strand) 0.102 mm Outer diameter of single strand of wire  OD bundle (Litz only) 0.78 mm Will be different than OD if Litz  DCR 0.39 ohm Choke DC Resistance  P AC Resistance Ratio 1.25 Ratio of total Cu loss including HF ACR loss vs. assuming only DCR (uses Dowell equations)  Warning 7.18 A/mm^2 Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT 97% % Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers 3.76 Estimated layers in winding  Loss calculations  BAC-p-p 1459 Gauss Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS 0.32 W Estimated Inductor copper losses  LPFC_COPPER_LOSS 1.50 W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ILRMS                             |      |          | 1.75         | Α      |                                                                                              |
| Filar 30 30 30 Inductor wire number of parallel strands. Leave blank to auto-calc for Litz  OD (per strand) 0.102 mm Outer diameter of single strand of wire  OD bundle (Litz only) 0.78 mm Will be different than OD if Litz  DCR 0.39 ohm Choke DC Resistance  Ratio of total Cu loss including HF ACR loss vs. assuming only DCR (uses Dowell equations)  Umarning 7.18 A/mm^2 Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT 97% % Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers 3.76 Estimated layers in winding  Loss calculations  BAC-p-p 1459 Gauss Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS 0.32 W Estimated Inductor corper losses  LPFC_COPPER_LOSS 1.50 W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |      |          |              |        | double coated magnet wire                                                                    |
| Leave blank to auto-calc for Litz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AWG                               | 38   |          | 38           | AWG    |                                                                                              |
| OD bundle (Litz only)  DCR  0.39  Ohm  Choke DC Resistance Ratio of total Cu loss including HF ACR loss vs. assuming only DCR (uses Dowell equations)  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT  97%  A/mm^2  Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers  BAC-p-p  BAC-p-p  Agains  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS  D.32  W Estimated Inductor core Loss  LPFC_COPPER_LOSS  D.50  Will be different than OD if Litz  Ratio of total Cu loss including HF ACR loss vs. assuming only DCR (uses Dowell equations)  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Estimated layers in winding  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_COPPER_LOSS  D.32  W Estimated Inductor core Loss  LPFC_COPPER_LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | 30   |          |              |        | Leave blank to auto-calc for Litz                                                            |
| DCR  DCR  O.39 Ohm Choke DC Resistance Ratio of total Cu loss including HF ACR loss vs. assuming only DCR (uses Dowell equations)  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers  BAC-p-p  BAC-p-p  Aymm^2  Gauss Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS  D.32  W Estimated Inductor core Loss  LPFC_COPPER_LOSS  D.50  W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |      |          |              | mm     | 5                                                                                            |
| P AC Resistance Ratio  1.25  Ratio of total Cu loss including HF ACR loss vs. assuming only DCR (uses Dowell equations)  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT  97%  Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers  3.76  Estimated layers in winding  Loss calculations  BAC-p-p  1459  Gauss  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS  0.32  W Estimated Inductor core Loss  LPFC_COPPER_LOSS  1.50  W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,,                              |      |          |              | 1      |                                                                                              |
| P AC Resistance Ratio  1.25  vs. assuming only DCR (uses Dowell equations)  Current density is high, if copper loss is high use thicker wire, more strands, or larger core  FIT  97%  Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers  3.76  Estimated layers in winding  Loss calculations  BAC-p-p  1459  Gauss  Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS  0.32  W Estimated Inductor core Loss  LPFC_COPPER_LOSS  1.50  W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DCR                               |      |          | 0.39         | ohm    |                                                                                              |
| FIT 97% A/mm^2 high use thicker wire, more strands, or larger core  Percentage fill of winding window for EE/PQ core. Full window approx. 90%  Layers 3.76 Estimated layers in winding  Loss calculations  BAC-p-p Gauss Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS 0.32 W Estimated Inductor core Loss  LPFC_COPPER_LOSS 1.50 W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P AC Resistance Ratio             |      |          | 1.25         |        | vs. assuming only DCR (uses Dowell equations)                                                |
| Layers 3.76 Estimated layers in winding  Loss calculations  BAC-p-p Gauss Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS 0.32 W Estimated Inductor core Loss  LPFC_COPPER_LOSS 1.50 W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J                                 |      | Warning  | 7.18         | A/mm^2 | high use thicker wire, more strands, or larger core                                          |
| Loss calculations       BAC-p-p     1459     Gauss VACMIN, peak of sine wave       LPFC_CORE_LOSS     0.32     W Estimated Inductor core Loss       LPFC_COPPER_LOSS     1.50     W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIT                               |      |          |              | %      | core. Full window approx. 90%                                                                |
| BAC-p-p 1459 Gauss Core AC peak-peak flux excursion at VACMIN, peak of sine wave  LPFC_CORE_LOSS 0.32 W Estimated Inductor core Loss  LPFC_COPPER_LOSS 1.50 W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                 |      | <u> </u> | 3.76         | 1      | Estimated layers in winding                                                                  |
| LPFC_CORE_LOSS  LPFC_COPPER_LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Loss calculations                 | 1    |          |              |        | Core AC neak peak flow ever-i                                                                |
| LPFC_COPPER_LOSS 1.50 W Estimated Inductor copper losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |      |          |              |        | VACMIN, peak of sine wave                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |      | 1        |              | _      |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LPFC_COPPER_LOSS  LPFC_TOTAL_LOSS |      |          | 1.50<br>1.82 | W      | Estimated Inductor copper losses  Total estimated Inductor Losses                            |

| External PFC Diode         |               |          |           |        |                                                                                                                      |
|----------------------------|---------------|----------|-----------|--------|----------------------------------------------------------------------------------------------------------------------|
| DPFC PFC Diode Part Number | r <b>Auto</b> |          | LXA03T600 |        | PFC Diode Part Number                                                                                                |
| Type                       | 71460         |          | Qspeed    |        | PFC Diode Type                                                                                                       |
| Manufacturer               |               |          | PI        |        | Diode Manufacturer                                                                                                   |
| VRRM                       |               |          | 600.00    | V      | Diode rated reverse voltage                                                                                          |
| IF                         |               |          | 3.00      | A      | Diode rated forward current                                                                                          |
| Qrr                        |               |          | 50.00     | nC     | High Temperature                                                                                                     |
| VF                         |               |          | 2.10      | V      | Diode rated forward voltage drop                                                                                     |
| PCOND DIODE                |               |          | 0.76      | W      | Estimated Diode conduction losses                                                                                    |
| PSW DIODE                  |               |          | 0.14      | W      | Estimated Diode conduction losses  Estimated Diode switching losses                                                  |
| P_DIODE                    |               |          | 0.90      | W      | Total estimated Diode losses                                                                                         |
| P_DIODE                    |               |          | 0.90      | VV     | Maximum steady-state operating                                                                                       |
| TJ Max                     |               |          | 100       | deg C  | temperature                                                                                                          |
| Rth-JS                     |               | Warning  | 1.90      | degC/W | Warning, Rth too low                                                                                                 |
| HEATSINK Theta-CA          |               | waitiiig | 64.12     |        | Maximum thermal resistance of heatsink                                                                               |
| HEATSINK THEIR-CA          |               |          | 04.12     | degC/W |                                                                                                                      |
| IFSM                       |               |          | 23.00     | А      | Non-repetitive peak surge current rating.<br>Consider larger size diode if inrush or<br>thermal limited.             |
| Output Capacitor           |               |          |           | T      |                                                                                                                      |
| COUT                       | Auto          |          | 68        | uF     | Minimum value of Output capacitance                                                                                  |
| VO_RIPPLE_EXPECTED         |               |          | 17.9      | V      | Expected ripple voltage on Output with selected Output capacitor                                                     |
| T_HOLDUP_EXPECTED          |               |          | 20.7      | ms     | Expected holdup time with selected Output capacitor                                                                  |
| ESR_LF                     |               |          | 2.93      | ohms   | Low Frequency Capacitor ESR                                                                                          |
| ESR_HF                     |               | Warning  | 1.17      | ohms   | !!! Warning high frequency ESR must be between 0.01 and 1 ohms                                                       |
| IC_RMS_LF                  |               |          | 0.25      | Α      | Low Frequency Capacitor RMS current                                                                                  |
| IC_RMS_HF                  |               |          | 0.68      | Α      | High Frequency Capacitor RMS current                                                                                 |
| CO_LF_LOSS                 |               |          | 0.18      | W      | Estimated Low Frequency ESR loss in Output capacitor                                                                 |
| CO_HF_LOSS                 |               |          | 0.54      | W      | Estimated High frequency ESR loss in Output capacitor                                                                |
| Total CO LOSS              |               |          | 0.72      | W      | Total estimated losses in Output Capacitor                                                                           |
| Input Bridge (BR1) and Fu  | ıse (F1)      |          |           |        | <u> </u>                                                                                                             |
| F1_I^2t Rating             |               |          | 6.12      | A^2*s  | Minimum I^2t rating for fuse                                                                                         |
| Fuse Current rating        |               |          | 2.61      | Α      | Minimum Current rating of fuse                                                                                       |
| VF                         |               |          | 0.90      | V      | Input bridge Diode forward Diode drop                                                                                |
| IAVG                       |               |          | 1.62      | Α      | Input average current at 70 VAC.                                                                                     |
| PIV_INPUT BRIDGE           |               |          | 424       | V      | Peak inverse voltage of input bridge                                                                                 |
| PCOND_LOSS_BRIDGE          |               |          | 2.73      | W      | Estimated Bridge Diode conduction loss                                                                               |
| CIN                        |               |          | 0.5       | uF     | Input capacitor. Use metallized polypropylene or film foil type with high ripple current rating                      |
| RT1                        |               |          | 10.61     | ohms   | Input Thermistor value                                                                                               |
| D_Precharge                |               |          | 1N5407    |        | Recommended precharge Diode                                                                                          |
| PFS4 small signal compon   | ents          |          |           |        |                                                                                                                      |
| C_REF                      |               |          | 1.0       | uF     | REF pin capacitor value                                                                                              |
| RV1                        |               |          | 4.0       | MOhms  | Line sense resistor 1                                                                                                |
| RV2                        |               |          | 6.0       | MOhms  | Line sense resistor 2                                                                                                |
| RV3                        |               |          | 6.0       | MOhms  | Typical value of the lower resistor connected to the V-PIN. Use 1% resistor only!                                    |
| RV4                        |               |          | 141.2     | kOhms  | Description pending, could be modified based on feedback chain R1-R4                                                 |
| C_V                        |               |          | 0.566     | nF     | V pin decoupling capacitor (RV4 and C_V should have a time constant of 80us) Pick the closest available capacitance. |
| C_VCC                      |               |          | 1.0       | uF     | Supply decoupling capacitor                                                                                          |
| C_C                        |               |          | 100       | nF     | Feedback C pin decoupling capacitor                                                                                  |
| Power good Vo lower        |               |          | 333       | V      | Vo lower threshold voltage at which power                                                                            |
|                            | l             |          |           |        |                                                                                                                      |



| threshold VPG(L)                              |                    |                     |            | good signal will trigger                                                                                                          |
|-----------------------------------------------|--------------------|---------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| PGT set resistor                              |                    | 291.4               | kohm       | Power good threshold setting resistor                                                                                             |
| Feedback Components                           |                    | 2,71.1              | KOIIII     | 1 ower good threshold setting resistor                                                                                            |
| R1                                            |                    | 4.0                 | Mohms      | Feedback network, first high voltage divider resistor                                                                             |
| R2                                            |                    | 6.0                 | Mohms      | Feedback network, second high voltage divider resistor                                                                            |
| R3                                            |                    | 6.0                 | Mohms      | Feedback network, third high voltage divider resistor                                                                             |
| R4                                            |                    | 141.2               | kohms      | Feedback network, lower divider resistor                                                                                          |
| C1                                            |                    | 0.566               | nF         | Feedback network, loop speedup capacitor. (R4 and C1 should have a time constant of 80us) Pick the closest available capacitance. |
| R5                                            |                    | 21.5                | kohms      | Feedback network: zero setting resistor                                                                                           |
| C2                                            |                    | 1000                | nF         | Feedback component- noise suppression capacitor                                                                                   |
| Loss Budget (Estimated a                      | t VACMIN)          |                     |            |                                                                                                                                   |
| PFS Losses                                    |                    | 2.55                | W          | Total estimated losses in PFS                                                                                                     |
| Boost diode Losses                            |                    | 0.90                | W          | Total estimated losses in Output Diode                                                                                            |
| Input Bridge losses                           |                    | 2.73                | W          | Total estimated losses in input bridge module                                                                                     |
| Inductor losses                               |                    | 1.82                | W          | Total estimated losses in PFC choke                                                                                               |
| Output Capacitor Loss                         |                    | 0.72                | W          | Total estimated losses in Output capacitor                                                                                        |
| EMI choke copper loss                         |                    | 0.50                | W          | Total estimated losses in EMI choke copper                                                                                        |
| Total losses                                  |                    | 8.72                | W          | Overall loss estimate                                                                                                             |
| Efficiency                                    |                    | 0.95                |            | Estimated efficiency at VACMIN, full load.                                                                                        |
| CAPZero component sele                        | ction recommendati | on                  | T          | 16.00                                                                                                                             |
| CAPZero Device                                |                    | CAP200DG            |            | (Optional) Recommended CAPZero device<br>to discharge X-Capacitor with time constant<br>of 1 second                               |
| Total Series Resistance (Rcapzero1+Rcapzero2) |                    | 0.78                | k-ohms     | Maximum Total Series resistor value to discharge X-Capacitors                                                                     |
| <b>EMI</b> filter components re               | commendation       |                     |            |                                                                                                                                   |
| CIN_RECOMMENDED                               |                    | 680                 | nF         | Metallized polyester film capacitor after bridge, ratio with Po                                                                   |
| CX2                                           |                    | 470                 | nF         | X capacitor after differencial mode choke and before bridge, ratio with Po                                                        |
| LDM_calc                                      |                    | 220                 | uH         | estimated minimum differencial inductance to avoid <10kHz resonance in input current                                              |
| CX1                                           |                    | 470                 | nF         | X capacitor before common mode choke, ratio with Po                                                                               |
| LCM                                           |                    | 10                  | mH         | typical common mode choke value                                                                                                   |
| LCM_leakage                                   |                    | 30                  | uH         | estimated leakage inductance of CM choke, typical from 30~60uH                                                                    |
| CY1 (and CY2)                                 |                    | 220                 | pF         | typical Y capacitance for common mode noise suppression                                                                           |
| LDM_Actual                                    |                    | 190                 | uH         | cal_LDM minus LCM_leakage, utilizing CM leakage inductance as DM choke.                                                           |
| DCR_LCM                                       | 0.10               | 0.10                | Ohms       | total DCR of CM choke for estimating copper loss                                                                                  |
| DCR_LDM                                       | 0.10               | 0.10                | Ohms       | total DCR of DM choke(or CM #2) for estimating copper loss                                                                        |
| Note: CX2 can be placed                       | between CM choke a | and DM choke depend | ing on EMI | design requirement.                                                                                                               |

# 11 LLC Transformer Design Spreadsheet

To optimize the transformer design for a wide output voltage range, three spreadsheets are generated. The first generated is for the nominal panel voltage of 46 V. The transformer parameters are locked into this spreadsheet, then two more spreadsheets are generated from the nominal spreadsheet for the extreme operating points of 39 V and 54 V. The nominal spreadsheet parameters are adjusted until operation is satisfactory for the extreme operating points as well as nominal. This usually means that the transformer turns are adjusted so that the transformer flux swing at the high voltage operating extreme is acceptable. The supply operates at the desired nominal frequency for the 46 V median output voltage. Operating frequency drops from nominal for 54 V output, and increases for 39 V operation. To accommodate the high output voltage/low operating frequency case, the transformer turns are adjusted for an acceptable flux swing at the lower operating frequency. K ratio for the nominal spreadsheet (spreadsheet line 46) is set to ~3 to reduce frequency sensitivity vs. output load to help control frequency excursion at low output voltage, low current and avoid burst mode.

This approach optimizes efficiency for the most commonly encountered operating conditions. A supply designed using this approach also has a much smaller frequency excursion over the output voltage extremes than for a design optimized with a single spreadsheet for the 54 V maximum voltage/power condition. Overall efficiency was also higher for the design optimized for the median voltage.

### 11.1 Component Adjustments Needed for Voltage Doubler Design

Some of the transformer and circuit parameters need to be changed from the spreadsheet values for use with a voltage doubler output configuration. **Transformer secondary turns** (spreadsheet line 52) should be halved for a voltage doubler design, with twice as much wire area to compensate for increased current in the winding.

To aid startup at maximum output power, the value for current sense resistor as shown on line 195 was adjusted for a higher overcurrent limit than the initial value shown in the spreadsheet. The current limit resistor for the 54 V spreadsheet should be used as the starting point, as this is the highest operating power point. The final value for primary current sense resistor is determined on the bench in initial testing. A 3 A repetitive current limit allowed startup under worst-case conditions and helped prevent auto-restart during differential mode surge testing. This yields a value of primary current sense resistor of 43  $\Omega$ . The soft start capacitor value (Line 184) was changed from the default spreadsheet value of 330 nF to 680 nF (determined by bench testing) to aid startup into a constant voltage load.

P

### 11.2 Warning Messages

In all three spreadsheets, a warning message is generated for OV shutdown (VOV\_shut, line 6). This is a consequence of raising the Vbulk\_nom (line 3) to 440 VDC to allow for sufficient headroom for operating the PFC stage at 277 VAC input to accommodate US commercial/industrial lighting applications.

The spreadsheet for both the high (54V) and low (39V) output voltage extremes will display a warning message for Vres\_expected (line 59). This is a consequence of the frequency shifts required for regulation at the two output voltage extremes, and is expected. This message can be ignored.

The spreadsheet for minimum output voltage (39V) displays an error message for device selection (line 26). This is because at minimum output voltage, the output power is considerably less than at nominal or maximum output voltage. This message should be ignored.

# 11.3 Nominal Output Voltage (46 V) Spreadsheet

| HiperLCS_042413;<br>Rev.1.3; Copyright<br>Power Integrations<br>2013 | INPUTS       | INFO       | OUTPUTS       | UNITS        | HiperLCS_042413_Rev1-3.xls; HiperLCS Half-<br>Bridge, Continuous mode LLC Resonant<br>Converter Design Spreadsheet                                                                                                                        |
|----------------------------------------------------------------------|--------------|------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Enter Input Parameters</b>                                        | •            | ı          |               |              |                                                                                                                                                                                                                                           |
| Vbulk_nom                                                            | 440          |            | 440           | V            | Nominal LLC input voltage                                                                                                                                                                                                                 |
| Vbrownout                                                            | 330          |            | 330           | V            | Brownout threshold voltage. HiperLCS will shut down if voltage drops below this value. Allowable value is between 65% and 76% of Vbulk_nom. Set to 65% for max holdup time                                                                |
| Vbrownin                                                             |              |            | 416           | ٧            | Startup threshold on bulk capacitor                                                                                                                                                                                                       |
| VOV_shut                                                             |              | Warning    | 548           | ٧            | !!! Warning. OV shutdown voltage is too high.<br>Reduce Vbulk_nom OR Vbrownout                                                                                                                                                            |
| VOV_restart                                                          |              |            | 528           | V            | Restart voltage after OV protection.                                                                                                                                                                                                      |
| CBULK                                                                | 68.00        |            | 68            | uF           | Minimum value of bulk cap to meet holdup time requirement; Adjust holdup time and Vbrownout to change bulk cap value                                                                                                                      |
| tHOLDUP                                                              |              |            | 21.9          | ms           | Bulk capacitor hold up time                                                                                                                                                                                                               |
| Enter LLC (secondary) outputs                                        |              |            |               |              | The spreadsheet assumes AC stacking of the secondaries                                                                                                                                                                                    |
| VO1                                                                  | 46.00        |            | 46.00         | ٧            | Main Output Voltage. Spreadsheet assumes that this is the regulated output                                                                                                                                                                |
| IO1                                                                  | 2.75         |            | 2.75          | Α            | Main output maximum current                                                                                                                                                                                                               |
| VD1                                                                  | 0.70         |            | 0.70          | V            | Forward voltage of diode in Main output                                                                                                                                                                                                   |
| PO1                                                                  |              |            | 127           | W            | Output Power from first LLC output                                                                                                                                                                                                        |
| VO2                                                                  |              |            | 0.00          | V            | Second Output Voltage                                                                                                                                                                                                                     |
| IO2                                                                  |              |            | 0.00          | Α            | Second output current                                                                                                                                                                                                                     |
| VD2                                                                  |              |            | 0.70          | V            | Forward voltage of diode used in second output                                                                                                                                                                                            |
| PO2                                                                  |              |            | 0.00          | W            | Output Power from second LLC output                                                                                                                                                                                                       |
| P_LLC                                                                |              |            | 127           | W            | Specified LLC output power                                                                                                                                                                                                                |
| LCS Device Selection                                                 | 1            | 1          | 1             |              | 1                                                                                                                                                                                                                                         |
| Device                                                               | LCS702       |            | LCS702        |              | LCS Device                                                                                                                                                                                                                                |
| RDS-ON (MAX)                                                         |              |            | 1.39          | ohms         | RDS-ON (max) of selected device                                                                                                                                                                                                           |
| Coss                                                                 |              |            | 250           | pF           | Equivalent Coss of selected device                                                                                                                                                                                                        |
| Cpri                                                                 |              |            | 40            | pF           | Stray Capacitance at transformer primary                                                                                                                                                                                                  |
| Pcond_loss                                                           |              |            | 1.5           | W            | Conduction loss at nominal line and full load                                                                                                                                                                                             |
| Tmax-hs                                                              |              |            | 90            | deg C        | Maximum heatsink temperature                                                                                                                                                                                                              |
| Theta J-HS                                                           |              |            | 9.1           | deg C/W      | Thermal resistance junction to heatsink (with grease and no insulator)                                                                                                                                                                    |
| Expected Junction temperature                                        |              |            | 103           | deg C        | Expectd Junction temperature                                                                                                                                                                                                              |
| Ta max                                                               |              |            | 50            | deg C        | Expected max ambient temperature                                                                                                                                                                                                          |
| Theta HS-A                                                           |              |            | 27            | deg C/W      | Required thermal resistance heatsink to ambient                                                                                                                                                                                           |
| LLC Resonant Parameter                                               | r and Transf | former Cal | culations (ge | enerates rec |                                                                                                                                                                                                                                           |
| Vres_target                                                          | 450.00       |            | 450           | V            | Desired Input voltage at which power train operates at resonance. If greater than Vbulk_nom, LLC operates below resonance at VBULK.                                                                                                       |
| Po                                                                   |              |            | 128           | W            | LLC output power including diode loss                                                                                                                                                                                                     |
| Vo                                                                   |              |            | 46.70         | V            | Main Output voltage (includes diode drop) for calculating Nsec and turns ratio                                                                                                                                                            |
| f_target                                                             | 120.00       |            | 120           | kHz          | Desired switching frequency at Vbulk_nom. 66 kHz to 300 kHz, recommended 180-250 kHz                                                                                                                                                      |
| Lpar                                                                 |              |            | 366           | uH           | Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for non-integrated low-leakage transformer)                                                                                                             |
| Lpri                                                                 | 490.00       |            | 490           | uH           | Primary open circuit inductance for integrated transformer; for low-leakage transformer it is sum of primary inductance and series inductor. If left blank, auto-calculation shows value necessary for slight loss of ZVS at ~80% of Vnom |



|                                                        |              | <del> </del> |     |                                                                                                                                                                                       |
|--------------------------------------------------------|--------------|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | 124.00       | 124.0        | uH  | Series inductance or primary leakage inductance of integrated transformer; if left blank auto-calculation is for K=4                                                                  |
| Kratio                                                 |              | 3.0          |     | Ratio of Lpar to Lres. Maintain value of K such that 2.1 < K < 11. Preferred Lres is such that K<7.                                                                                   |
| Cres                                                   | 12.00        | 12.0         | nF  | Series resonant capacitor. Red background cells produce red graph. If Lpar, Lres, Cres, and n_RATIO_red_graph are left blank, they will be auto-calculated                            |
| Lsec                                                   | 16.300       | 16.300       | uH  | Secondary side inductance of one phase of main output; measure and enter value, or adjust value until f_predicted matches what is measured;                                           |
| 15                                                     |              | 41           | %   | Leakage distribution factor (primary to secondary). >50% signifies most of the leakage is in primary side. Gap physically under secondary yields >50%, requiring fewer primary turns. |
| n_eq                                                   |              | 4.74         |     | Turns ratio of LLC equivalent circuit ideal transformer                                                                                                                               |
| Npri                                                   | 45.0         | 45.0         |     | Primary number of turns; if input is blank, default value is auto-calculation so that f_predicted = f_target and m=50%                                                                |
| Nsec                                                   | 8.0          | 8.0          |     | Secondary number of turns (each phase of Main output). Default value is estimate to maintain BAC<=200 mT, using selected core (below)                                                 |
| f_predicted                                            |              | 127          | kHz | Expected frequency at nominal input voltage and full load; Heavily influenced by n_eq and primary turns                                                                               |
| f_res                                                  |              | 130          | kHz | Series resonant frequency (defined by series inductance Lres and C)                                                                                                                   |
| f_brownout                                             |              | 100          | kHz | Expected switching frequency at Vbrownout, full load. Set HiperLCS minimum frequency to this value.                                                                                   |
| f_par                                                  |              | 66           | kHz | Parallel resonant frequency (defined by Lpar + Lres and C)                                                                                                                            |
| f_inversion                                            |              | 79           | kHz | LLC full load gain inversion frequency. Operation below this frequency results in operation in gain inversion region.                                                                 |
| Vinversion                                             |              | 198          | V   | LLC full load gain inversion point input voltage                                                                                                                                      |
| Vres_expected                                          |              | 443          | V   | Expected value of input voltage at which LLC operates at resonance.                                                                                                                   |
| RMS Currents and Voltag                                | es           |              |     |                                                                                                                                                                                       |
| IRMS_LLC_Primary                                       |              | 1.03         | Α   | Primary winding RMS current at full load, Vbulk_nom and f_predicted                                                                                                                   |
| Winding 1 (Lower<br>secondary Voltage) RMS<br>current  |              | 2.2          | Α   | Winding 1 (Lower secondary Voltage) RMS current                                                                                                                                       |
| Lower Secondary Voltage<br>Capacitor RMS current       |              | 1.4          | Α   | Lower Secondary Voltage Capacitor RMS current                                                                                                                                         |
| Winding 2 (Higher<br>secondary Voltage) RMS<br>current |              | 0.0          | Α   | Winding 2 (Higher secondary Voltage) RMS current                                                                                                                                      |
| Higher Secondary Voltage<br>Capacitor RMS current      |              | 0.0          | Α   | Higher Secondary Voltage Capacitor RMS current                                                                                                                                        |
| Cres_Vrms                                              |              | 108          | V   | Resonant capacitor AC RMS Voltage at full load and nominal input voltage                                                                                                              |
| Virtual Transformer Trial                              | - (generates | blue curve)  |     |                                                                                                                                                                                       |
| New primary turns                                      |              | 45.0         |     | Trial transformer primary turns; default value is from resonant section                                                                                                               |
| New secondary turns                                    |              | 8.0          |     | Trial transformer secondary turns; default value is from resonant section                                                                                                             |
| New Lpri                                               |              | 490          | uH  | Trial transformer open circuit inductance; default value is from resonant section                                                                                                     |
| New Cres                                               |              | 12.0         | nF  | Trial value of series capacitor (if left blank calculated value chosen so f_res same as in main resonant section above                                                                |
|                                                        |              |              |     | •                                                                                                                                                                                     |

|                                                        | 1               |                  | I           |                                                                                                                  |
|--------------------------------------------------------|-----------------|------------------|-------------|------------------------------------------------------------------------------------------------------------------|
| New estimated Lres                                     |                 | 124.0            | uH          | Trial transformer estimated Lres                                                                                 |
| New estimated Lpar                                     |                 | 366              | uH          | Estimated value of Lpar for trial transformer                                                                    |
| New estimated Lsec                                     |                 | 16.300           | uH          | Estimated value of secondary leakage inductance                                                                  |
| New Kratio                                             |                 | 3.0              |             | Ratio of Lpar to Lres for trial transformer                                                                      |
| New equivalent circuit transformer turns ratio         |                 | 4.74             |             | Estimated effective transformer turns ratio                                                                      |
| V powertrain inversion new                             |                 | 198              | V           | Input voltage at LLC full load gain inversion point                                                              |
| f_res_trial                                            |                 | 130              | kHz         | New Series resonant frequency                                                                                    |
| f_predicted_trial                                      |                 | 127              | kHz         | New nominal operating frequency                                                                                  |
| IRMS_LLC_Primary                                       |                 | 1.03             | Α           | Primary winding RMS current at full load and nominal input voltage (Vbulk) and f_predicted_trial                 |
| Winding 1 (Lower<br>secondary Voltage) RMS<br>current  |                 | 2.2              | А           | RMS current through Output 1 winding, assuming half sinusoidal waveshape                                         |
| Lower Secondary Voltage<br>Capacitor RMS current       |                 | 1.5              | Α           | Lower Secondary Voltage Capacitor RMS current                                                                    |
| Winding 2 (Higher<br>secondary Voltage) RMS<br>current |                 | 2.2              | А           | RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding                  |
| Higher Secondary Voltage<br>Capacitor RMS current      |                 | 0.0              | Α           | Higher Secondary Voltage Capacitor RMS current                                                                   |
| Vres_expected_trial                                    |                 | 443              | V           | Expected value of input voltage at which LLC operates at resonance.                                              |
| Transformer Core Calcula                               | tions (Calculat | es From Resonant | Parameter 9 |                                                                                                                  |
| Transformer Core                                       | EER28L          | EER28L           |             | Transformer Core                                                                                                 |
| Ae                                                     | 0.97            | 0.97             | cm^2        | Enter transformer core cross-sectional area                                                                      |
| Ve                                                     | 7.64            | 7.64             | cm^3        | Enter the volume of core                                                                                         |
| Aw                                                     | 123.00          | 123.0            | mm^2        | Area of window                                                                                                   |
| Bw                                                     | 20.90           | 20.9             | mm          | Total Width of Bobbin                                                                                            |
| Loss density                                           |                 | 200.0            | mW/cm^3     | Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3)                         |
| MLT                                                    |                 | 4.0              | cm          | Mean length per turn                                                                                             |
| Nchambers                                              |                 | 2                |             | Number of Bobbin chambers                                                                                        |
| Wsep                                                   |                 | 3.0              | mm          | Winding separator distance (will result in loss of winding area)                                                 |
| Ploss                                                  |                 | 1.5              | W           | Estimated core loss                                                                                              |
| Bpkfmin                                                |                 | 151              | mT          | First Quadrant peak flux density at minimum frequency.                                                           |
| BAC                                                    |                 | 236              | mT          | AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)                                     |
| Primary Winding                                        | l               | <b>-</b>         | I.          | <u> </u>                                                                                                         |
| Npri                                                   |                 | 45.0             |             | Number of primary turns; determined in LLC resonant section                                                      |
| Primary gauge                                          | 42              | 42               | AWG         | Individual wire strand gauge used for primary winding                                                            |
| Equivalent Primary Metric<br>Wire gauge                |                 | 0.060            | mm          | Equivalent diameter of wire in metric units                                                                      |
| Primary litz strands                                   | 100             | 100              |             | Number of strands in Litz wire; for non-litz primary winding, set to 1                                           |
| Primary Winding Allocation<br>Factor                   |                 | 50               | %           | Primary window allocation factor - percentage of winding space allocated to primary                              |
| AW_P                                                   |                 | 53               | mm^2        | Winding window area for primary                                                                                  |
| Fill Factor                                            |                 | 40%              | %           | % Fill factor for primary winding (typical max fill is 60%)                                                      |
| Resistivity_25 C_Primary                               |                 | 59.29            | m-ohm/m     | Resistivity in milli-ohms per meter                                                                              |
| Primary DCR 25 C                                       |                 | 105.45           | m-ohm       | Estimated resistance at 25 C                                                                                     |
| Primary DCR 100 C                                      |                 | 141.30           | m-ohm       | Estimated resistance at 100 C (approximately 33% higher than at 25 C)                                            |
| Primary RMS current                                    |                 | 1.03             | Α           | Measured RMS current through the primary winding                                                                 |
| ACR_Trf_Primary                                        |                 | 228.32           | m-ohm       | Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature |
|                                                        |                 |                  |             |                                                                                                                  |



| Primary copper loss                                  |          | 0.24     | W       | Total primary winding copper loss at 85 C                                                                                                                                        |  |
|------------------------------------------------------|----------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Primary Layers                                       |          | 3.91     | VV      | Number of layers in primary Winding                                                                                                                                              |  |
| Secondary Winding 1 (Lo                              | wer      | 3.51     |         |                                                                                                                                                                                  |  |
| secondary voltage OR Single output)                  |          |          |         | Note - Power loss calculations are for each winding half of secondary                                                                                                            |  |
| Output Voltage                                       |          | 46.00    | V       | Output Voltage (assumes AC stacked windings)                                                                                                                                     |  |
| Sec 1 Turns                                          |          | 8.00     |         | Secondary winding turns (each phase )                                                                                                                                            |  |
| Sec 1 RMS current (total,                            |          | 2.2      | ^       | RMS current through Output 1 winding, assuming                                                                                                                                   |  |
| AC+DC)                                               |          | 2.2      | Α       | half sinusoidal waveshape                                                                                                                                                        |  |
| Winding current (DC component)                       |          | 1.38     | А       | DC component of winding current                                                                                                                                                  |  |
| Winding current (AC RMS component)                   |          | 1.71     | Α       | AC component of winding current                                                                                                                                                  |  |
| Sec 1 Wire gauge                                     | 40       | 40       | AWG     | Individual wire strand gauge used for secondary winding                                                                                                                          |  |
| Equivalent secondary 1<br>Metric Wire gauge          |          | 0.080    | mm      | Equivalent diameter of wire in metric units                                                                                                                                      |  |
| Sec 1 litz strands                                   | 350      | 350      |         | Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1                                                                                            |  |
| Resistivity_25 C_sec1                                |          | 10.65    | m-ohm/m | Resistivity in milli-ohms per meter                                                                                                                                              |  |
| DCR_25C_Sec1                                         |          | 3.37     | m-ohm   | Estimated resistance per phase at 25 C (for reference)                                                                                                                           |  |
| DCR_100C_Sec1                                        |          | 4.51     | m-ohm   | Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)                                                                                                  |  |
| DCR_Ploss_Sec1                                       |          | 0.07     | W       | Estimated Power loss due to DC resistance (both secondary phases)                                                                                                                |  |
| ACR_Sec1                                             |          | 4.79     | m-ohm   | Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C |  |
| ACR_Ploss_Sec1                                       |          | 0.03     | W       | Estimated AC copper loss (both secondary phases)                                                                                                                                 |  |
| Total winding 1 Copper<br>Losses                     |          | 0.10     | W       | Total (AC + DC) winding copper loss for both secondary phases                                                                                                                    |  |
| Capacitor RMS current                                |          | 1.4      | Α       | Output capacitor RMS current                                                                                                                                                     |  |
| Co1                                                  |          | 2.4      | uF      | Secondary 1 output capacitor                                                                                                                                                     |  |
| Capacitor ripple voltage                             |          | 3.0      | %       | Peak to Peak ripple voltage on secondary 1 output capacitor                                                                                                                      |  |
| Output rectifier RMS<br>Current                      |          | 2.2      | А       | Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current                                                                  |  |
| Secondary 1 Layers                                   |          | 1.73     |         | Number of layers in secondary 1 Winding                                                                                                                                          |  |
| Secondary Winding 2<br>(Higher secondary<br>voltage) |          |          |         | Note - Power loss calculations are for each winding half of secondary                                                                                                            |  |
| Output Voltage                                       |          | 0.00     | V       | Output Voltage (assumes AC stacked windings)                                                                                                                                     |  |
| Sec 2 Turns                                          |          | 0.00     |         | Secondary winding turns (each phase) AC stacked on top of secondary winding 1                                                                                                    |  |
| Sec 2 RMS current (total, AC+DC)                     |          | 2.2      | Α       | RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding                                                                                  |  |
| Winding current (DC component)                       |          | 0.0      | А       | DC component of winding current                                                                                                                                                  |  |
| Winding current (AC RMS component)                   |          | 0.0      | А       | AC component of winding current                                                                                                                                                  |  |
| Sec 2 Wire gauge                                     |          | 40       | AWG     | Individual wire strand gauge used for secondary winding                                                                                                                          |  |
| Equivalent secondary 2<br>Metric Wire gauge          |          | 0.080    | mm      | Equivalent diameter of wire in metric units                                                                                                                                      |  |
| Sec 2 litz strands                                   |          | 0        |         | Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1                                                                                            |  |
| Resistivity_25 C_sec2                                | <b> </b> | 37290.65 | m-ohm/m | Resistivity in milli-ohms per meter                                                                                                                                              |  |
| Transformer Secondary<br>MLT                         |          | 3.95     | cm      | Mean length per turn                                                                                                                                                             |  |

|                                            |    | T     | 1      |                                                                                                                                                                                           |
|--------------------------------------------|----|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCR_25C_Sec2                               |    | 0.00  | m-ohm  | Estimated resistance per phase at 25 C (for reference)                                                                                                                                    |
| DCR_100C_Sec2                              |    | 0.00  | m-ohm  | Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)                                                                                                           |
| DCR_Ploss_Sec1                             |    | 0.00  | W      | Estimated Power loss due to DC resistance (both secondary halves)                                                                                                                         |
| ACR_Sec2                                   |    | 0.00  | m-ohm  | Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C          |
| ACR_Ploss_Sec2                             |    | 0.00  | W      | Estimated AC copper loss (both secondary halves)                                                                                                                                          |
| Total winding 2 Copper<br>Losses           |    | 0.00  | W      | Total (AC + DC) winding copper loss for both secondary halves                                                                                                                             |
| Capacitor RMS current                      |    | 0.0   | Α      | Output capacitor RMS current                                                                                                                                                              |
| Co2                                        |    | N/A   | uF     | Secondary 2 output capacitor                                                                                                                                                              |
| Capacitor ripple voltage                   |    | N/A   | %      | Peak to Peak ripple voltage on secondary 1 output capacitor                                                                                                                               |
| Output rectifier RMS<br>Current            |    | 0.0   | А      | Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current                                                                           |
| Secondary 2 Layers                         |    | 1.00  |        | Number of layers in secondary 2 Winding                                                                                                                                                   |
| Transformer Loss Calculations              |    |       |        | Does not include fringing flux loss from gap                                                                                                                                              |
| Primary copper loss (from Primary section) |    | 0.24  | W      | Total primary winding copper loss at 85 C                                                                                                                                                 |
| Secondary copper Loss                      |    | 0.10  | W      | Total copper loss in secondary winding                                                                                                                                                    |
| Transformer total copper loss              |    | 0.34  | W      | Total copper loss in transformer (primary + secondary)                                                                                                                                    |
| AW_S                                       |    | 52.67 | mm^2   | Area of window for secondary winding                                                                                                                                                      |
| Secondary Fill Factor                      |    | 89%   | %      | % Fill factor for secondary windings; typical max fill is 60% for served and 75% for unserved Litz                                                                                        |
| Signal Pins Resistor Valu                  | es |       |        | 10 00 70 101 001 100 0110 0110 0110 011                                                                                                                                                   |
| f_min                                      |    | 100   | kHz    | Minimum frequency when optocoupler is cut-off. Only change this variable based on actual bench measurements                                                                               |
| Dead Time                                  |    | 320   | ns     | Dead time                                                                                                                                                                                 |
| Burst Mode                                 | 1  | 1     |        | Select Burst Mode: 1, 2, and 3 have hysteresis and have different frequency thresholds                                                                                                    |
| f_max                                      |    | 847   | kHz    | Max internal clock frequency, dependent on dead-<br>time setting. Is also start-up frequency                                                                                              |
| f_burst_start                              |    | 382.4 | kHz    | Lower threshold frequency of burst mode, provides hysteresis. This is switching frequency at restart after a bursting off-period                                                          |
| f_burst_stop                               |    | 437.0 | kHz    | Upper threshold frequency of burst mode; This is switching frequency at which a bursting off-period stops                                                                                 |
| DT/BF pin upper divider resistor           |    | 6.79  | k-ohms | Resistor from DT/BF pin to VREF pin                                                                                                                                                       |
| DT/BF pin lower divider resistor           |    | 129.1 | k-ohms | Resistor from DT/BF pin to G pin                                                                                                                                                          |
| Rstart                                     |    | 5.79  | k-ohms | Start-up resistor - resistor in series with soft-start capacitor; equivalent resistance from FB to VREF pins at startup. Use default value unless additional start-up delay is desired.   |
| Start up delay                             |    | 0.0   | ms     | Start-up delay; delay before switching begins. Reduce R_START to increase delay                                                                                                           |
| Rfmin                                      |    | 78.3  | k-ohms | Resistor from VREF pin to FB pin, to set min operating frequency; This resistor plus Rstart determine f_MIN. Includes 7% HiperLCS frequency tolerance to ensure f_min is below f_brownout |
| C_softstart                                |    | 0.33  | uF     | Softstart capacitor. Recommended values are between 0.1 uF and 0.47 uF                                                                                                                    |



| Ropto   1.2 k-ohms   Resistor in series with opto emitter   OV/IV pin puper resistor   20.00   20.00 k-ohm   20.00 | Donto                         | П            |            | 1.2  | l. share | Decision in annia with anti-                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|------------|------|----------|----------------------------------------------------------|
| Ov/LIV pin upper resistor   3.45   M-ohm   Total upper resistance in Ov/LIV pin divider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 20.00        |            |      |          |                                                          |
| Siow current limit   3.00   3.00   A   B-cycle current limit - check positive half-cycles during brownout and startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles during startup   Cycle current limit - check positive half-cycles   Cycle current   Cycle current limit - check positive half-cycles   Cycle curren   |                               | 20.00        |            |      |          |                                                          |
| Solve current limit   3.00   3.00   A   B-cycle current limit - check positive half-cycles during brownout and startup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | rront Conc   | . Circuit  | 3.43 | IM-OHIH  | Total upper resistance in Ov/Ov pin divider              |
| LLC sense capacitor   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |              | e Circuit  | 3.00 | А        |                                                          |
| RLLC sense resistor 42.7 ohms capacitor  Is pin current limit resistor 220 ohms LLC current sense resistor, senses current in sense capacitor  Is pin current limit resistor 220 ohms LLC current sense resistor, senses current in sense capacitor  Is pin noise filter capacitor 1.0 nF Is pin bypass capacitor; forms a pole with IS pin voltage on sense R is < -0.5V visual packetor 1.5 pin noise filter capacitor 1.5 pin noise filter pole frequency  Loss Budget 1.5 W Conduction loss at nominal line and full load  Output diode Loss 1.9 W Estimated diode losses  Transformer estimated 1.5 W Conduction loss at nominal line and full load 1.5 W Estimated diode losses 1.9 W Estimated diode losses 1.5 V Estimated core loss 1.5 V Estimated Efficiency 1.5 V Estimated | Fast current limit            |              |            | 5.40 | Α        |                                                          |
| IS pin current limit resistor  IS pin current limit resistor  IS pin noise filter capacitor  IS pin noise filter pole frequency  Loss Budget  LOS device Conduction loss  Output diode Loss  1.5  W Conduction loss at nominal line and full load  Cotagour conduction loss  Output diode Loss  1.9  W Estimated diode losses  Total copper loss in transformer (primary + secondary)  Transformer estimated total corper loss in transformer (primary + secondary)  Transformer estimated total core loss  Total transformer losses  1.9  W Total transformer losses  Total estimated Efficiency  PIN  132  W LC input power  This is to help you choose the secondary turns  Secondary Turns and Voltage Centering Calculator  V1  46.00  V Estimated Gifticiency  V1  46.00  V Estimated of Losse  Target regulated output voltage Vo1. Change to see effect on slave output  V1  V1  V2  0.00  Total number of turns for Vo1  V2  0.00  V2  1.00  V3  Separate Series Inductor (For Non-Integrated Transformer Only)  Separate Series Inductor (For Non-Integrated Transformer Only)  BP_finom  152  M Estimated of separate Inductor  Actual  | LLC sense capacitor           |              |            | 47   | pF       |                                                          |
| Is pin noise filter capacitor  Is pin noise filter capacitor  Is pin noise filter capacitor  Is pin noise filter pole frequency  Is pin noise filter pole with Is pin signal file and full load  Is pin noise filter pole frequency  Is pin noise filter pole with Is pin signal  Is pin noise filter pole with Is pin signal  | RLLC sense resistor           |              |            | 42.7 | ohms     |                                                          |
| IS pin noise filter capacitor IS pin noise filter capacitor IS pin noise filter pole frequency  Loss Budget LCS device Conduction loss IS pin noise filter pole frequency  Loss Budget LCS device Conduction loss IS pin noise filter pole frequency  Loss Budget LCS device Conduction loss IS pin Mypass capacitor; forms a pole with IS pin current limit capacitor from a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin current limit capacitor; forms a pole with IS pin signal reference pole in the pin signal reference pole in the pin signal limit pin signal reference pole in the pin signal reference pole in the pin signal reference pole in the pin signal limit pin signal reference pole in signal pin signal reference pole in signal reference pole pol signal reference pol pol signal reference pole pol signal reference pol pol signal reference pol pol signal reference pol pol signal reference pole  | IS pin current limit resistor |              |            | 220  | ohms     |                                                          |
| Image: Comparison of the properties of the pro   | IS pin noise filter capacitor |              |            | 1.0  | nF       | IS pin bypass capacitor; forms a pole with IS pin        |
| Los Budget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |            | 724  | kHz      | This pole attenuates IS pin signal                       |
| Dutput diode Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |              |            |      |          |                                                          |
| Transformer estimated total copper loss in transformer (primary + secondary) Transformer estimated total core loss  1.5 W Estimated core loss Total transformer losses  1.9 W Total transformer losses Total transformer losses  Total transformer losses  1.9 W Total transformer losses Total transformer losses  Total transformer losses  Sesimated Efficiency 1 132 W LLC input power  Film 1 32 W LLC input power  This is to help you choose the secondary turns  - Outputs not connected to any other part of spreadsheet  This is to help you choose the secondary turns  - Outputs not connected to any other part of spreadsheet  Transformer only  Transformer losses  46.00 V Transformer losses  This is to help you choose the secondary turns  - Outputs not connected to any other part of spreadsheet  Transformer only Diode drop voltage for Vo1. Change to see effect on slave output  Valuation  Valu | LCS device Conduction loss    |              |            | 1.5  | W        | Conduction loss at nominal line and full load            |
| total copper loss Transformer estimated total core loss Total transformer losses Total estimated losses Total estimated losses Total estimated losses Total estimated losses Sesimated Efficiency PIN Total transformer losses Total estimated losses Estimated Efficiency PIN Total transformer losses Estimated Efficiency PIN Total transformer losses Estimated Efficiency PIN Total transformer losses Total estimated losses Estimated Efficiency PIN Total transformer losses Estimated Efficiency PIN Total transformer losses Estimated Efficiency PIN Total losses in LLC stage Estimated efficiency LLC input power This is to help you choose the secondary turns - Outputs not connected to any other part of spreadsheet PIN Total number of loss along turns - Outputs not connected to any other part of spreadsheet PIN Total number of loss along turns - Outputs not connected to any other part of spreadsheet PIN Total number of turns for Vo1 Total number of turns for Vo1 Total number of turns for Vo1 Total number of turns for Vo2 Total number of turns for Vo3 Total number of primary turns Total number of primary current Total number of primary current Total number of wire in metric units Total number of parallel individual wires to make up Litz wire Total number of parallel individual wires to make up Litz wire Total number of parallel individual wires to make up Litz wire Total number of parallel individual wires to make up Litz wire Total number of parallel individual wires to make up Litz wire Total number of parallel individual w | Output diode Loss             |              |            | 1.9  | W        | Estimated diode losses                                   |
| total core loss  Total transformer losses  1.9 W Total transformer losses  Total estimated losses  5.3 W Total losses in LLC stage  Estimated Efficiency  PIN  132 W LLC input power  This is to help you choose the secondary turns  Secondary Turns and Voltage Centering Calculator  Secondary Turns and Voltage Centering Calculator  V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |              |            | 0.34 | W        |                                                          |
| Total estimated losses   5.3   W   Total losses in LLC stage   Estimated Efficiency   96%   96   Estimated efficiency   132   W   LLC input power   LLC inpu |                               |              |            | 1.5  | W        | Estimated core loss                                      |
| Estimated Efficiency PIN 132 W LLC input power  Secondary Turns and Voltage Centering Calculator  V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total transformer losses      |              |            |      | W        | Total transformer losses                                 |
| PIN   132   W   LLC input power   This is to help you choose the secondary turns   This is to help you choose the secondary turns   Coutputs not connected to any other part of spreadsheet   Spreadsheet   Target regulated output voltage Vo1. Change to see effect on slave output   Voltage Vo2. Change to see effect on slave output   Voltage Vo2. Change to see effect on slave output   Voltage Vo3. Change to see effect on slave output   Voltage Vo4. Change to see effect on slave output   Voltage Vo4. Change to see effect on slave output   Voltage Vo4. Change to see effect on slave output   Voltage Vo4. Change to see effect on slave output   Voltage Vo5. Change to see effect on slave output   Voltage Vo6. Change to see effect on slave output   Voltage Vo6. Change to see effect on slave output   Voltage Vo7. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo8. Change to see effect on slave output   Voltage Vo   | Total estimated losses        |              |            |      | W        | Total losses in LLC stage                                |
| Secondary Turns and Voltage Centering Calculator  V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estimated Efficiency          |              |            |      | %        |                                                          |
| Secondary Turns and Voltage Centering Calculator   Spreadsheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PIN                           |              |            | 132  | W        |                                                          |
| V1d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Secondary Turns and Volt      | age Center   | ing Calcul | ator | T        | - Outputs not connected to any other part of spreadsheet |
| N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |              |            |      | -        | effect on slave output                                   |
| V1_Actaul   V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |              |            |      | V        |                                                          |
| V2       0.00       V       Target output voltage Vo2         V2d2       0.70       V       Diode drop voltage for Vo2         N2       1.00       Total number of turns for Vo2         V2_Actual       4.49       V       Expected output voltage         Separate Series Inductor (For Non-Integrated Transformer Only)         Lsep       124.00       uH       Desired inductance of separate inductor         Ae_Ind       0.53       cm^2       Inductor core cross-sectional area         Inductor turns       24       Number of primary turns         BP_fnom       152       mT       AC flux for core loss calculations (at f_predicted and full load)         Expected peak primary current       3.0       A       Expected peak primary current         BP_fmin       295       mT       Peak flux density, calculated at minimum frequency fmin         Inductor Litz gauge       41       AWG       Individual wire strand gauge used for primary winding         Equivalent Inductor Metric Wire gauge       0.070       mm       Equivalent diameter of wire in metric units         Inductor litz strands       125       Number of strands used in Litz wire         Inductor parallel wires       1       Number of parallel individual wires to make up Litz wire         Resistivit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |              |            |      |          |                                                          |
| V2d2       0.70       V       Diode drop voltage for Vo2         N2       1.00       Total number of turns for Vo2         V2_Actual       4.49       V       Expected output voltage         Separate Series Inductor (For Non-Integrated Transformer Only)       Not applicable if using integrated magnetics not connected to any other part of spreadsheet         Lsep       124.00       uH       Desired inductance of separate inductor         Ae_Ind       0.53       cm^2       Inductor core cross-sectional area         Inductor turns       24       Number of primary turns         BP_fnom       152       mT       AC flux for core loss calculations (at f_predicted and full load)         Expected peak primary current       3.0       A       Expected peak primary current         BP_fmin       295       mT       Peak flux density, calculated at minimum frequency fmin         Inductor Litz gauge       41       AWG       Individual wire strand gauge used for primary winding         Equivalent Inductor Metric Wire gauge       0.070       mm       Equivalent diameter of wire in metric units         Inductor litz strands       125       Number of strands used in Litz wire         Inductor parallel wires       1       Number of parallel individual wires to make up Litz wire         Resistivity_25 C_Sep_Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |              |            |      |          |                                                          |
| N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | ļ            |            |      |          | Target output voltage Vo2                                |
| V2_Actual   4.49   V   Expected output voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | $\vdash$     |            |      | V        |                                                          |
| Separate Series Inductor (For Non-Integrated Transformer Only)  Lsep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |              |            |      |          |                                                          |
| Lsep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V2_Actual                     |              |            | 4.49 | <u> </u> |                                                          |
| Ae_Ind       0.53       cm^2       Inductor core cross-sectional area         Inductor turns       24       Number of primary turns         BP_fnom       152       mT       AC flux for core loss calculations (at f_predicted and full load)         Expected peak primary current       3.0       A       Expected peak primary current         BP_fmin       295       mT       Peak flux density, calculated at minimum frequency fmin         Inductor Litz gauge       41       AWG       Individual wire strand gauge used for primary winding         Equivalent Inductor Metric Wire gauge       0.070       mm       Equivalent diameter of wire in metric units         Inductor litz strands       125       Number of strands used in Litz wire         Inductor parallel wires       1       Number of parallel individual wires to make up Litz wire         Resistivity_25 C_Sep_Ind       37.6       m-ohm/m       Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Separate Series Inductor      | (For Non-I   | ntegrated  |      | r Only)  | not connected to any other part of spreadsheet           |
| Inductor turns       24       Number of primary turns         BP_fnom       152       mT       AC flux for core loss calculations (at f_predicted and full load)         Expected peak primary current       3.0       A       Expected peak primary current         BP_fmin       295       mT       Peak flux density, calculated at minimum frequency fmin         Inductor Litz gauge       41       AWG       Individual wire strand gauge used for primary winding         Equivalent Inductor Metric Wire gauge       0.070       mm       Equivalent diameter of wire in metric units         Inductor litz strands       125       Number of strands used in Litz wire         Inductor parallel wires       1       Number of parallel individual wires to make up Litz wire         Resistivity_25 C_Sep_Ind       37.6       m-ohm/m       Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |              |            |      |          |                                                          |
| BP_fnom 152 mT AC flux for core loss calculations (at f_predicted and full load)  Expected peak primary current 3.0 A Expected peak primary current  BP_fmin 295 mT Peak flux density, calculated at minimum frequency fmin  Inductor Litz gauge 41 AWG Individual wire strand gauge used for primary winding  Equivalent Inductor Metric Wire gauge 0.070 mm Equivalent diameter of wire in metric units  Inductor litz strands 125 Number of strands used in Litz wire  Inductor parallel wires 1 Number of parallel individual wires to make up Litz wire  Resistivity_25 C_Sep_Ind 37.6 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | <b></b>      |            |      | cm^2     |                                                          |
| Expected peak primary current  3.0 A Expected peak primary current  BP_fmin  295 mT Peak flux density, calculated at minimum frequency fmin  Inductor Litz gauge  41 AWG Individual wire strand gauge used for primary winding  Equivalent Inductor Metric Wire gauge  Inductor litz strands  125 Number of strands used in Litz wire  Resistivity_25 C_Sep_Ind  37.6 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inductor turns                | ļ            |            | 24   |          |                                                          |
| current  BP_fmin  295  mT  Peak flux density, calculated at minimum frequency fmin  Inductor Litz gauge  41  AWG  Individual wire strand gauge used for primary winding  Equivalent Inductor Metric Wire gauge  Inductor litz strands  125  Number of strands used in Litz wire  Inductor parallel wires  Resistivity_25 C_Sep_Ind  37.6  m-ohm/m  Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |              |            | 152  | mT       |                                                          |
| Inductor Litz gauge  41 AWG Individual wire strand gauge used for primary winding  Equivalent Inductor Metric Wire gauge  Inductor litz strands  Inductor litz strands  Inductor parallel wires  1 Number of strands used in Litz wire  Number of parallel individual wires to make up Litz wire  Resistivity_25 C_Sep_Ind  37.6 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |              |            | 3.0  | Α        | , , , , ,                                                |
| Equivalent Inductor Metric Wire gauge  Equivalent Inductor Metric Wire gauge  Inductor litz strands  Inductor parallel wires  Resistivity_25 C_Sep_Ind  Minding  Equivalent diameter of wire in metric units  Number of strands used in Litz wire  Number of parallel individual wires to make up Litz wire  Resistivity_25 C_Sep_Ind  37.6 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BP_fmin                       |              |            | 295  | mT       | fmin                                                     |
| Wire gauge     0.070     mm     Equivalent diameter or wire in metric units       Inductor litz strands     125     Number of strands used in Litz wire       Inductor parallel wires     1     Number of parallel individual wires to make up Litz wire       Resistivity_25 C_Sep_Ind     37.6     m-ohm/m     Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inductor Litz gauge           |              |            | 41   | AWG      | 5 5 ,                                                    |
| Inductor parallel wires     1     Number of parallel individual wires to make up Litz wire       Resistivity_25 C_Sep_Ind     37.6     m-ohm/m     Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wire gauge                    |              |            |      | mm       |                                                          |
| Resistivity_25 C_Sep_Ind 37.6 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inductor litz strands         | $oxed{\Box}$ |            | 125  |          |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                      |              |            | 1    |          | wire                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |              |            |      |          |                                                          |



| Inductor DCR 25 C    |      | 63.2     | m-ohm      | Estimated resistance at 25 C (for reference)                                |
|----------------------|------|----------|------------|-----------------------------------------------------------------------------|
| Inductor DCR 100 C   |      | 84.7     | m-ohm      | Estimated resistance at 100 C (approximately 33%                            |
| Inductor Bell 100 C  |      | 01.7     | 111 011111 | higher than at 25 C)                                                        |
|                      |      |          |            | Measured AC resistance (at 100 kHz, room                                    |
| ACR_Sep_Inductor     |      | 135.5    | m-ohm      | temperature), multiply by 1.33 to approximate 100 C                         |
|                      |      | 0.14     | 147        | winding temperature                                                         |
| Inductor copper loss |      | 0.14     | W          | Total primary winding copper loss at 85 C                                   |
| Feedback section     | T    | <u> </u> | T          |                                                                             |
| VMAIN                | Auto | 46.00    |            | Output voltage rail that optocoupler LED is connected to                    |
| ITL431_BIAS          |      | 1        | mA         | Minimum operating current in TL431 cathode                                  |
| VF                   |      | 1        | V          | Typical Optocoupler LED forward voltage at                                  |
|                      |      |          | -          | IOPTO_BJTMAX (max current)                                                  |
| VCE_SAT              |      | 0.3      | V          | Optocoupler transistor saturation voltage                                   |
| CTR_MIN              |      | 0.8      |            | Optocoupler minimum CTR at VCE_SAT and at IOPTO_BJT_MAX                     |
| VTL431_SAT           |      | 2.5      | V          | TL431 minimum cathode voltage when saturated                                |
| RLED_SHUNT           |      | 1        | k-ohms     | Resistor across optocoupler LED to ensure minimum TL431 bias current is met |
| ROPTO_LOAD           |      | 4.70     | k-ohms     | Resistor from optocoupler emitter to ground, sets                           |
| 110110_2010          |      | 1.70     | K OIIIIS   | load current                                                                |
| IFMAX                |      | 347.08   | uA         | FB pin current when switching at FMAX (e.g. startup)                        |
| IOPTO_BJT_MAX        |      | 0.97     | mA         | Optocoupler transistor maximum current - when                               |
|                      |      |          |            | bursting at FMAX (e.g. startup)                                             |
|                      |      |          |            | Maximum value of gain setting resistor, in series                           |
| RLED_SERIES_MAX      |      | 17.29    | k-ohms     | with optocoupler LED, to ensure optocoupler can                             |
|                      |      |          |            | deliver IOPTO_BJT_MAX. Includes -10% tolerance factor.                      |
|                      |      |          |            | Tactori                                                                     |

#### Maximum Output Voltage / Output Power (54 V) Spreadsheet 11.4

| HiperLCS_042413;<br>Rev.1.3; Copyright<br>Power Integrations<br>2013 | INPUTS     | INFO      | OUTPUTS       | UNITS        | HiperLCS_042413_Rev1-3.xls; HiperLCS Half-<br>Bridge, Continuous mode LLC Resonant<br>Converter Design Spreadsheet                                                                                                                        |
|----------------------------------------------------------------------|------------|-----------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Enter Input Parameters</b>                                        |            | ı         |               |              |                                                                                                                                                                                                                                           |
| Vbulk_nom                                                            | 440        |           | 440           | V            | Nominal LLC input voltage                                                                                                                                                                                                                 |
| Vbrownout                                                            | 330        |           | 330           | V            | Brownout threshold voltage. HiperLCS will shut down if voltage drops below this value. Allowable value is between 65% and 76% of Vbulk_nom. Set to 65% for max holdup time                                                                |
| Vbrownin                                                             |            |           | 416           | ٧            | Startup threshold on bulk capacitor                                                                                                                                                                                                       |
| VOV_shut                                                             |            | Warning   | 548           | V            | !!! Warning. OV shutdown voltage is too high.<br>Reduce Vbulk_nom OR Vbrownout                                                                                                                                                            |
| VOV_restart                                                          |            |           | 528           | V            | Restart voltage after OV protection.                                                                                                                                                                                                      |
| CBULK                                                                | 68.00      |           | 68            | uF           | Minimum value of bulk cap to meet holdup time requirement; Adjust holdup time and Vbrownout to change bulk cap value                                                                                                                      |
| tHOLDUP                                                              |            |           | 18.7          | ms           | Bulk capacitor hold up time                                                                                                                                                                                                               |
| Enter LLC (secondary) outputs                                        |            |           |               |              | The spreadsheet assumes AC stacking of the secondaries                                                                                                                                                                                    |
| VO1                                                                  | 54.00      |           | 54.00         | ٧            | Main Output Voltage. Spreadsheet assumes that this is the regulated output                                                                                                                                                                |
| IO1                                                                  | 2.75       |           | 2.75          | Α            | Main output maximum current                                                                                                                                                                                                               |
| VD1                                                                  | 0.70       |           | 0.70          | V            | Forward voltage of diode in Main output                                                                                                                                                                                                   |
| PO1                                                                  |            |           | 149           | W            | Output Power from first LLC output                                                                                                                                                                                                        |
| VO2                                                                  |            |           | 0.00          | V            | Second Output Voltage                                                                                                                                                                                                                     |
| IO2                                                                  |            |           | 0.00          | Α            | Second output current                                                                                                                                                                                                                     |
| VD2                                                                  |            |           | 0.70          | V            | Forward voltage of diode used in second output                                                                                                                                                                                            |
| PO2                                                                  |            |           | 0.00          | W            | Output Power from second LLC output                                                                                                                                                                                                       |
| P_LLC                                                                |            |           | 149           | W            | Specified LLC output power                                                                                                                                                                                                                |
| LCS Device Selection                                                 | 1.00700    | <u> </u>  | 1.00700       |              | 1.00 p. 1.                                                                                                                                                                                                                                |
| Device                                                               | LCS702     |           | LCS702        | - le se e    | LCS Device                                                                                                                                                                                                                                |
| RDS-ON (MAX)                                                         |            |           | 1.39          | ohms         | RDS-ON (max) of selected device                                                                                                                                                                                                           |
| Coss                                                                 |            |           | 250<br>40     | pF           | Equivalent Coss of selected device                                                                                                                                                                                                        |
| Cpri Pcond_loss                                                      |            |           | 1.9           | pF<br>W      | Stray Capacitance at transformer primary  Conduction loss at nominal line and full load                                                                                                                                                   |
| _                                                                    |            |           | 90            |              |                                                                                                                                                                                                                                           |
| Tmax-hs                                                              |            |           | 90            | deg C        | Maximum heatsink temperature                                                                                                                                                                                                              |
| Theta J-HS                                                           |            |           | 9.1           | deg C/W      | Thermal resistance junction to heatsink (with grease and no insulator)                                                                                                                                                                    |
| Expected Junction temperature                                        |            |           | 107           | deg C        | Expectd Junction temperature                                                                                                                                                                                                              |
| Ta max                                                               |            |           | 50            | deg C        | Expected max ambient temperature                                                                                                                                                                                                          |
| Theta HS-A                                                           | L          |           | 21            | deg C/W      | Required thermal resistance heatsink to ambient                                                                                                                                                                                           |
| LLC Resonant Parameter                                               | and Transf | ormer Cal | culations (ge | enerates red |                                                                                                                                                                                                                                           |
| Vres_target                                                          | 450.00     |           | 450           | V            | Desired Input voltage at which power train operates at resonance. If greater than Vbulk_nom, LLC operates below resonance at VBULK.                                                                                                       |
| Po                                                                   |            |           | 150           | W            | LLC output power including diode loss                                                                                                                                                                                                     |
| Vo                                                                   |            |           | 54.70         | V            | Main Output voltage (includes diode drop) for calculating Nsec and turns ratio                                                                                                                                                            |
| f_target                                                             | 120.00     |           | 120           | kHz          | Desired switching frequency at Vbulk_nom. 66 kHz to 300 kHz, recommended 180-250 kHz                                                                                                                                                      |
| Lpar                                                                 |            |           | 366           | uH           | Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for non-integrated low-leakage transformer)                                                                                                             |
| Lpri                                                                 | 490.00     |           | 490           | uH           | Primary open circuit inductance for integrated transformer; for low-leakage transformer it is sum of primary inductance and series inductor. If left blank, auto-calculation shows value necessary for slight loss of ZVS at ~80% of Vnom |

|                                                        | 1          |             | ı      | T   |                                                                                                                                                                                       |
|--------------------------------------------------------|------------|-------------|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | 124.00     |             | 124.0  | uH  | Series inductance or primary leakage inductance of integrated transformer; if left blank auto-calculation is for K=4                                                                  |
| Kratio                                                 |            |             | 3.0    |     | Ratio of Lpar to Lres. Maintain value of K such that 2.1 < K < 11. Preferred Lres is such that K<7.                                                                                   |
| Cres                                                   | 12.00      |             | 12.0   | nF  | Series resonant capacitor. Red background cells produce red graph. If Lpar, Lres, Cres, and n_RATIO_red_graph are left blank, they will be auto-calculated                            |
| Lsec                                                   | 16.300     |             | 16.300 | uH  | Secondary side inductance of one phase of main output; measure and enter value, or adjust value until f_predicted matches what is measured;                                           |
| 15                                                     |            |             | 41     | %   | Leakage distribution factor (primary to secondary). >50% signifies most of the leakage is in primary side. Gap physically under secondary yields >50%, requiring fewer primary turns. |
| n_eq                                                   |            |             | 4.74   |     | Turns ratio of LLC equivalent circuit ideal transformer                                                                                                                               |
| Npri                                                   | 45.0       |             | 45.0   |     | Primary number of turns; if input is blank, default value is auto-calculation so that f_predicted = f_target and m=50%                                                                |
| Nsec                                                   | 8.0        |             | 8.0    |     | Secondary number of turns (each phase of Main output). Default value is estimate to maintain BAC<=200 mT, using selected core (below)                                                 |
| f_predicted                                            |            |             | 109    | kHz | Expected frequency at nominal input voltage and full load; Heavily influenced by n_eq and primary turns                                                                               |
| f_res                                                  |            |             | 130    | kHz | Series resonant frequency (defined by series inductance Lres and C)                                                                                                                   |
| f_brownout                                             |            |             | 92     | kHz | Expected switching frequency at Vbrownout, full load. Set HiperLCS minimum frequency to this value.                                                                                   |
| f_par                                                  |            |             | 66     | kHz | Parallel resonant frequency (defined by Lpar + Lres and C)                                                                                                                            |
| f_inversion                                            |            |             | 78     | kHz | LLC full load gain inversion frequency. Operation below this frequency results in operation in gain inversion region.                                                                 |
| Vinversion                                             |            |             | 217    | V   | LLC full load gain inversion point input voltage                                                                                                                                      |
| Vres_expected                                          |            | Warning     | 518    | V   | !!! Warning Expected value of VRES is more than 3% away from target value. Adjust Npri, Lsec, or Lpri to fix this problem                                                             |
| RMS Currents and Voltag                                | es         |             | T      |     |                                                                                                                                                                                       |
| IRMS_LLC_Primary                                       |            |             | 1.17   | Α   | Primary winding RMS current at full load, Vbulk_nom and f_predicted                                                                                                                   |
| Winding 1 (Lower<br>secondary Voltage) RMS<br>current  |            |             | 2.2    | А   | Winding 1 (Lower secondary Voltage) RMS current                                                                                                                                       |
| Lower Secondary Voltage<br>Capacitor RMS current       |            |             | 1.5    | А   | Lower Secondary Voltage Capacitor RMS current                                                                                                                                         |
| Winding 2 (Higher<br>secondary Voltage) RMS<br>current |            |             | 0.0    | A   | Winding 2 (Higher secondary Voltage) RMS current                                                                                                                                      |
| Higher Secondary Voltage<br>Capacitor RMS current      |            |             | 0.0    | А   | Higher Secondary Voltage Capacitor RMS current                                                                                                                                        |
| Cres_Vrms                                              |            |             | 141    | V   | Resonant capacitor AC RMS Voltage at full load and nominal input voltage                                                                                                              |
| <b>Virtual Transformer Trial</b>                       | - (generat | es blue cui | rve)   |     |                                                                                                                                                                                       |
| New primary turns                                      |            |             | 45.0   |     | Trial transformer primary turns; default value is from resonant section                                                                                                               |
| New secondary turns                                    |            |             | 8.0    |     | Trial transformer secondary turns; default value is from resonant section                                                                                                             |
| New Lpri                                               |            |             | 490    | uH  | Trial transformer open circuit inductance; default value is from resonant section                                                                                                     |
| New Cres                                               |            |             | 12.0   | nF  | Trial value of series capacitor (if left blank calculated value chosen so f_res same as in main resonant                                                                              |
|                                                        |            |             |        |     |                                                                                                                                                                                       |



|                                                       | 1           | 1          | T                |                |                                                                                                                                   |
|-------------------------------------------------------|-------------|------------|------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                       |             |            |                  |                | section above                                                                                                                     |
| New estimated Lres                                    |             |            | 124.0            | uH             | Trial transformer estimated Lres                                                                                                  |
| New estimated Lpar                                    |             |            | 366              | uH             | Estimated value of Lpar for trial transformer                                                                                     |
| New estimated Lsec                                    |             |            | 16.300           | uH             | Estimated value of secondary leakage inductance                                                                                   |
| New Kratio                                            |             |            | 3.0              |                | Ratio of Lpar to Lres for trial transformer                                                                                       |
| New equivalent circuit transformer turns ratio        |             |            | 4.74             |                | Estimated effective transformer turns ratio                                                                                       |
| V powertrain inversion new                            |             |            | 217              | V              | Input voltage at LLC full load gain inversion point                                                                               |
| f_res_trial                                           |             |            | 130              | kHz            | New Series resonant frequency                                                                                                     |
| f_predicted_trial                                     |             |            | 109              | kHz            | New nominal operating frequency                                                                                                   |
| IRMS_LLC_Primary                                      |             |            | 1.17             | А              | Primary winding RMS current at full load and nominal input voltage (Vbulk) and f_predicted_trial                                  |
| Winding 1 (Lower<br>secondary Voltage) RMS<br>current |             |            | 2.2              | А              | RMS current through Output 1 winding, assuming half sinusoidal waveshape                                                          |
| Lower Secondary Voltage<br>Capacitor RMS current      |             |            | 1.4              | А              | Lower Secondary Voltage Capacitor RMS current                                                                                     |
| Winding 2 (Higher secondary Voltage) RMS current      |             |            | 2.2              | А              | RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding                                   |
| Higher Secondary Voltage<br>Capacitor RMS current     |             |            | 0.0              | Α              | Higher Secondary Voltage Capacitor RMS current                                                                                    |
| Vres_expected_trial                                   |             | Warning    | 518              | V              | !!! Warning. Vres_expected_trial is more than 3% away from target value. Adjust New Primary turns or New Lpri to fix this problem |
| Transformer Core Calcula                              | tions (Calc | ulates Fro | m Resonant       | Parameter 9    | Section)                                                                                                                          |
| Transformer Core                                      | EER28L      |            | EER28L           |                | Transformer Core                                                                                                                  |
| Ae                                                    | 0.97        |            | 0.97             | cm^2           | Enter transformer core cross-sectional area                                                                                       |
| Ve                                                    | 7.64        |            | 7.64             | cm^3           | Enter the volume of core                                                                                                          |
| Aw                                                    | 123.00      |            | 123.0            | mm^2           | Area of window                                                                                                                    |
| Bw                                                    | 20.90       |            | 20.9             | mm             | Total Width of Bobbin                                                                                                             |
| Loss density                                          |             |            | 200.0            | mW/cm^3        | Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3)                                          |
| MLT                                                   |             |            | 4.0              | cm             | Mean length per turn                                                                                                              |
| Nchambers                                             |             |            | 2                |                | Number of Bobbin chambers                                                                                                         |
| Wsep                                                  |             |            | 3.0              | mm             | Winding separator distance (will result in loss of winding area)                                                                  |
| Ploss                                                 |             |            | 1.5              | W              | Estimated core loss                                                                                                               |
|                                                       |             |            | _                | VV             | First Quadrant peak flux density at minimum                                                                                       |
| Bpkfmin                                               |             |            | 192              | mT             | frequency.                                                                                                                        |
| BAC                                                   |             |            | 322              | mT             | AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)                                                      |
| Primary Winding                                       |             |            |                  |                |                                                                                                                                   |
| Npri                                                  |             |            | 45.0             |                | Number of primary turns; determined in LLC resonant section                                                                       |
| Primary gauge                                         | 42          |            | 42               | AWG            | Individual wire strand gauge used for primary winding                                                                             |
| Equivalent Primary Metric<br>Wire gauge               |             |            | 0.060            | mm             | Equivalent diameter of wire in metric units                                                                                       |
| Primary litz strands                                  | 100         |            | 100              |                | Number of strands in Litz wire; for non-litz primary winding, set to 1                                                            |
| Primary Winding Allocation<br>Factor                  |             |            | 50               | %              | Primary window allocation factor - percentage of winding space allocated to primary                                               |
| AW_P                                                  |             |            | 53               | mm^2           | Winding window area for primary                                                                                                   |
| Fill Factor                                           |             |            | 40%              | %              | % Fill factor for primary winding (typical max fill is 60%)                                                                       |
| Resistivity_25 C_Primary                              |             |            | 59.29            | m-ohm/m        | Resistivity in milli-ohms per meter                                                                                               |
|                                                       |             |            |                  |                |                                                                                                                                   |
| Primary DCR 25 C                                      |             | _          | 105.45           | m-ohm          | Estimated resistance at 25 C                                                                                                      |
| Primary DCR 25 C Primary DCR 100 C                    |             |            | 105.45<br>141.30 | m-ohm<br>m-ohm | Estimated resistance at 100 C (approximately 33%                                                                                  |
| -                                                     |             |            |                  |                |                                                                                                                                   |

| Primary copper loss Primary Layers  O.28 W Total primary winding copper loss at 85 C Primary Layers  Secondary Winding 1 (Lower secondary voltage OR Single output)  Output Voltage Sec 1 Turns Sec 1 RMS current (total, AC+DC) Winding current (DC component) Winding current (AC RMS component)  Winding current (AC RMS component)  Sec 1 Wire gauge  40  Lower secondary voltage OR Single output)  Note - Power loss calculations are for winding half of secondary  Output Voltage (assumes AC stacked winding secondary winding turns (each phase)  RMS current through Output 1 winding, assigned half sinusoidal waveshape  DC component of winding current  AC component of winding current  Individual wire strand gauge used for secondary winding  Equivalent secondary 1  O.080  Matrix Wire servers  D.28  W Total primary winding copper loss at 85 C  Total primary winding copper loss at 85 C  Total primary winding copper loss at 85 C  Number of layers in primary winding  Note - Power loss calculations are for winding  Note - Power loss calculations are for winding and secondary 1  Note - Power loss calculations are for winding  Note - Power loss calculations are for winding  Note - Power loss calculations  Note - Power loss  | each<br>ngs)<br>uming |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Primary copper loss 0.28 W Total primary winding copper loss at 85 C Primary Layers 3.91 Number of layers in primary Winding Secondary Winding 1 (Lower secondary voltage OR Single output) Note - Power loss calculations are for winding half of secondary  Output Voltage 54.00 V Output Voltage (assumes AC stacked winding Sec 1 Turns 8.00 Secondary winding turns (each phase )  Sec 1 RMS current (total, AC+DC) A RMS current through Output 1 winding, assimal half sinusoidal waveshape  Winding current (DC component) 1.38 A DC component of winding current  Winding current (AC RMS component) 1.74 A AC component of winding current  Sec 1 Wire gauge 40 AWG Figure 1 Individual wire strand gauge used for second winding Figurivalent diameter of wire in metric units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ngs)<br>uming         |
| Primary Layers  Secondary Winding 1 (Lower secondary voltage OR Single output)  Output Voltage  Sec 1 Turns  Sec 1 RMS current (total, AC+DC)  Winding current (DC component)  Winding current (AC RMS component)  Sec 1 Wire gauge  40  AUG  Note - Power loss calculations are for winding half of secondary  Output Voltage (assumes AC stacked winding Secondary winding turns (each phase)  RMS current through Output 1 winding, assible half sinusoidal waveshape  DC component of winding current  AC component of winding current  Individual wire strand gauge used for secondary and sinusperson of winding current  Figurivalent diameter of wire in metric units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ngs)<br>uming         |
| Secondary Winding 1 (Lower secondary voltage OR Single output)  Output Voltage  Sec 1 Turns  Sec 1 RMS current (total, AC+DC)  Winding current (DC component)  Winding current (AC RMS component)  Sec 1 Wire gauge  40  Note - Power loss calculations are for winding half of secondary  Output Voltage (assumes AC stacked winding Secondary winding turns (each phase)  RMS current through Output 1 winding, assimal half sinusoidal waveshape  DC component of winding current  AC component of winding current  Individual wire strand gauge used for secondary in metric units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngs)<br>uming         |
| Output Voltage 54.00 V Output Voltage (assumes AC stacked winding Sec 1 Turns 8.00 Secondary winding turns (each phase )  Sec 1 RMS current (total, AC+DC) A RMS current through Output 1 winding, assimal half sinusoidal waveshape  Winding current (DC component) 1.38 A DC component of winding current  Winding current (AC RMS component) 1.74 A AC component of winding current  Sec 1 Wire gauge 40 AWG Individual wire strand gauge used for second winding Equivalent secondary 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uming                 |
| Sec 1 Turns  Sec 1 RMS current (total, AC+DC)  Winding current (DC component)  Winding current (AC RMS component)  Sec 1 Wire gauge  40  Sec 1 Turns  Sec 2.2  A  RMS current through Output 1 winding, assimal half sinusoidal waveshape  DC component of winding current  A C component of winding current  Individual wire strand gauge used for second winding  Equivalent secondary 1  C 0.880  RMS current through Output 1 winding, assimal half sinusoidal waveshape  A DC component of winding current  Individual wire strand gauge used for second winding  Equivalent diameter of wire in metric units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uming                 |
| AC+DC)  Winding current (DC component)  Winding current (AC RMS component)  Sec 1 Wire gauge  40  AC+DC)  A half sinusoidal waveshape  DC component of winding current  A C component of winding current  Individual wire strand gauge used for secon winding  Equivalent secondary 1  AC component of winding current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| component)  Winding current (AC RMS component)  Sec 1 Wire gauge  40  40  AWG  Locomponent of winding current  A C component of winding current  Individual wire strand gauge used for secon winding  Equivalent secondary 1  O 080  The provided Home of Winding current  A C component of winding current  A C component of winding current  Figure 1 A C component of winding current  B C Component of winding current  A C component of winding current  A C component of winding current  B C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dary                  |
| component)  Sec 1 Wire gauge  40  40  AWG  AC component of winding current  AC component of winding | dary                  |
| Equivalent secondary 1  O 080  Equivalent diameter of wire in metric units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dary                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Metric wire gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Sec 1 litz strands 350 350 Number of strands used in Litz wire; for nor non-integrated transformer set to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ı-litz                |
| Resistivity_25 C_sec1 10.65 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| DCR_25C_Sec1 3.37 m-ohm Estimated resistance per phase at 25 C (for reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| DCR_100C_Sec1 4.51 m-ohm Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| DCR_Ploss_Sec1 0.07 W Estimated Power loss due to DC resistance (secondary phases)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                     |
| ACR_Sec1  4.72  m-ohm  Measured AC resistance per phase (at 100 k room temperature), multiply by 1.33 to app 100 C winding temperature. Default value of twice the DCR value at 100 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | roximate              |
| ACR_Ploss_Sec1 0.03 W Estimated AC copper loss (both secondary p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| Total winding 1 Copper Losses 0.10 W Total (AC + DC) winding copper loss for bot secondary phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h                     |
| Capacitor RMS current 1.5 A Output capacitor RMS current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| Co1 2.4 uF Secondary 1 output capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| Capacitor ripple voltage  3.0  Peak to Peak ripple voltage on secondary 1 capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                     |
| Output rectifier RMS Current  2.2  A  Schottky losses are a stronger function of locurrent. Sync Rectifier losses are a function current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| Secondary 1 Layers 1.73 Number of layers in secondary 1 Winding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Secondary Winding 2 (Higher secondary voltage)  Note - Power loss calculations are for winding half of secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| Output Voltage 0.00 V Output Voltage (assumes AC stacked windin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Sec 2 Turns  0.00  Secondary winding turns (each phase) AC s on top of secondary winding 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| Sec 2 RMS current (total, AC+DC)  AC+DC  AC+ |                       |
| Winding current (DC component)  0.0  A  DC component of winding current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| Winding current (AC RMS component)  0.0  A AC component of winding current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| Sec 2 Wire gauge  40 AWG Individual wire strand gauge used for secon winding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dary                  |
| Equivalent secondary 2 Metric Wire gauge  0.080 mm Equivalent diameter of wire in metric units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| Sec 2 litz strands  0 Number of strands used in Litz wire; for nor non-integrated transformer set to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı-litz                |
| Resistivity_25 C_sec2 37290.65 m-ohm/m Resistivity in milli-ohms per meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| Transformer Secondary MLT 3.95 cm Mean length per turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |



| DCR_25C_Sec2                               |        | 0.00  | m-ohm  | Estimated resistance per phase at 25 C (for reference)                                                                                                                                    |
|--------------------------------------------|--------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCR_100C_Sec2                              |        | 0.00  | m-ohm  | Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)                                                                                                           |
| DCR_Ploss_Sec1                             |        | 0.00  | W      | Estimated Power loss due to DC resistance (both secondary halves)                                                                                                                         |
| ACR_Sec2                                   |        | 0.00  | m-ohm  | Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C          |
| ACR_Ploss_Sec2                             |        | 0.00  | W      | Estimated AC copper loss (both secondary halves)                                                                                                                                          |
| Total winding 2 Copper<br>Losses           |        | 0.00  | W      | Total (AC + DC) winding copper loss for both secondary halves                                                                                                                             |
| Capacitor RMS current                      |        | 0.0   | Α      | Output capacitor RMS current                                                                                                                                                              |
| Co2                                        |        | N/A   | uF     | Secondary 2 output capacitor                                                                                                                                                              |
| Capacitor ripple voltage                   |        | N/A   | %      | Peak to Peak ripple voltage on secondary 1 output capacitor                                                                                                                               |
| Output rectifier RMS<br>Current            |        | 0.0   | А      | Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current                                                                           |
| Secondary 2 Layers                         |        | 1.00  |        | Number of layers in secondary 2 Winding                                                                                                                                                   |
| Transformer Loss Calcula                   | ations |       |        | Does not include fringing flux loss from gap                                                                                                                                              |
| Primary copper loss (from Primary section) |        | 0.28  | W      | Total primary winding copper loss at 85 C                                                                                                                                                 |
| Secondary copper Loss                      |        | 0.10  | W      | Total copper loss in secondary winding                                                                                                                                                    |
| Transformer total copper loss              |        | 0.38  | W      | Total copper loss in transformer (primary + secondary)                                                                                                                                    |
| AW_S                                       |        | 52.67 | mm^2   | Area of window for secondary winding                                                                                                                                                      |
| Secondary Fill Factor                      |        | 89%   | %      | % Fill factor for secondary windings; typical max fill is 60% for served and 75% for unserved Litz                                                                                        |
| Signal Pins Resistor Valu                  | es     |       |        |                                                                                                                                                                                           |
| f_min                                      |        | 92    | kHz    | Minimum frequency when optocoupler is cut-off. Only change this variable based on actual bench measurements                                                                               |
| Dead Time                                  |        | 320   | ns     | Dead time                                                                                                                                                                                 |
| Burst Mode                                 | 1      | 1     |        | Select Burst Mode: 1, 2, and 3 have hysteresis and have different frequency thresholds                                                                                                    |
| f_max                                      |        | 847   | kHz    | Max internal clock frequency, dependent on dead-<br>time setting. Is also start-up frequency                                                                                              |
| f_burst_start                              |        | 382.4 | kHz    | Lower threshold frequency of burst mode, provides hysteresis. This is switching frequency at restart after a bursting off-period                                                          |
| f_burst_stop                               |        | 437.0 | kHz    | Upper threshold frequency of burst mode; This is switching frequency at which a bursting off-period stops                                                                                 |
| DT/BF pin upper divider resistor           |        | 6.79  | k-ohms | Resistor from DT/BF pin to VREF pin                                                                                                                                                       |
| DT/BF pin lower divider resistor           |        | 129.1 | k-ohms | Resistor from DT/BF pin to G pin                                                                                                                                                          |
| Rstart                                     |        | 5.79  | k-ohms | Start-up resistor - resistor in series with soft-start capacitor; equivalent resistance from FB to VREF pins at startup. Use default value unless additional start-up delay is desired.   |
| Start up delay                             |        | 0.0   | ms     | Start-up delay; delay before switching begins.<br>Reduce R_START to increase delay                                                                                                        |
| Rfmin                                      |        | 86.0  | k-ohms | Resistor from VREF pin to FB pin, to set min operating frequency; This resistor plus Rstart determine f_MIN. Includes 7% HiperLCS frequency tolerance to ensure f_min is below f_brownout |
| C_softstart                                |        | 0.33  | uF     | Softstart capacitor. Recommended values are between 0.1 uF and 0.47 uF                                                                                                                    |
| Ropto                                      |        | 1.2   | k-ohms | Resistor in series with opto emitter                                                                                                                                                      |
|                                            |        |       |        |                                                                                                                                                                                           |

| OV/UV pin lower resistor                                      | 20.00         | 20.0               | k-ohm         | Lower resistor in OV/UV pin divider                                                                     |
|---------------------------------------------------------------|---------------|--------------------|---------------|---------------------------------------------------------------------------------------------------------|
| OV/UV pin upper resistor                                      | 20.00         | 3.45               | M-ohm         | Total upper resistance in OV/UV pin divider                                                             |
| LLC Capacitive Divider Cu                                     | rrent Sense ( |                    | 11 01         | Total appel resistance in 6 1/61 pin aivider                                                            |
| Slow current limit                                            | 3.00          | 3.00               | А             | 8-cycle current limit - check positive half-cycles during brownout and startup                          |
| Fast current limit                                            |               | 5.40               | А             | 1-cycle current limit - check positive half-cycles during startup                                       |
| LLC sense capacitor                                           |               | 47                 | pF            | HV sense capacitor, forms current divider with main resonant capacitor                                  |
| RLLC sense resistor                                           |               | 42.7               | ohms          | LLC current sense resistor, senses current in sense capacitor                                           |
| IS pin current limit resistor                                 |               | 220                | ohms          | Limits current from sense resistor into IS pin when voltage on sense R is < -0.5V                       |
| IS pin noise filter capacitor                                 |               | 1.0                | nF            | IS pin bypass capacitor; forms a pole with IS pin current limit capacitor                               |
| IS pin noise filter pole                                      |               | 724                | kHz           | This pole attenuates IS pin signal                                                                      |
| frequency                                                     |               | 721                | 10.12         | This pole attendates to pin signal                                                                      |
| Loss Budget                                                   | 1             |                    |               |                                                                                                         |
| LCS device Conduction loss                                    |               | 1.9                | W             | Conduction loss at nominal line and full load                                                           |
| Output diode Loss                                             |               | 1.9                | W             | Estimated diode losses                                                                                  |
| Transformer estimated total copper loss                       |               | 0.38               | W             | Total copper loss in transformer (primary + secondary)                                                  |
| Transformer estimated total core loss                         |               | 1.5                | W             | Estimated core loss                                                                                     |
| Total transformer losses                                      |               | 1.9                | W             | Total transformer losses                                                                                |
| Total estimated losses                                        |               | 5.7                | W             | Total losses in LLC stage                                                                               |
| Estimated Efficiency                                          |               | 96%                | %             | Estimated efficiency                                                                                    |
| PIN                                                           |               | 154                | W             | LLC input power                                                                                         |
| Secondary Turns and Volt                                      | tage Centerin | g Calculator       |               | This is to help you choose the secondary turns - Outputs not connected to any other part of spreadsheet |
| V1                                                            |               | 54.00              | V             | Target regulated output voltage Vo1. Change to see effect on slave output                               |
| V1d1                                                          |               | 0.70               | V             | Diode drop voltage for Vo1                                                                              |
| N1                                                            |               | 9.00               |               | Total number of turns for Vo1                                                                           |
| V1_Actaul                                                     |               | 54.00              | V             | Expected output                                                                                         |
| V2                                                            |               | 0.00               | V             | Target output voltage Vo2                                                                               |
| V2d2                                                          |               | 0.70               | V             | Diode drop voltage for Vo2                                                                              |
| N2                                                            |               | 1.00               |               | Total number of turns for Vo2                                                                           |
| V2_Actual                                                     |               | 5.38               | V             | Expected output voltage                                                                                 |
| Separate Series Inductor                                      | (For Non-Int  | egrated Transforme | er Only)      | Not applicable if using integrated magnetics -<br>not connected to any other part of<br>spreadsheet     |
| Lsep                                                          |               | 124.00             | uH            | Desired inductance of separate inductor                                                                 |
| Ae_Ind                                                        | 1             | 0.53               | cm^2          | Inductor core cross-sectional area                                                                      |
| Inductor turns                                                |               | 24                 |               | Number of primary turns                                                                                 |
| BP_fnom                                                       |               | 172                | mT            | AC flux for core loss calculations (at f_predicted and full load)                                       |
| Expected peak primary current                                 |               | 3.0                | А             | Expected peak primary current                                                                           |
| BP_fmin                                                       |               | 295                | mT            | Peak flux density, calculated at minimum frequency fmin                                                 |
| Inductor Litz gauge                                           |               | 41                 | AWG           | Individual wire strand gauge used for primary winding                                                   |
| Equivalent Inductor Metric<br>Wire gauge                      |               | 0.070              | mm            | Equivalent diameter of wire in metric units                                                             |
| Inductor litz strands                                         |               | 125                |               | Number of strands used in Litz wire                                                                     |
| Inductor parallel wires                                       |               | 1                  |               | Number of parallel individual wires to make up Litz wire                                                |
|                                                               |               |                    |               |                                                                                                         |
| Resistivity_25 C Sep Ind                                      |               | 37.6               | m-ohm/m       | Resistivity in milli-ohms per meter                                                                     |
| Resistivity_25 C_Sep_Ind<br>Inductor MLT                      |               | 37.6<br>7.00       | m-ohm/m<br>cm | Resistivity in milli-ohms per meter  Mean length per turn                                               |
| Resistivity_25 C_Sep_Ind<br>Inductor MLT<br>Inductor DCR 25 C |               |                    |               | Resistivity in milli-ohms per meter  Mean length per turn  Estimated resistance at 25 C (for reference) |



| Inductor DCR 100 C   |      | 84.7   | m-ohm  | Estimated resistance at 100 C (approximately 33% higher than at 25 C)                                                                                    |
|----------------------|------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACR_Sep_Inductor     |      | 135.5  | m-ohm  | Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature                                         |
| Inductor copper loss |      | 0.18   | W      | Total primary winding copper loss at 85 C                                                                                                                |
| Feedback section     |      |        |        |                                                                                                                                                          |
| VMAIN                | Auto | 54.00  |        | Output voltage rail that optocoupler LED is connected to                                                                                                 |
| ITL431_BIAS          |      | 1      | mA     | Minimum operating current in TL431 cathode                                                                                                               |
| VF                   |      | 1      | V      | Typical Optocoupler LED forward voltage at IOPTO_BJTMAX (max current)                                                                                    |
| VCE_SAT              |      | 0.3    | V      | Optocoupler transistor saturation voltage                                                                                                                |
| CTR_MIN              |      | 0.8    |        | Optocoupler minimum CTR at VCE_SAT and at IOPTO_BJT_MAX                                                                                                  |
| VTL431_SAT           |      | 2.5    | V      | TL431 minimum cathode voltage when saturated                                                                                                             |
| RLED_SHUNT           |      | 1      | k-ohms | Resistor across optocoupler LED to ensure minimum TL431 bias current is met                                                                              |
| ROPTO_LOAD           |      | 4.70   | k-ohms | Resistor from optocoupler emitter to ground, sets load current                                                                                           |
| IFMAX                |      | 347.08 | uA     | FB pin current when switching at FMAX (e.g. startup)                                                                                                     |
| IOPTO_BJT_MAX        |      | 0.97   | mA     | Optocoupler transistor maximum current - when bursting at FMAX (e.g. startup)                                                                            |
| RLED_SERIES_MAX      |      | 20.53  | k-ohms | Maximum value of gain setting resistor, in series with optocoupler LED, to ensure optocoupler can deliver IOPTO_BJT_MAX. Includes -10% tolerance factor. |

11.5 Minimum Output Voltage / Power (39 V) Spreadsheet

| HiperLCS_042413;<br>Rev.1.3; Copyright<br>Power Integrations<br>2013 | INPUTS      | INFO        | OUTPUTS      | UNITS       | HiperLCS_042413_Rev1-3.xls; HiperLCS<br>Half-Bridge, Continuous mode LLC Resonant<br>Converter Design Spreadsheet                                                                                      |
|----------------------------------------------------------------------|-------------|-------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Enter Input Parameters</b>                                        |             |             |              |             |                                                                                                                                                                                                        |
| Vbulk_nom                                                            | 440         |             | 440          | V           | Nominal LLC input voltage                                                                                                                                                                              |
| Vbrownout                                                            | 330         |             | 330          | V           | Brownout threshold voltage. HiperLCS will shut down if voltage drops below this value. Allowable value is between 65% and 76% of Vbulk_nom. Set to 65% for max holdup time                             |
| Vbrownin                                                             |             |             | 416          | V           | Startup threshold on bulk capacitor                                                                                                                                                                    |
| VOV_shut                                                             |             | Warning     | 548          | V           | !!! Warning. OV shutdown voltage is too high. Reduce Vbulk_nom OR Vbrownout                                                                                                                            |
| VOV_restart                                                          |             |             | 528          | V           | Restart voltage after OV protection.                                                                                                                                                                   |
| CBULK                                                                | 68.00       |             | 68           | uF          | Minimum value of bulk cap to meet holdup time requirement; Adjust holdup time and Vbrownout to change bulk cap value                                                                                   |
| tHOLDUP                                                              |             |             | 25.7         | ms          | Bulk capacitor hold up time                                                                                                                                                                            |
| Enter LLC (secondary) outputs                                        |             |             |              |             | The spreadsheet assumes AC stacking of the secondaries                                                                                                                                                 |
| VO1                                                                  | 39.00       |             | 39.00        | V           | Main Output Voltage. Spreadsheet assumes that this is the regulated output                                                                                                                             |
| IO1                                                                  | 2.75        |             | 2.75         | Α           | Main output maximum current                                                                                                                                                                            |
| VD1                                                                  | 0.70        |             | 0.70         | V           | Forward voltage of diode in Main output                                                                                                                                                                |
| PO1                                                                  |             |             | 107          | W           | Output Power from first LLC output                                                                                                                                                                     |
| VO2                                                                  |             |             | 0.00         | V           | Second Output Voltage                                                                                                                                                                                  |
| IO2                                                                  |             |             | 0.00         | Α           | Second output current                                                                                                                                                                                  |
| VD2                                                                  |             |             | 0.70         | V           | Forward voltage of diode used in second output                                                                                                                                                         |
| PO2                                                                  |             |             | 0.00         | W           | Output Power from second LLC output                                                                                                                                                                    |
| P_LLC                                                                |             |             | 107          | W           | Specified LLC output power                                                                                                                                                                             |
| LCS Device Selection Device                                          | LCS702      | Warning     | LCS702       |             | !!! Warning. Device may be too large. Select smaller device                                                                                                                                            |
| RDS-ON (MAX)                                                         |             |             | 1.39         | ohms        | RDS-ON (max) of selected device                                                                                                                                                                        |
| Coss                                                                 |             |             | 250          | pF          | Equivalent Coss of selected device                                                                                                                                                                     |
| Cpri                                                                 |             |             | 40           | pF          | Stray Capacitance at transformer primary                                                                                                                                                               |
| Pcond_loss                                                           |             |             | 1.1          | W           | Conduction loss at nominal line and full load                                                                                                                                                          |
| Tmax-hs                                                              |             |             | 90           | deg C       | Maximum heatsink temperature                                                                                                                                                                           |
| Theta J-HS                                                           |             |             | 9.1          | deg C/W     | Thermal resistance junction to heatsink (with grease and no insulator)                                                                                                                                 |
| Expected Junction temperature                                        |             |             | 100          | deg C       | Expectd Junction temperature                                                                                                                                                                           |
| Ta max                                                               |             |             | 50           | deg C       | Expected max ambient temperature                                                                                                                                                                       |
| Theta HS-A                                                           |             |             | 37           | deg C/W     | Required thermal resistance heatsink to ambient                                                                                                                                                        |
| LLC Resonant Parameter                                               | r and Trans | former Calc | ulations (ge | nerates red |                                                                                                                                                                                                        |
| Vres_target                                                          | 450.00      |             | 450          | V           | Desired Input voltage at which power train operates at resonance. If greater than Vbulk_nom, LLC operates below resonance at VBULK.                                                                    |
| Po                                                                   |             |             | 109          | W           | LLC output power including diode loss                                                                                                                                                                  |
| Vo                                                                   |             |             | 39.70        | V           | Main Output voltage (includes diode drop) for calculating Nsec and turns ratio                                                                                                                         |
| f_target                                                             | 120.00      |             | 120          | kHz         | Desired switching frequency at Vbulk_nom. 66 kHz to 300 kHz, recommended 180-250 kHz                                                                                                                   |
| Lpar                                                                 |             |             | 366          | uH          | Parallel inductance. (Lpar = Lopen - Lres for integrated transformer; Lpar = Lmag for non-integrated low-leakage transformer)                                                                          |
| Lpri                                                                 | 490.00      |             | 490          | uH          | Primary open circuit inductance for integrated transformer; for low-leakage transformer it is sum of primary inductance and series inductor. If left blank, auto-calculation shows value necessary for |



|                                                        |            |             |        |     | slight loss of ZVS at ~80% of Vnom                                                                                                                                                    |
|--------------------------------------------------------|------------|-------------|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |            |             |        |     | Series inductance or primary leakage inductance of                                                                                                                                    |
|                                                        | 124.00     |             | 124.0  | uH  | integrated transformer; if left blank auto-calculation is for K=4                                                                                                                     |
| Kratio                                                 |            |             | 3.0    |     | Ratio of Lpar to Lres. Maintain value of K such that 2.1 < K < 11. Preferred Lres is such that K<7.                                                                                   |
| Cres                                                   | 12.00      |             | 12.0   | nF  | Series resonant capacitor. Red background cells produce red graph. If Lpar, Lres, Cres, and n_RATIO_red_graph are left blank, they will be auto-calculated                            |
| Lsec                                                   | 16.300     |             | 16.300 | uH  | Secondary side inductance of one phase of main output; measure and enter value, or adjust value until f_predicted matches what is measured;                                           |
| 15                                                     |            |             | 41     | %   | Leakage distribution factor (primary to secondary). >50% signifies most of the leakage is in primary side. Gap physically under secondary yields >50%, requiring fewer primary turns. |
| n_eq                                                   |            |             | 4.74   |     | Turns ratio of LLC equivalent circuit ideal transformer                                                                                                                               |
| Npri                                                   | 45.0       |             | 45.0   |     | Primary number of turns; if input is blank, default value is auto-calculation so that f_predicted = f_target and m=50%                                                                |
| Nsec                                                   | 8.0        |             | 8.0    |     | Secondary number of turns (each phase of Main output). Default value is estimate to maintain BAC<=200 mT, using selected core (below)                                                 |
| f_predicted                                            |            |             | 152    | kHz | Expected frequency at nominal input voltage and full load; Heavily influenced by n_eq and primary turns                                                                               |
| f_res                                                  |            |             | 130    | kHz | Series resonant frequency (defined by series inductance Lres and C)                                                                                                                   |
| f_brownout                                             |            |             | 112    | kHz | Expected switching frequency at Vbrownout, full load. Set HiperLCS minimum frequency to this value.                                                                                   |
| f_par                                                  |            |             | 66     | kHz | Parallel resonant frequency (defined by Lpar + Lres and C)                                                                                                                            |
| f_inversion                                            |            |             | 81     | kHz | LLC full load gain inversion frequency. Operation below this frequency results in operation in gain inversion region.                                                                 |
| Vinversion                                             |            |             | 184    | V   | LLC full load gain inversion point input voltage                                                                                                                                      |
| Vres_expected                                          |            | Warning     | 376    | V   | !!! Warning Expected value of VRES is more than 3% away from target value. Adjust Npri, Lsec, or Lpri to fix this problem                                                             |
| RMS Currents and Voltag                                | es         |             |        |     |                                                                                                                                                                                       |
| IRMS_LLC_Primary                                       |            |             | 0.89   | А   | Primary winding RMS current at full load, Vbulk_nom and f_predicted                                                                                                                   |
| Winding 1 (Lower secondary Voltage) RMS current        |            |             | 2.2    | А   | Winding 1 (Lower secondary Voltage) RMS current                                                                                                                                       |
| Lower Secondary Voltage<br>Capacitor RMS current       |            |             | 1.4    | Α   | Lower Secondary Voltage Capacitor RMS current                                                                                                                                         |
| Winding 2 (Higher<br>secondary Voltage) RMS<br>current |            |             | 0.0    | А   | Winding 2 (Higher secondary Voltage) RMS current                                                                                                                                      |
| Higher Secondary Voltage<br>Capacitor RMS current      |            |             | 0.0    | Α   | Higher Secondary Voltage Capacitor RMS current                                                                                                                                        |
| Cres_Vrms                                              |            |             | 77     | V   | Resonant capacitor AC RMS Voltage at full load and nominal input voltage                                                                                                              |
| <b>Virtual Transformer Trial</b>                       | - (generat | es blue cur | ve)    | 1   |                                                                                                                                                                                       |
| New primary turns                                      |            |             | 45.0   |     | Trial transformer primary turns; default value is from resonant section                                                                                                               |
| New secondary turns                                    |            |             | 8.0    |     | Trial transformer secondary turns; default value is from resonant section                                                                                                             |
| New Lpri                                               |            |             | 490    | uH  | Trial transformer open circuit inductance; default                                                                                                                                    |

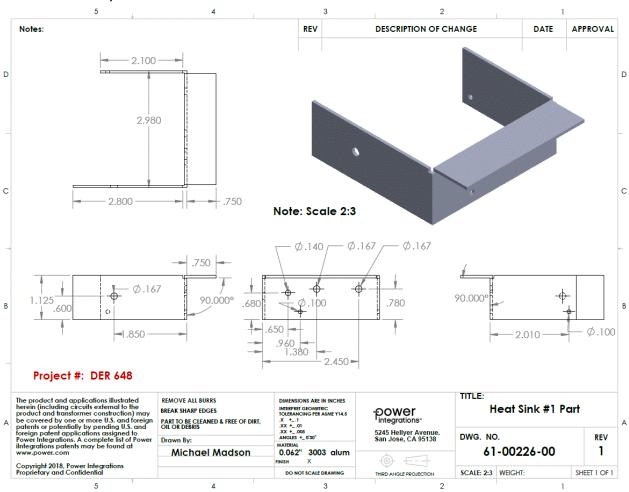
|                                                                                                                                                                                                   |                                 |              |                                                                                                       |                                                             | value is from resonant section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                   |                                 |              |                                                                                                       | _                                                           | Trial value of series capacitor (if left blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| New Cres                                                                                                                                                                                          |                                 |              | 12.0                                                                                                  | nF                                                          | calculated value chosen so f_res same as in main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                   |                                 |              | 1210                                                                                                  |                                                             | resonant section above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| New estimated Lres                                                                                                                                                                                |                                 |              | 124.0                                                                                                 | uH<br>                                                      | Trial transformer estimated Lres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| New estimated Lpar                                                                                                                                                                                |                                 |              | 366                                                                                                   | uH                                                          | Estimated value of Lpar for trial transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| New estimated Lsec                                                                                                                                                                                |                                 |              | 16.300                                                                                                | uH                                                          | Estimated value of secondary leakage inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| New Kratio                                                                                                                                                                                        |                                 |              | 3.0                                                                                                   |                                                             | Ratio of Lpar to Lres for trial transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| New equivalent circuit transformer turns ratio                                                                                                                                                    |                                 |              | 4.74                                                                                                  |                                                             | Estimated effective transformer turns ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V powertrain inversion new                                                                                                                                                                        |                                 |              | 184                                                                                                   | V                                                           | Input voltage at LLC full load gain inversion point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f_res_trial                                                                                                                                                                                       |                                 |              | 130                                                                                                   | kHz                                                         | New Series resonant frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| f_predicted_trial                                                                                                                                                                                 |                                 |              | 152                                                                                                   | kHz                                                         | New nominal operating frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IRMS_LLC_Primary                                                                                                                                                                                  |                                 |              | 0.89                                                                                                  | А                                                           | Primary winding RMS current at full load and nominal input voltage (Vbulk) and f_predicted_trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Winding 1 (Lower secondary Voltage) RMS current                                                                                                                                                   |                                 |              | 2.4                                                                                                   | А                                                           | RMS current through Output 1 winding, assuming half sinusoidal waveshape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lower Secondary Voltage<br>Capacitor RMS current                                                                                                                                                  |                                 |              | 1.9                                                                                                   | А                                                           | Lower Secondary Voltage Capacitor RMS current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Winding 2 (Higher                                                                                                                                                                                 |                                 |              |                                                                                                       |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| secondary Voltage) RMS current                                                                                                                                                                    |                                 |              | 2.4                                                                                                   | Α                                                           | RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Higher Secondary Voltage<br>Capacitor RMS current                                                                                                                                                 |                                 |              | 0.0                                                                                                   | А                                                           | Higher Secondary Voltage Capacitor RMS current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |                                 |              | 276                                                                                                   | .,                                                          | !!! Warning. Vres_expected_trial is more than 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vres_expected_trial                                                                                                                                                                               |                                 | Warning      | 376                                                                                                   | V                                                           | away from target value. Adjust New Primary turns<br>or New Lpri to fix this problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Transformer Core Calcula                                                                                                                                                                          | ations (Cal                     | culates Fron | n Resonant                                                                                            | Parameter S                                                 | ection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Transformer Core                                                                                                                                                                                  |                                 |              |                                                                                                       | 1                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Transformer Core                                                                                                                                                                                  | EER28L                          |              | EER28L                                                                                                |                                                             | Transformer Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ae                                                                                                                                                                                                | 0.97                            |              | 0.97                                                                                                  | cm^2                                                        | Transformer Core Enter transformer core cross-sectional area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                   |                                 |              |                                                                                                       | cm^2<br>cm^3                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ae                                                                                                                                                                                                | 0.97                            |              | 0.97                                                                                                  |                                                             | Enter transformer core cross-sectional area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ae<br>Ve                                                                                                                                                                                          | 0.97<br>7.64                    |              | 0.97<br>7.64                                                                                          | cm^3                                                        | Enter transformer core cross-sectional area Enter the volume of core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ae<br>Ve<br>Aw                                                                                                                                                                                    | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0                                                                                 | cm^3<br>mm^2                                                | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ae<br>Ve<br>Aw<br>Bw                                                                                                                                                                              | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0                                                                | cm^3<br>mm^2<br>mm                                          | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ae Ve Aw Bw Loss density                                                                                                                                                                          | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9                                                                         | cm^3<br>mm^2<br>mm<br>mW/cm^3                               | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ae Ve Aw Bw Loss density MLT                                                                                                                                                                      | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0                                                         | cm^3<br>mm^2<br>mm<br>mW/cm^3                               | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep                                                                                                                                                       | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2                                                    | cm^3<br>mm^2<br>mm<br>mW/cm^3<br>cm                         | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ae Ve Aw Bw Loss density MLT Nchambers                                                                                                                                                            | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2                                                    | cm^3<br>mm^2<br>mm<br>mW/cm^3                               | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss                                                                                                                                                 | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5                                      | cm^3<br>mm^2<br>mm<br>mW/cm^3<br>cm                         | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC                                                                                                                                     | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5                                      | cm^3<br>mm^2<br>mm<br>mW/cm^3<br>cm<br>mm<br>W              | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin                                                                                                                                         | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5                                      | cm^3<br>mm^2<br>mm<br>mW/cm^3<br>cm<br>mm<br>W              | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC                                                                                                                                                                                                                                                                                                                                                                           |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding                                                                                                                     | 0.97<br>7.64<br>123.00          |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5<br>114<br>168                        | cm^3<br>mm^2<br>mm<br>mW/cm^3<br>cm<br>mm<br>W              | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary                                                                                                                                                                                                                                                                                                            |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge Equivalent Primary Metric                                                                        | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5<br>114<br>168                        | cm^3<br>mm^2<br>mm<br>mW/cm^3<br>cm<br>mm<br>W<br>mT        | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section                                                                                                                                                                                                                                                                                                                                                          |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge                                                                                                  | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5<br>114<br>168                        | cm^3 mm^2 mm mW/cm^3 cm mm W mT AWG                         | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary                                                                                                                                                                                                   |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge Equivalent Primary Metric Wire gauge Primary Winding Allocation                                  | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97<br>7.64<br>123.0<br>20.9<br>200.0<br>4.0<br>2<br>3.0<br>1.5<br>114<br>168<br>45.0<br>42<br>0.060 | cm^3 mm^2 mm mW/cm^3 cm mm W mT AWG                         | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of                                                                                                                                |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge Equivalent Primary Metric Wire gauge Primary litz strands Primary Winding Allocation Factor      | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97 7.64 123.0 20.9 200.0 4.0 2 3.0 1.5 114 168 45.0 42 0.060 100 50                                 | cm^3 mm^2 mm mW/cm^3 cm mm W mT AWG mm                      | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary                                                                                             |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge Equivalent Primary Metric Wire gauge Primary litz strands Primary Winding Allocation Factor AW_P | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97 7.64 123.0 20.9 200.0 4.0 2 3.0 1.5 114 168 45.0 42 0.060 100 50 53                              | cm^3 mm^2 mm mW/cm^3 cm mm W mT  MT  AWG mm  % mm^2         | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary                                                             |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge Equivalent Primary Metric Wire gauge Primary Winding Allocation Factor AW_P Fill Factor          | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97 7.64 123.0 20.9 200.0 4.0 2 3.0 1.5 114 168 45.0 42 0.060 100 50 53 40%                          | cm^3 mm^2 mm mW/cm^3 cm mm W mT awG mm  ww mT  mT  AWG mm % | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary % Fill factor for primary winding (typical max fill is 60%) |
| Ae Ve Aw Bw Loss density MLT Nchambers Wsep Ploss Bpkfmin BAC Primary Winding Npri Primary gauge Equivalent Primary Metric Wire gauge Primary litz strands Primary Winding Allocation Factor AW_P | 0.97<br>7.64<br>123.00<br>20.90 |              | 0.97 7.64 123.0 20.9 200.0 4.0 2 3.0 1.5 114 168 45.0 42 0.060 100 50 53                              | cm^3 mm^2 mm mW/cm^3 cm mm W mT  MT  AWG mm  % mm^2         | Enter transformer core cross-sectional area Enter the volume of core Area of window Total Width of Bobbin Enter the loss per unit volume at the switching frequency and BAC (Units same as kW/m^3) Mean length per turn Number of Bobbin chambers Winding separator distance (will result in loss of winding area) Estimated core loss First Quadrant peak flux density at minimum frequency. AC peak to peak flux density (calculated at f_predicted, Vbulk at full load)  Number of primary turns; determined in LLC resonant section Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units Number of strands in Litz wire; for non-litz primary winding, set to 1 Primary window allocation factor - percentage of winding space allocated to primary Winding window area for primary Winding window area for primary                             |



| Primary DCR 100 C                           |              | 141.30                                                                | m-ohm         | Estimated resistance at 100 C (approximately 33% higher than at 25 C)                                                                                                            |
|---------------------------------------------|--------------|-----------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary RMS current                         |              | 0.89                                                                  | Α             | Measured RMS current through the primary winding                                                                                                                                 |
| ACR_Trf_Primary                             |              | 265.66                                                                | m-ohm         | Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature                                                                 |
| Primary copper loss                         |              | 0.21                                                                  | W             | Total primary winding copper loss at 85 C                                                                                                                                        |
| Primary Layers                              |              | 3.91                                                                  |               | Number of layers in primary Winding                                                                                                                                              |
| Secondary Winding 1 (Lo                     | wer secondar | y voltage OR Single                                                   | output)       | Note - Power loss calculations are for each winding half of secondary                                                                                                            |
| Output Voltage                              |              | 39.00                                                                 | V             | Output Voltage (assumes AC stacked windings)                                                                                                                                     |
| Sec 1 Turns                                 |              | 8.00                                                                  |               | Secondary winding turns (each phase )                                                                                                                                            |
| Sec 1 RMS current (total, AC+DC)            |              | 2.2                                                                   | Α             | RMS current through Output 1 winding, assuming half sinusoidal waveshape                                                                                                         |
| Winding current (DC component)              |              | 1.38                                                                  | Α             | DC component of winding current                                                                                                                                                  |
| Winding current (AC RMS component)          |              | 1.69                                                                  | Α             | AC component of winding current                                                                                                                                                  |
| Sec 1 Wire gauge                            | 40           | 40                                                                    | AWG           | Individual wire strand gauge used for secondary winding                                                                                                                          |
| Equivalent secondary 1<br>Metric Wire gauge |              | 0.080                                                                 | mm            | Equivalent diameter of wire in metric units                                                                                                                                      |
| Sec 1 litz strands                          | 350          | 350                                                                   |               | Number of strands used in Litz wire; for non-litz non-integrated transformer set to 1                                                                                            |
| Posistivity 25 C soc1                       |              | 10.65                                                                 | m-ohm/m       | Resistivity in milli-ohms per meter                                                                                                                                              |
| Resistivity_25 C_sec1                       |              |                                                                       | 111-01111/111 | Estimated resistance per phase at 25 C (for                                                                                                                                      |
| DCR_25C_Sec1                                |              | 3.37                                                                  | m-ohm         | reference) Estimated resistance per phase at 23 C (10) reference)                                                                                                                |
| DCR_100C_Sec1                               |              | 4.51                                                                  | m-ohm         | (approximately 33% higher than at 25 C) Estimated Power loss due to DC resistance (both                                                                                          |
| DCR_Ploss_Sec1                              |              | 0.07                                                                  | W             | secondary phases)                                                                                                                                                                |
| ACR_Sec1                                    |              | 4.91                                                                  | m-ohm         | Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C |
| ACR_Ploss_Sec1                              |              | 0.03                                                                  | W             | Estimated AC copper loss (both secondary phases)                                                                                                                                 |
| Total winding 1 Copper<br>Losses            |              | 0.10                                                                  | W             | Total (AC + DC) winding copper loss for both secondary phases                                                                                                                    |
| Capacitor RMS current                       |              | 1.4                                                                   | Α             | Output capacitor RMS current                                                                                                                                                     |
| Co1                                         |              | 2.4                                                                   | uF            | Secondary 1 output capacitor                                                                                                                                                     |
| Capacitor ripple voltage                    |              | 3.0                                                                   | %             | Peak to Peak ripple voltage on secondary 1 output capacitor                                                                                                                      |
| Output rectifier RMS<br>Current             |              | 2.2                                                                   | А             | Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current                                                                  |
| Secondary 1 Layers                          |              | 1.73                                                                  |               | Number of layers in secondary 1 Winding                                                                                                                                          |
| Secondary Winding 2 (High                   | gher seconda | Note - Power loss calculations are for each winding half of secondary |               |                                                                                                                                                                                  |
| Output Voltage                              |              | 0.00                                                                  | V             | Output Voltage (assumes AC stacked windings)                                                                                                                                     |
| Sec 2 Turns                                 |              | 0.00                                                                  |               | Secondary winding turns (each phase) AC stacked on top of secondary winding 1                                                                                                    |
| Sec 2 RMS current (total, AC+DC)            |              | 2.2                                                                   | А             | RMS current through Output 2 winding; Output 1 winding is AC stacked on top of Output 2 winding                                                                                  |
| Winding current (DC component)              |              | 0.0                                                                   | А             | DC component of winding current                                                                                                                                                  |
| Winding current (AC RMS component)          |              | 0.0                                                                   | Α             | AC component of winding current                                                                                                                                                  |
| Sec 2 Wire gauge                            |              | 40                                                                    | AWG           | Individual wire strand gauge used for secondary winding                                                                                                                          |
| Equivalent secondary 2<br>Metric Wire gauge |              | 0.080                                                                 | mm            | Equivalent diameter of wire in metric units                                                                                                                                      |
| Sec 2 litz strands                          |              | 0                                                                     |               | Number of strands used in Litz wire; for non-litz                                                                                                                                |

| Г                                          | <u> </u> | 1        |           | I want to be a marked book of                                                                                                                                                           |
|--------------------------------------------|----------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Designification                            |          | 27200 (5 | m obra/ac | non-integrated transformer set to 1                                                                                                                                                     |
| Resistivity_25 C_sec2                      |          | 37290.65 | m-ohm/m   | Resistivity in milli-ohms per meter                                                                                                                                                     |
| Transformer Secondary MLT                  |          | 3.95     | cm        | Mean length per turn                                                                                                                                                                    |
| DCR_25C_Sec2                               |          | 0.00     | m-ohm     | Estimated resistance per phase at 25 C (for reference)                                                                                                                                  |
| DCR_100C_Sec2                              |          | 0.00     | m-ohm     | Estimated resistance per phase at 100 C (approximately 33% higher than at 25 C)                                                                                                         |
| DCR_Ploss_Sec1                             |          | 0.00     | W         | Estimated Power loss due to DC resistance (both secondary halves)                                                                                                                       |
| ACR_Sec2                                   |          | 0.00     | m-ohm     | Measured AC resistance per phase (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C        |
| ACR_Ploss_Sec2                             |          | 0.00     | W         | Estimated AC copper loss (both secondary halves)                                                                                                                                        |
| Total winding 2 Copper<br>Losses           |          | 0.00     | W         | Total (AC + DC) winding copper loss for both secondary halves                                                                                                                           |
| Capacitor RMS current                      |          | 0.0      | Α         | Output capacitor RMS current                                                                                                                                                            |
| Co2                                        |          | N/A      | uF        | Secondary 2 output capacitor                                                                                                                                                            |
| Capacitor ripple voltage                   |          | N/A      | %         | Peak to Peak ripple voltage on secondary 1 output capacitor                                                                                                                             |
| Output rectifier RMS<br>Current            |          | 0.0      | А         | Schottky losses are a stronger function of load DC current. Sync Rectifier losses are a function of RMS current                                                                         |
| Secondary 2 Layers                         |          | 1.00     |           | Number of layers in secondary 2 Winding                                                                                                                                                 |
| Transformer Loss Calcula                   | ations   |          |           | Does not include fringing flux loss from gap                                                                                                                                            |
| Primary copper loss (from Primary section) |          | 0.21     | W         | Total primary winding copper loss at 85 C                                                                                                                                               |
| Secondary copper Loss                      |          | 0.10     | W         | Total copper loss in secondary winding                                                                                                                                                  |
| Transformer total copper loss              |          | 0.31     | W         | Total copper loss in transformer (primary + secondary)                                                                                                                                  |
| AW_S                                       |          | 52.67    | mm^2      | Area of window for secondary winding                                                                                                                                                    |
| Secondary Fill Factor                      |          | 89%      | %         | % Fill factor for secondary windings; typical max fill is 60% for served and 75% for unserved Litz                                                                                      |
| Signal Pins Resistor Valu                  | es       |          |           |                                                                                                                                                                                         |
| f_min                                      |          | 112      | kHz       | Minimum frequency when optocoupler is cut-off. Only change this variable based on actual bench measurements                                                                             |
| Dead Time                                  |          | 420      | ns        | Dead time                                                                                                                                                                               |
| Burst Mode                                 | 1        | 1        |           | Select Burst Mode: 1, 2, and 3 have hysteresis and have different frequency thresholds                                                                                                  |
| f_max                                      |          | 645      | kHz       | Max internal clock frequency, dependent on dead-<br>time setting. Is also start-up frequency                                                                                            |
| f_burst_start                              |          | 285.0    | kHz       | Lower threshold frequency of burst mode, provides hysteresis. This is switching frequency at restart after a bursting off-period                                                        |
| f_burst_stop                               |          | 325.7    | kHz       | Upper threshold frequency of burst mode; This is switching frequency at which a bursting off-period stops                                                                               |
| DT/BF pin upper divider resistor           |          | 9.56     | k-ohms    | Resistor from DT/BF pin to VREF pin                                                                                                                                                     |
| DT/BF pin lower divider resistor           |          | 181.7    | k-ohms    | Resistor from DT/BF pin to G pin                                                                                                                                                        |
| Rstart                                     |          | 8.21     | k-ohms    | Start-up resistor - resistor in series with soft-start capacitor; equivalent resistance from FB to VREF pins at startup. Use default value unless additional start-up delay is desired. |
| Start up delay                             |          | 0.0      | ms        | Start-up delay; delay before switching begins.<br>Reduce R_START to increase delay                                                                                                      |
| Rfmin                                      |          | 66.0     | k-ohms    | Resistor from VREF pin to FB pin, to set min operating frequency; This resistor plus Rstart determine f_MIN. Includes 7% HiperLCS frequency                                             |




|                                                                              |                 |                                                                                                         |           | tolerance to ensure f min is below f brownout                                                                                                             |
|------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              |                 |                                                                                                         |           | Softstart capacitor. Recommended values are                                                                                                               |
| C_softstart                                                                  |                 | 0.33                                                                                                    | uF        | between 0.1 uF and 0.47 uF                                                                                                                                |
| Ropto                                                                        |                 | 1.6                                                                                                     | k-ohms    | Resistor in series with opto emitter                                                                                                                      |
| OV/UV pin lower resistor                                                     | 20.00           | 20.0                                                                                                    | k-ohm     | Lower resistor in OV/UV pin divider                                                                                                                       |
| OV/UV pin upper resistor                                                     | 20.00           | 3.45                                                                                                    | M-ohm     | Total upper resistance in OV/UV pin divider                                                                                                               |
| LLC Capacitive Divider C                                                     | urrent Sense Ci |                                                                                                         | 11 Offili | Total apper resistance in 64/64 pin aividei                                                                                                               |
| Slow current limit                                                           | 3.00            | 3.00                                                                                                    | А         | 8-cycle current limit - check positive half-cycles during brownout and startup                                                                            |
| Fast current limit                                                           |                 | 5.40                                                                                                    | А         | 1-cycle current limit - check positive half-cycles during startup                                                                                         |
| LLC sense capacitor                                                          |                 | 47                                                                                                      | pF        | HV sense capacitor, forms current divider with main resonant capacitor                                                                                    |
| RLLC sense resistor                                                          |                 | 42.7                                                                                                    | ohms      | LLC current sense resistor, senses current in sense capacitor                                                                                             |
| IS pin current limit resistor                                                |                 | 220                                                                                                     | ohms      | Limits current from sense resistor into IS pin when voltage on sense R is < -0.5V                                                                         |
| IS pin noise filter capacitor                                                |                 | 1.0                                                                                                     | nF        | IS pin bypass capacitor; forms a pole with IS pin current limit capacitor                                                                                 |
| IS pin noise filter pole frequency                                           |                 | 724                                                                                                     | kHz       | This pole attenuates IS pin signal                                                                                                                        |
| Loss Budget                                                                  |                 |                                                                                                         |           |                                                                                                                                                           |
| LCS device Conduction loss                                                   |                 | 1.1                                                                                                     | W         | Conduction loss at nominal line and full load                                                                                                             |
| Output diode Loss                                                            |                 | 1.9                                                                                                     | W         | Estimated diode losses                                                                                                                                    |
| Transformer estimated                                                        |                 |                                                                                                         |           | Total copper loss in transformer (primary +                                                                                                               |
| total copper loss Transformer estimated                                      |                 | 0.31                                                                                                    | W         | secondary)                                                                                                                                                |
| total core loss                                                              |                 | 1.5                                                                                                     | W         | Estimated core loss                                                                                                                                       |
| Total transformer losses                                                     |                 | 1.8                                                                                                     | W         | Total transformer losses                                                                                                                                  |
| Total estimated losses                                                       |                 | 4.9                                                                                                     | W         | Total losses in LLC stage                                                                                                                                 |
| Estimated Efficiency                                                         |                 | 96%                                                                                                     | %         | Estimated efficiency                                                                                                                                      |
| PIN                                                                          |                 | 112                                                                                                     | W         | LLC input power                                                                                                                                           |
| Secondary Turns and Vol                                                      | tage Centering  | This is to help you choose the secondary turns - Outputs not connected to any other part of spreadsheet |           |                                                                                                                                                           |
| V1                                                                           |                 | 39.00                                                                                                   | ٧         | Target regulated output voltage Vo1. Change to see effect on slave output                                                                                 |
| V1d1                                                                         |                 | 0.70                                                                                                    | V         | Diode drop voltage for Vo1                                                                                                                                |
| N1                                                                           |                 | 9.00                                                                                                    | <u> </u>  | Total number of turns for Vo1                                                                                                                             |
| V1_Actaul                                                                    |                 | 39.00                                                                                                   | V         | Expected output                                                                                                                                           |
| V2                                                                           |                 | 0.00                                                                                                    | V         | Target output voltage Vo2                                                                                                                                 |
| V2d2                                                                         |                 | 0.70                                                                                                    | V         | Diode drop voltage for Vo2                                                                                                                                |
| N2                                                                           |                 | 1.00                                                                                                    | V         | Total number of turns for Vo2                                                                                                                             |
| V2_Actual                                                                    |                 | 3.71                                                                                                    | V         | Expected output voltage                                                                                                                                   |
| VZ_ACLUAI                                                                    |                 | 3./1                                                                                                    | V         | Not applicable if using integrated magnetics -                                                                                                            |
| Separate Series Inductor                                                     | (For Non-Inte   | not connected to any other part of spreadsheet                                                          |           |                                                                                                                                                           |
| Lsep                                                                         |                 | 124.00                                                                                                  | uН        | Desired inductance of separate inductor                                                                                                                   |
| Ae_Ind                                                                       |                 | 0.53                                                                                                    | cm^2      | Inductor core cross-sectional area                                                                                                                        |
| Inductor turns                                                               |                 | 24                                                                                                      |           | Number of primary turns                                                                                                                                   |
| BP_fnom                                                                      |                 | 131                                                                                                     | mT        | AC flux for core loss calculations (at f_predicted and full load)                                                                                         |
|                                                                              |                 |                                                                                                         |           |                                                                                                                                                           |
| Expected peak primary current                                                |                 | 3.0                                                                                                     | Α         | Expected peak primary current                                                                                                                             |
|                                                                              |                 | 3.0<br>295                                                                                              | A<br>mT   | Peak flux density, calculated at minimum frequency fmin                                                                                                   |
| current  BP_fmin  Inductor Litz gauge                                        |                 |                                                                                                         |           | Peak flux density, calculated at minimum frequency                                                                                                        |
| current  BP_fmin  Inductor Litz gauge  Equivalent Inductor Metric Wire gauge |                 | 295                                                                                                     | mT        | Peak flux density, calculated at minimum frequency fmin Individual wire strand gauge used for primary winding Equivalent diameter of wire in metric units |
| current  BP_fmin  Inductor Litz gauge  Equivalent Inductor Metric            |                 | 295<br>41                                                                                               | mT<br>AWG | Peak flux density, calculated at minimum frequency fmin Individual wire strand gauge used for primary winding                                             |

| _                        | 1    | 1      | 1       | 1 .                                                                                                                                                      |
|--------------------------|------|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |      |        |         | wire                                                                                                                                                     |
| Resistivity_25 C_Sep_Ind |      | 37.6   | m-ohm/m | Resistivity in milli-ohms per meter                                                                                                                      |
| Inductor MLT             |      | 7.00   | cm      | Mean length per turn                                                                                                                                     |
| Inductor DCR 25 C        |      | 63.2   | m-ohm   | Estimated resistance at 25 C (for reference)                                                                                                             |
| Inductor DCR 100 C       |      | 84.7   | m-ohm   | Estimated resistance at 100 C (approximately 33% higher than at 25 C)                                                                                    |
| ACR_Sep_Inductor         |      | 135.5  | m-ohm   | Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature                                         |
| Inductor copper loss     |      | 0.11   | W       | Total primary winding copper loss at 85 C                                                                                                                |
| Feedback section         |      |        |         |                                                                                                                                                          |
| VMAIN                    | Auto | 39.00  |         | Output voltage rail that optocoupler LED is connected to                                                                                                 |
| ITL431_BIAS              |      | 1      | mA      | Minimum operating current in TL431 cathode                                                                                                               |
| VF                       |      | 1      | V       | Typical Optocoupler LED forward voltage at IOPTO_BJTMAX (max current)                                                                                    |
| VCE_SAT                  |      | 0.3    | V       | Optocoupler transistor saturation voltage                                                                                                                |
| CTR_MIN                  |      | 0.8    |         | Optocoupler minimum CTR at VCE_SAT and at IOPTO_BJT_MAX                                                                                                  |
| VTL431_SAT               |      | 2.5    | V       | TL431 minimum cathode voltage when saturated                                                                                                             |
| RLED_SHUNT               |      | 1      | k-ohms  | Resistor across optocoupler LED to ensure minimum TL431 bias current is met                                                                              |
| ROPTO_LOAD               |      | 4.70   | k-ohms  | Resistor from optocoupler emitter to ground, sets load current                                                                                           |
| IFMAX                    |      | 264.44 | uA      | FB pin current when switching at FMAX (e.g. startup)                                                                                                     |
| IOPTO_BJT_MAX            |      | 0.89   | mA      | Optocoupler transistor maximum current - when bursting at FMAX (e.g. startup)                                                                            |
| RLED_SERIES_MAX          |      | 15.17  | k-ohms  | Maximum value of gain setting resistor, in series with optocoupler LED, to ensure optocoupler can deliver IOPTO_BJT_MAX. Includes -10% tolerance factor. |

# 12 Heat Sinks

#### 12.1 **Primary Heat Sink**

### 12.1.1 Primary Heat Sink Sheet Metal



**Figure 20** – Primary Heat Sink Sheet Metal Drawing.

#### 12.1.2 Primary Heat Sink with Fasteners

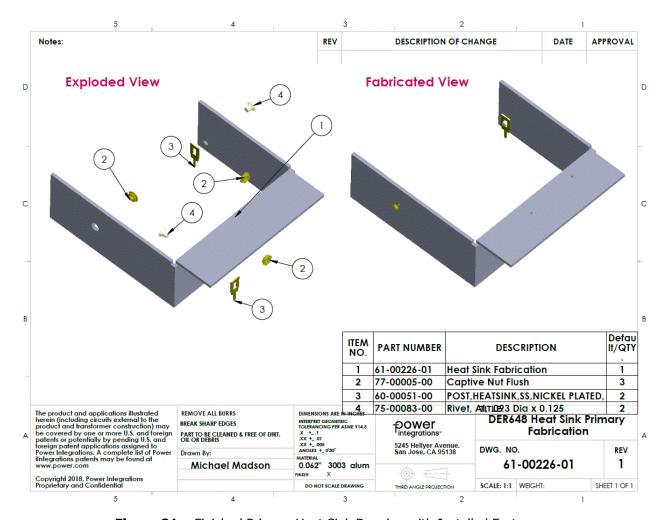
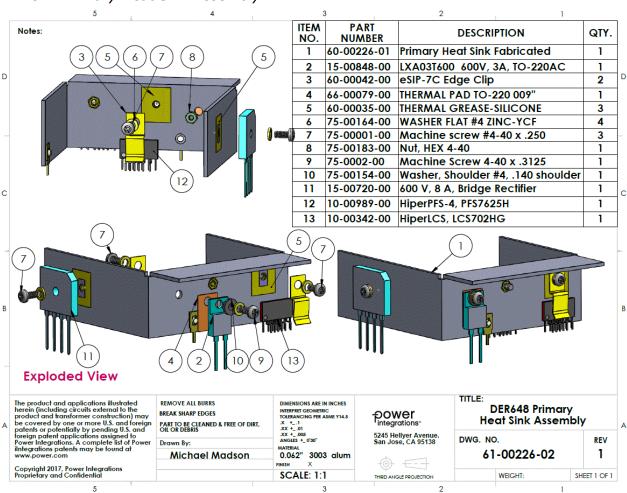
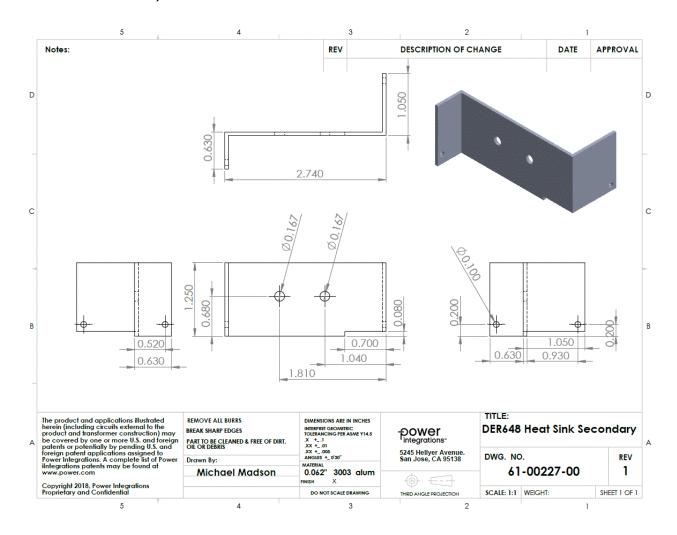
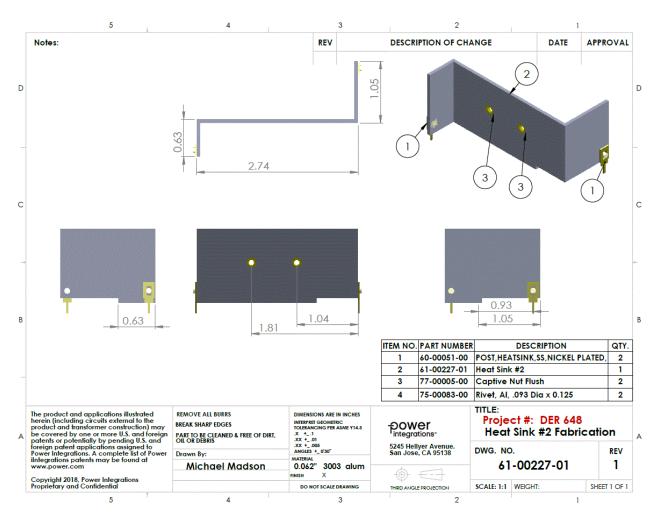




Figure 21 – Finished Primary Heat Sink Drawing with Installed Fasteners.




### 12.1.3 Primary Heat Sink Assembly

Figure 22 – Primary Heat Sink Assembly.


#### Secondary Heat Sink 12.2

#### Secondary Heat Sink Sheet Metal 12.2.1



**Figure 23 –** Secondary Heat Sink Sheet Metal Drawing.

### 12.2.2 Secondary Heat Sink with Fasteners



**Figure 24** – Finished Secondary Heat Sink with Installed Fasteners.

#### 12.2.3 Secondary Heat Sink Assembly

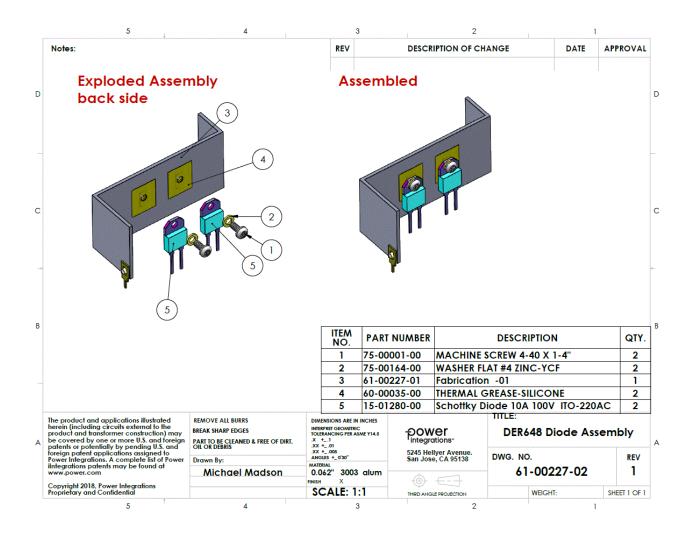



Figure 25 - DER-648 Secondary Heat Sink Assembly.

## 13 **Performance Data**

All measurements were taken at room temperature and 60 Hz (input frequency) unless otherwise specified. Output voltage measurements were taken at the output connectors.

## 13.1 *LLC Stage Efficiency*

To make this measurement, the LLC stage was powered by connecting an external 440 VDC source across bulk capacitor C19 , with external supplies to source the primary and secondary bias voltages. The output of the supply was used to feed an electronic load set for constant voltage with a series 2.3  $\Omega$  resistor to simulate the dynamic impedance of an equivalent LED load. Data was taken at 54 V, 46 V, and 39 V, these being the maximum, median, and minimum voltages for the led panel. The dimming input of the supply was used with a wide range PWM source to program the current delivered to the load in order to vary the output power.

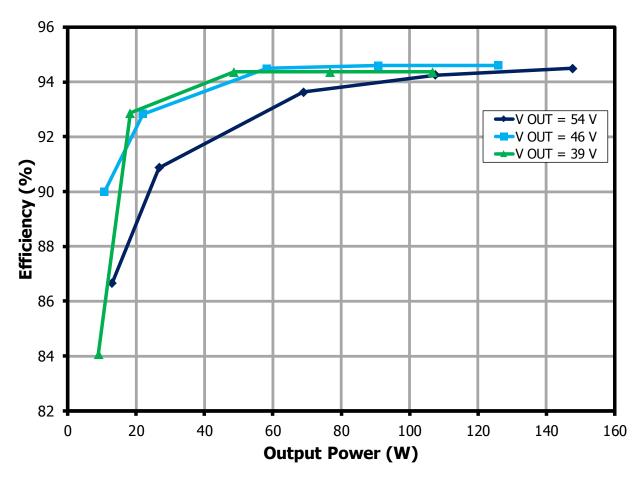
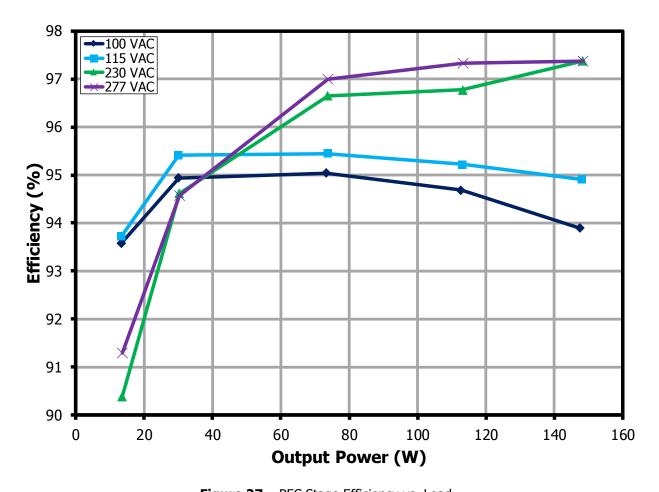




Figure 26 – LLC Stage Efficiency vs. Load, 440 VDC Input.

www.power.com

# 13.2 **PFC Stage Efficiency**

For this measurement, the LLC converter was disabled by removing resistor R17 in the input voltage sensing string. The PFC was powered using a sine wave source, and the B+ was loaded with an electronic load in CC mode.



**Figure 27** – PFC Stage Efficiency vs. Load.

# 13.3 Total Efficiency

Figures below show the total supply efficiency (PFC and LLC stages). AC input was supplied using a sine wave source. The output was loaded with an electronic load set for constant voltage mode with a 2.3  $\Omega$  series resistance to mimic the characteristics of the LED array depicted in section 7. Output voltage was adjusted for 54 V. Output current was adjusted using the UUT dimming input and a pulse generator with wide duty cycle range.

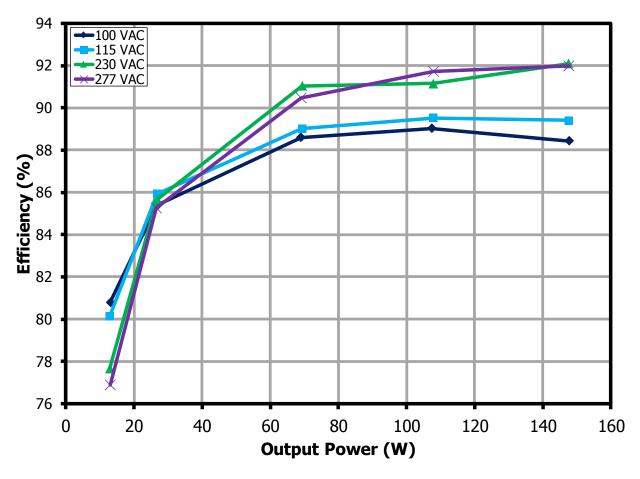



Figure 28 – Total Efficiency vs. Load, 54 V Output.

#### No-Load Input Power 13.4

No-load input power was tested with a sine wave source and a Yokogawa WT210 power analyzer set for a 20-minute integration time. The LLC stage was disabled using the inhibit input, and the UUT output cable was left unplugged.

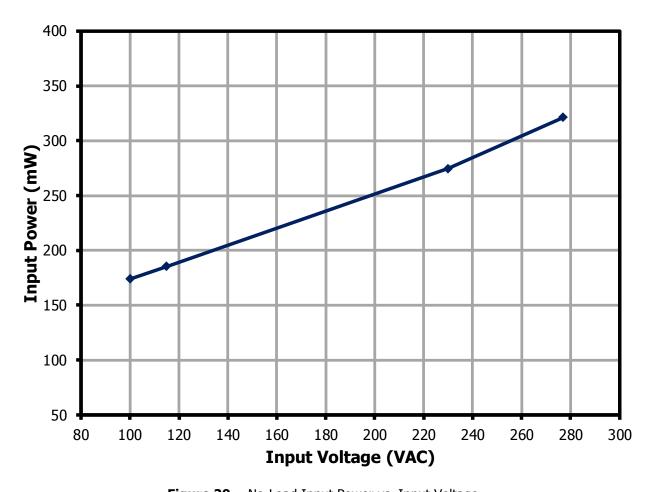
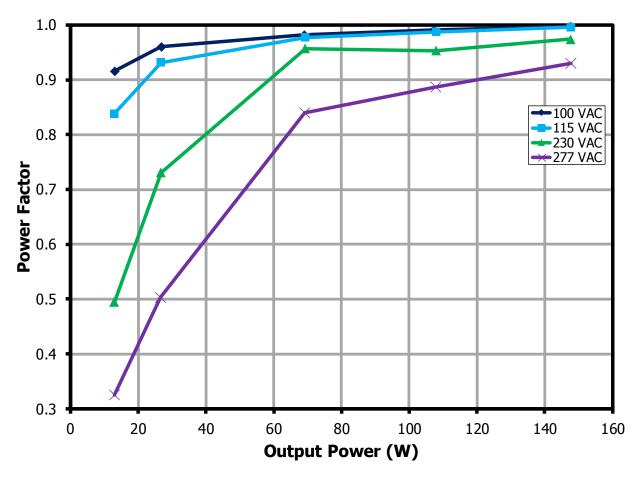




Figure 29 - No-Load Input Power vs. Input Voltage.

## 13.5 **Power Factor**

Power factor measurements were made using a sine wave AC source and a constant voltage electronic load with 2.3  $\Omega$  series resistor. Output Voltage was set to 54 V using an electronic CV load with 2.3  $\Omega$  series resistance. Output power was varied using the supply dimming input and a wide range PWM source.



**Figure 30** – Power Factor vs. Output Power.

# 13.6 THD vs. Output Power

THD was measured using an electronic load set for constant voltage mode, with a 2.3  $\Omega$  series resistor. Output voltage was adjusted for 54 V. Output current was adjusted using the dimming input and a wide duty cycle range pulser.

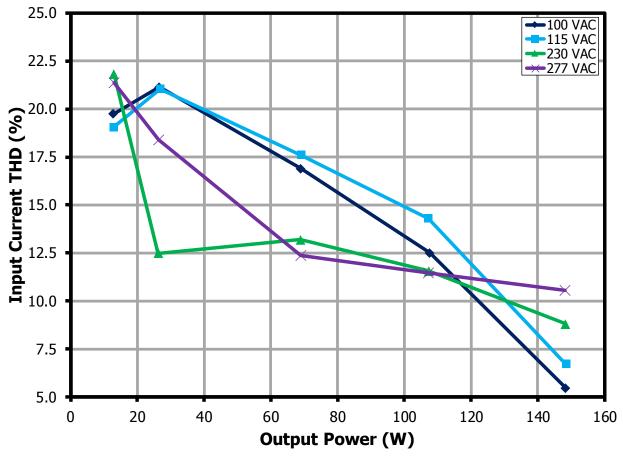
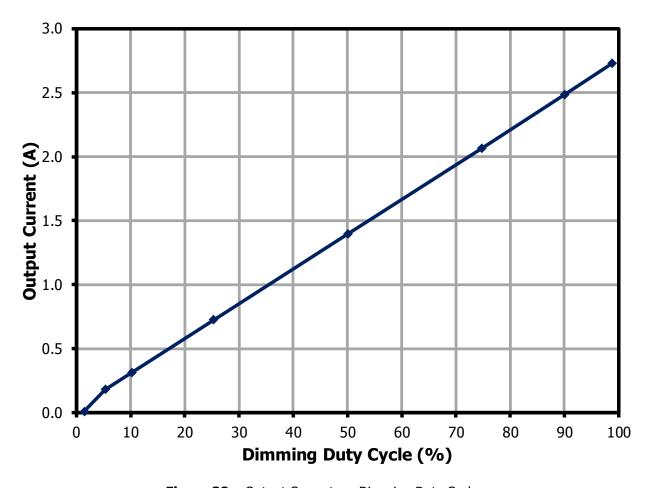
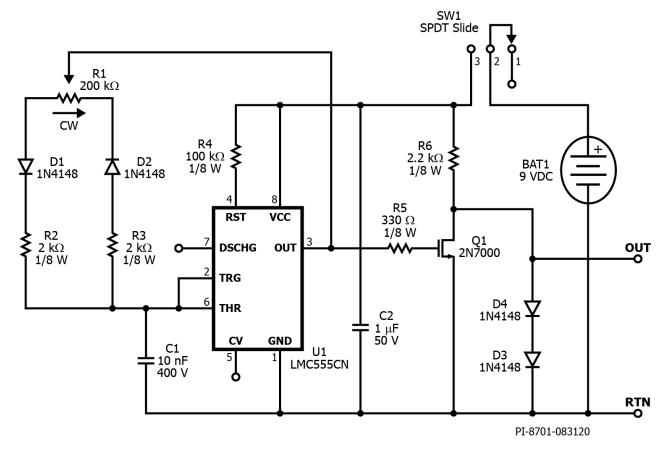




Figure 31 – Input Current THD vs. Output Power.

## 13.7 Output Current vs. Dimming PWM Duty Cycle


Output dimming characteristics were measured using a sine wave AC source and an electronic load configured for constant voltage. Dimming signal was provided using the circuit shown in Figure 32, which acts as a  $\sim 1\%$  to 99% duty pulse generator at a frequency of approximately 1 kHz. Diodes D3 and D4 clamp the output signal amplitude to  $\sim 1.2$  V.

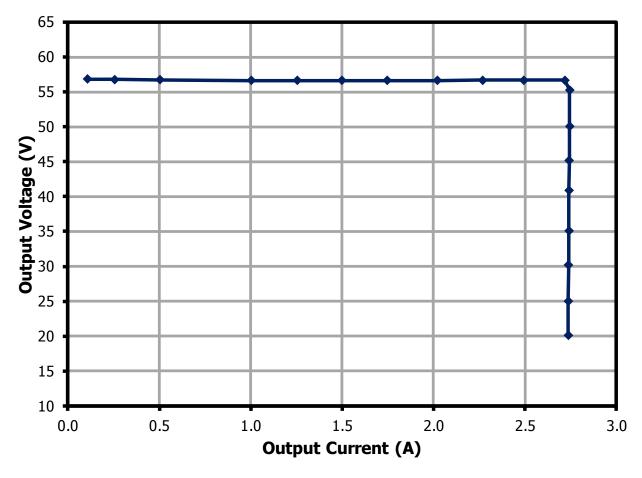


**Figure 32** – Output Current vs. Dimming Duty Cycle.

The circuit shown in Figure 33 is based on a CMOS variant of the ubiquitous NE555 timing IC. Feeding back a resistor from the output of U1 to its THRESHOLD and TRIGGER pins with a timing capacitor (C1) to GND results in a simple square wave generator with near 50% duty cycle. This basic circuit is modified by splitting the charge and discharge paths for C1 via diodes D1 and D2. Potentiometer R1 is used to adjust the weighting of charge and discharge resistance to vary the output duty cycle over a wide range.

#### Schematic for Simple Wide Range PWM Generator 13.7.1.1



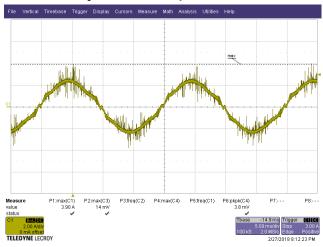

**Figure 33 –** Circuit for Generating Wide Range PWM Dimming Check Waveform.

#### 13.7.1.2 BOM for PWM Generator

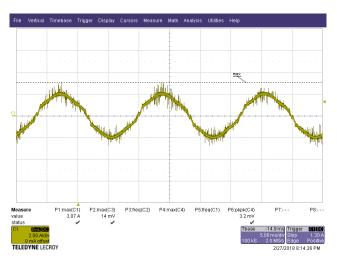
| Item | Qty | Ref Des     | Description                                       | Mfg Part Number | Mfg               |
|------|-----|-------------|---------------------------------------------------|-----------------|-------------------|
| 1    | 1   | BAT1        | Holder, Battery, 9 V, PC mount                    | BH9VPC          | MPD               |
| 2    | 1   | C1          | 10 nF, 400 V, Film                                | ECQ-E4103KF     | Panasonic         |
| 3    | 1   | C2          | 1 μF, 50 V, Ceramic, X7R                          | FK16X7R1H105K   | TDK               |
| 4    | 4   | D1 D2 D3 D4 | 75 V, 300 mA, Fast Switching, DO-35               | 1N4148TR        | Vishay            |
| 5    | 1   | Q1          | MOSFET N-CH 60V 0.2A N-Channel, TO-92             | 2N7000-G        | On Semi           |
| 6    | 1   | R1          | POT, 200 k $\Omega$ , 20%, 1/2 W, Square Trimming | 3310Y-001-204L  | BOURNS            |
| 7    | 2   | R2 R3       | RES, 2 kΩ, 5%, 1/8 W, Carbon Film                 | CF18JT2K00      | Stackpole         |
| 8    | 1   | R4          | RES, 100 kΩ, 5%, 1/8 W, Carbon Film               | CF18JT100K      | Stackpole         |
| 9    | 1   | R5          | RES, 330 Ω, 5%, 1/8 W, Carbon Film                | CF18JT330R      | Stackpole         |
| 10   | 1   | R6          | RES, 2.2 kΩ, 5%, 1/8 W, Carbon Film               | CF18JT2K20      | Stackpole         |
| 11   | 1   | SW1         | SWITCH SLIDE SPDT 30 V, 2 A PC MNT                | EG1218          | E-Switch          |
| 12   | 1   | U1          | LMC555 CMOS TIMER 8-DIP                           | LMC555CN/NOPB   | Texas Instruments |

# 13.8 Output V-I Characteristic

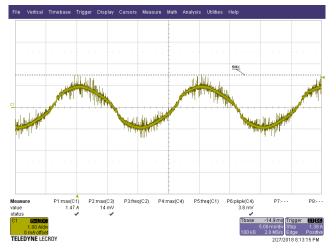
The V-I characteristic is generated using an electronic load programmed for constant resistance, so that both the CV and CC portions of the characteristic curve can be viewed. Input voltage is 115 VAC, 60 Hz.



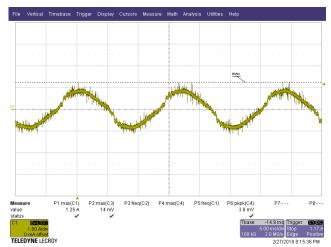

**Figure 34** – Output V-I Characteristic.


# 14 Waveforms

The input current waveform was measured using a CV output load with 2.3  $\Omega$  series resistance, with the output voltage adjusted to 54 V.


# 14.1 Input Current, 100% Load




**Figure 35** – Input Current, 100 VAC, 50 Hz, 150 W Load, 2 A, 5 ms / div.



**Figure 36** – Input Current, 115 VAC, 60 Hz, 150 W Load, 2 A, 5 ms / div.



**Figure 37** – Input Current, 230 VAC, 50 Hz, 150 W Load, 1 A, 5 ms / div.



**Figure 38** – Input Current, 277 VAC, 60 Hz, 150 W Load, 1 A, 5 ms / div.

www.power.com

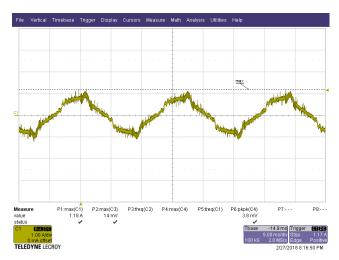
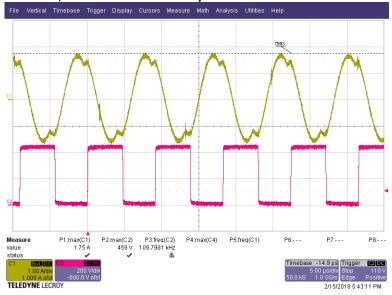
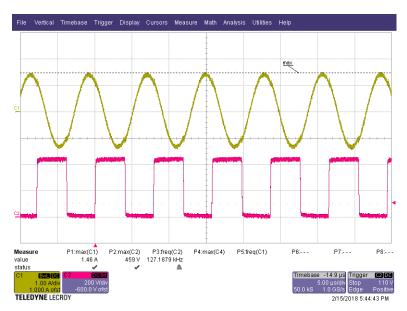




Figure 39 - Input Current, 300 VAC, 60 Hz, 150 W Load, 1 A, 5 ms / div.

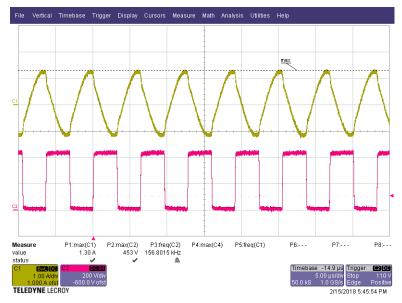
## 14.2 LLC Primary Voltage and Current


The LLC stage primary current was measured by inserting a current sensing loop in series with the ground side of resonating capacitor C30. The output was loaded with an electronic load set for constant voltage, with a series 2.3  $\Omega$  resistor to simulate the dynamic impedance of the LED array shown in Section 7. The load was adjusted for output voltages of 54 V, 46 V, and 39 V, representing the worst case maximum LED panel voltage, nominal voltage, and minimum. At 54 V, the LLC converter runs substantially below resonance. At 48 V output, the converter runs slightly below resonance, while at 39 V, it runs substantially above resonance.



**Figure 40** – LLC Stage Primary Voltage and Current, 100% Load, 54 V Output Voltage.

Upper: Current, 1 A / div.


Lower: Voltage, 200 V, 5 µs / div.



**Figure 41** – LLC Stage Primary Voltage and Current, 100% Load, 46 V Output Voltage.

Upper: Current, 1 A / div.

Lower: Voltage, 200 V, 5 μs / div.



**Figure 42** – LLC Stage Primary Voltage and Current, 100% Load, 39 V Output Voltage.

Upper: Current, 1 A / div.

Lower: Voltage, 200 V, 5  $\mu s$  / div.

# 14.3 Output Rectifier Peak Reverse Voltage

Voltage across output rectifiers D11 and D12 was measured using a CV load with 2.3  $\Omega$  series resistance, set for 54 V output (worst case).



**Figure 43** – Output Rectifier (D11) Reverse Voltage, 100% Load. 20 V, 2 μs / div.




Figure 44 – Output Rectifier (D12) Reverse Voltage, 100% Load. 20 V, 2 μs / div.

#### PFC Voltage and Current, 100% Load 14.4

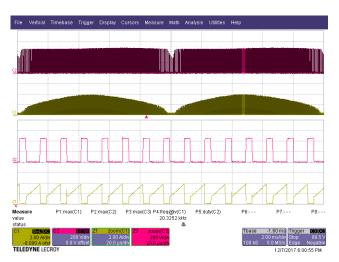



Figure 45 – PFC Stage Drain Voltage and Current, Full Load, 100 VAC, 50 Hz.

Upper: V<sub>DRAIN</sub>, 200 V / div.

Lower: Switch Current, 2 A, 2 ms / div.



Figure 47 – PFC Stage Drain Voltage and Current, Full

Load, 230 VAC, 50 Hz. Upper: V<sub>DRAIN</sub>, 200 V / div.

Lower: Switch Current, 0.5 A, 2 ms / div.

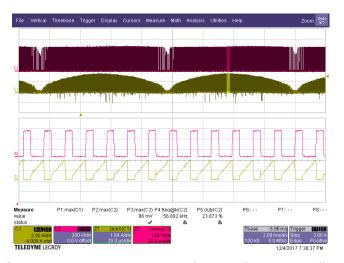



Figure 46 – PFC Stage Drain Voltage and Current, Full

Load, 115 VAC, 60 Hz. Upper: V<sub>DRAIN</sub>, 200 V / div.

Lower: Switch Current, 2 A, 2 ms / div.

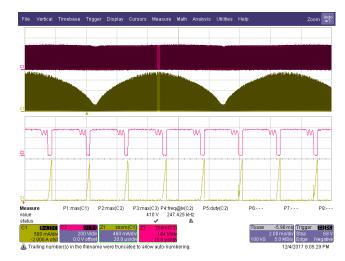



Figure 48 – PFC Stage Drain Voltage and Current, Full Load, 277 VAC, 60 Hz.

Upper: V<sub>DRAIN</sub>, 200 V / div.

Lower: Switch Current, 0.5 A, 2 ms / div.

#### AC Input Current and PFC Output Voltage during Start-up 14.5

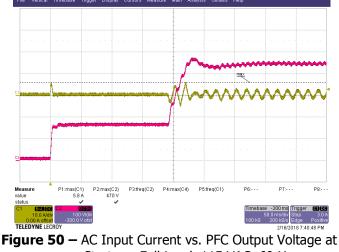




Figure 49 - AC Input Current vs. PFC Output Voltage at Start-up, Full Load, 100 VAC, 50 Hz. Upper: AC Input Current, 10 A / div.

Lower: PFC Voltage, 100 V, 10 ms / div.



Start-up, Full Load, 115 VAC, 60 Hz. Upper: AC Input Current, 10 A / div. Lower: PFC Voltage, 100 V, 10 ms / div.

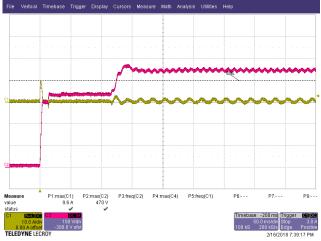



Figure 51 – AC Input Current vs. PFC Output Voltage at Start-up, Full Load, 230 VAC, 50 Hz. Upper: AC Input Current, 10 A /div. Lower: PFC Voltage, 100 V, 10 ms / div.

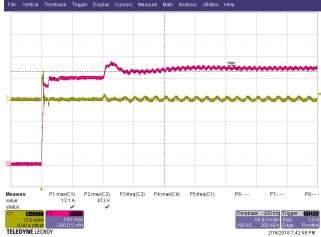



Figure 52 – AC Input Current vs. PFC Output Voltage at Start-up, Full Load, 277 VAC, 60 Hz. Upper: AC Input Current, 10 A / div. Lower: PFC Voltage, 100 V, 10 ms / div.

Page 90 of 104 www.power.com

#### LLC Start-up Waveforms Using Electronic Load Set for Constant Voltage 14.6

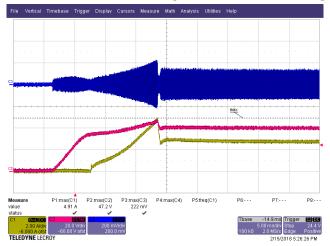



Figure 53 – LLC Start-up. 115 VAC, 100% Load, 32 V CV Load + 2.3  $\Omega$  Series Resistance (39 V).

Yellow: LLC I<sub>OUT</sub>, 2 A / div. Red: LLC  $V_{OUT}$ , 20 V / div.

Blue: LLC Primary Current, 200 mV (2 A),

5 ms / div.

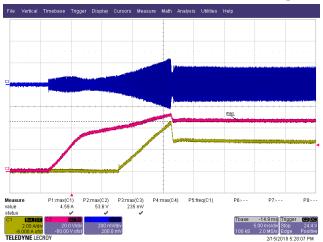



Figure 54 - LLC Start-up. 115 VAC, 100% Load, 39 V CV Load + 2.3  $\Omega$  Series Resistance (46 V).

Yellow: LLC I<sub>OUT</sub>, 2 A / div. Red: LLC  $V_{OUT}$ , 20 V / div.

Blue: LLC Primary Current, 200 mV (2 A), 5

ms / div.

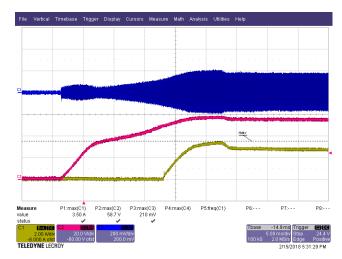
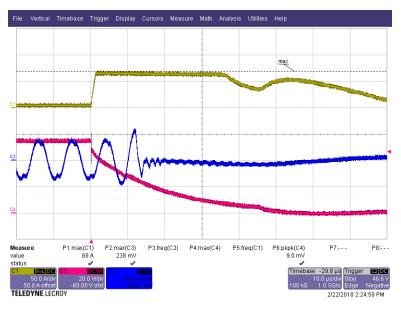



Figure 55 - LLC Start-up. 115 VAC, 100% Load, 47 V CV Load +  $2.3 \Omega$  Series Resistance (54 V).


Yellow: LLC I<sub>OUT</sub>, 2 A / div. Red: LLC V<sub>OUT</sub>, 20 V / div.

Blue: LLC Primary Current, 200 mV (2 A),

5 ms / div.

## 14.7 **Output Short-Circuit**

The figure below shows the effect of an output short circuit on the LLC primary current and on the output current. The UUT output was loaded with an electronic load configured for constant voltage, with a 2.3  $\Omega$  series resistor. Output voltage was set at 54 V for a worst-case load. The output lead to the electronic load and the lead connecting to the shorting relay were both bundled through the current probe used to sense the output current. The LLC primary current was monitored using a separate current probe. A mercury displacement relay was used to short the output to get a fast, bounce-free connection.



**Figure 56** — Output Short-Circuit Test.

Upper: LLC Output Current, 50 A / div.

Middle: V<sub>OUT</sub>, 20 V / div.

Lower: LLC Primary Current, 200 mV (2 A), 10  $\mu s$  / div.

## 14.8 *Output Ripple Measurements*

## 14.8.1 Ripple Measurement Technique

For DC output ripple measurements a modified oscilloscope test probe is used to reduce spurious signals. Details of the probe modification are provided in the figures below.

Tie two capacitors in parallel across the probe tip of the 4987BA probe adapter. A 0.1  $\mu$ F / 100 V ceramic capacitor and 1.0  $\mu$ F / 100 V aluminum electrolytic capacitor were used. The aluminum electrolytic capacitor is polarized, so always maintain proper polarity across DC outputs.

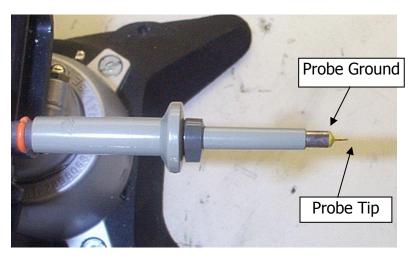
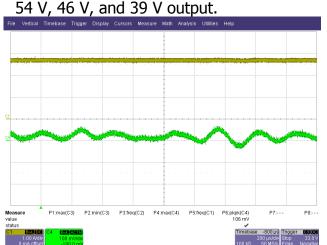


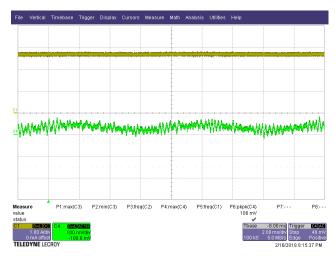

Figure 57 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).




**Figure 58** — Oscilloscope Probe with Probe Master 4987BA BNC Adapter (Modified with Wires for Probe Ground for Ripple measurement and Two Parallel Decoupling Capacitors Added).

P

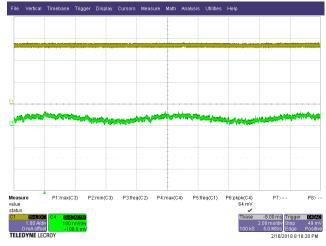
## 14.8.2 Ripple Measurements


The following pictures show output voltage and current ripple measures using an electronic load configured for constant voltage, with a 2.3  $\Omega$  series resistor to approximate the characteristics of an equivalent LED load. Measurements were taken at



**Figure 59** – Output Ripple, Full Load, 54 V<sub>OUT</sub>, 115 VAC.

Upper:  $I_{OUT}$ , 1 A / div.


Lower: V<sub>OUT</sub> Ripple, 100 mV, 200 μs / div.



**Figure 60** – Output Ripple, Full Load, 46 V<sub>OUT</sub>, 115 VAC.

Upper:  $I_{OUT}$ , 1 A / div.

Lower: V<sub>OUT</sub> Ripple, 100 mV, 2 ms / div.



**Figure 61** – Output Ripple, Full Load, 39 V<sub>OUT</sub>, 115 VAC.

Upper: I<sub>OUT</sub>, 1 A / div.

Lower: V<sub>OUT</sub> Ripple, 100 mV, 2 ms / div.

www.power.com

# 15 **Temperature Profiles**

The board was operated at room temperature, with output set at the maximum 54 V, using a constant voltage load with additional 2.3  $\Omega$  series resistance. For each test condition the unit was allowed to thermally stabilize (~1 hr) before measurements were made.

# 15.1 100 VAC, 50 Hz, 150 W Output, Room Temperature

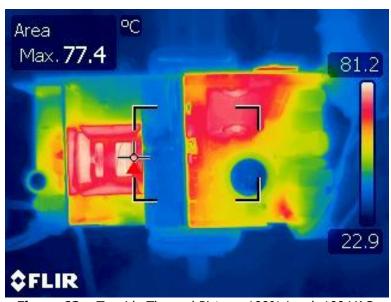
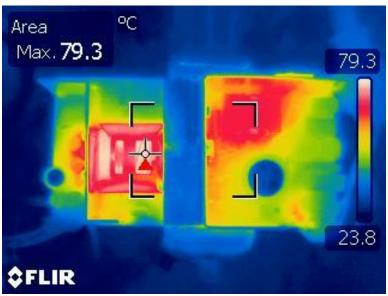




Figure 62 - Topside Thermal Picture, 100% Load, 100 VAC.

| $V_{IN}$ | <b>Reference Designator</b> | Temperature (°C) |
|----------|-----------------------------|------------------|
| 100      | U2                          | 77.9             |
| 100      | U4                          | 82.1             |
| 100      | D10, D11                    | 81.5             |
| 100      | D7                          | 78               |
| 100      | BR1                         | 80.4             |
| 100      | T1                          | 79.9             |
| 100      | T2                          | 83.5             |

# 15.2 115 VAC, 60 Hz, 150 W Output, Room Temperature



**Figure 63 –** Topside Thermal Picture, 100% Load, 115 VAC.

| V <sub>IN</sub> | <b>Reference Designator</b> | Temperature (°C) |
|-----------------|-----------------------------|------------------|
| 115             | U2                          | 71.4             |
| 115             | U4                          | 74.5             |
| 115             | D10, D11                    | 80.1             |
| 115             | D7                          | 72               |
| 115             | BR1                         | 72.9             |
| 115             | T1                          | 73.1             |
| 115             | T2                          | 80.9             |

# 15.3 230 VAC, 50 Hz, 150 W Output, Room Temperature

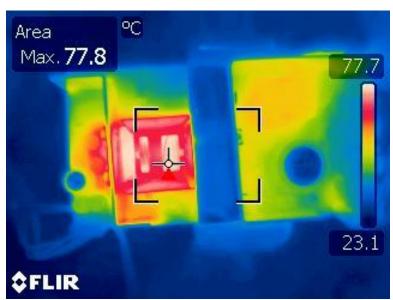
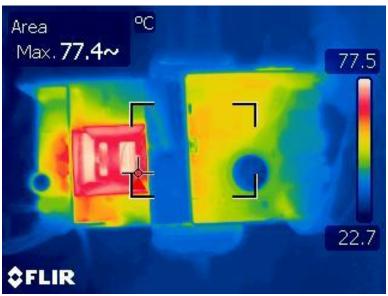




Figure 64 – Topside Thermal Picture, 100% Load, 230 VAC.

| V <sub>IN</sub> | Reference Designator | Temperature (°C) |
|-----------------|----------------------|------------------|
| 230             | U2                   | 52.1             |
| 230             | U4                   | 60.3             |
| 230             | D10, D11             | 80.2             |
| 230             | D7                   | 54.4             |
| 230             | BR1                  | 52.8             |
| 230             | T1                   | 51.4             |
| 230             | T2                   | 79.7             |

# 15.4 277 VAC, 60 Hz, 150 W Output, Room Temperature



**Figure 65** – Topside Thermal Picture, 100% Load, 277 VAC.

| V <sub>IN</sub> | Reference Designator | Temperature (°C) |
|-----------------|----------------------|------------------|
| 277             | U2                   | 54.1             |
| 277             | U4                   | 62.3             |
| 277             | D10, D11             | 79.5             |
| 277             | D7                   | 56.5             |
| 277             | BR1                  | 52.7             |
| 277             | T1                   | 48.3             |
| 277             | T2                   | 81               |

## 16 Conducted EMI

Conducted EMI tests used the LED load described in Section 7. The LED heat sink was connected to the LISN ground.

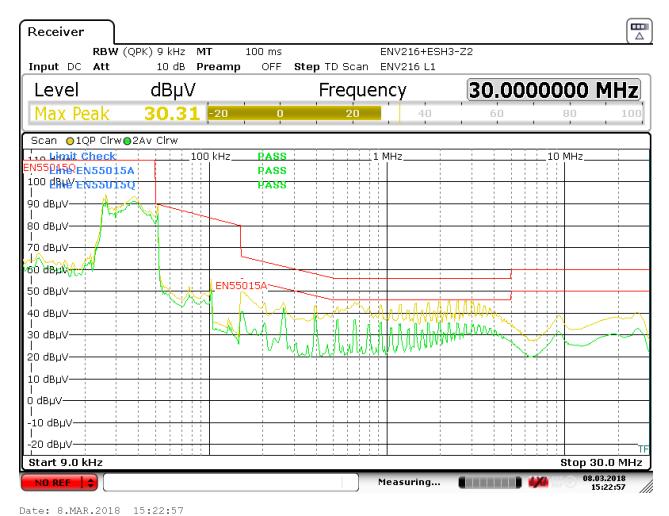
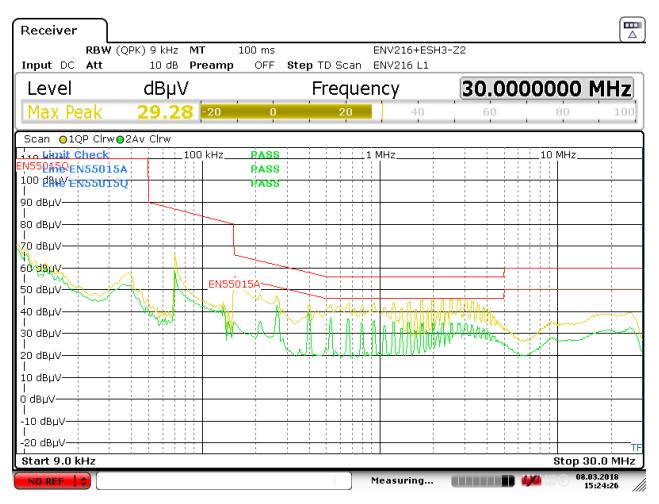
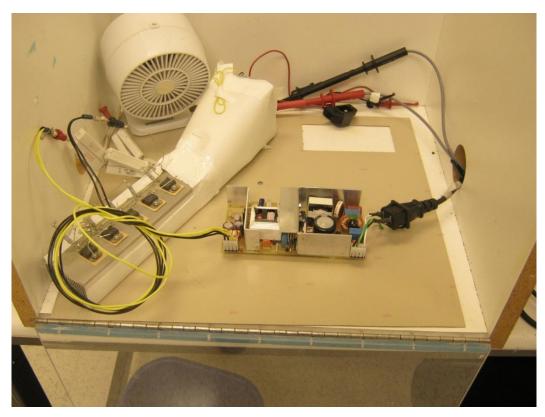




Figure 66 - Conducted EMI, 115 VAC, LED Load.



Date: 8.MAR.2018 15:24:26


Figure 67 - Conducted EMI, 230 VAC, LED Load.

# **Line Surge Testing**

#### 17.1 Line Surge Test Set-up

The picture below shows the power supply set-up for surge testing. The supply is placed on a ground plane. A piece of single-sided copper clad printed circuit material was used in this case, but a piece of aluminum sheet with appropriate insulation would also work. An IEC AC connector was connected to the power supply AC input, with the safety ground connected to the ground plane. The CV output load (described in section 7) was placed on top of the ground plane so that it would capacitively couple to the safety ground. A 48 V fan powered by the UUT was located inside the plastic shroud shown in the figure, and used to cool the CV load during testing. The LED string used in the CV load was used as an output indicator, and to sense any output voltage dropout.

The UUT was tested using a Teseg NSG 3060 surge tester. Results of common mode and differential mode surge testing are shown below. A test failure was defined as a nonrecoverable output interruption requiring supply repair or recycling AC input voltage.



**Figure 68** – Line Surge Physical Set-up.

#### Differential Mode Surge, 1.2 / 50 μsec 17.2

| AC Input Surge Voltage Voltage (VAC) (kV) |    | Phase Angle<br>(°) | Generator<br>Impedance<br>(Ω) | Number of<br>Strikes | Test Result |
|-------------------------------------------|----|--------------------|-------------------------------|----------------------|-------------|
| 115                                       | +4 | 90                 | 2                             | 10                   | PASS        |
| 115                                       | -4 | 90                 | 2                             | 10                   | PASS        |
| 115                                       | +4 | 270                | 2                             | 10                   | PASS        |
| 115                                       | -4 | 270                | 2                             | 10                   | PASS        |
| 115                                       | +4 | 0                  | 2                             | 10                   | PASS        |
| 115                                       | -4 | 0                  | 2                             | 10                   | PASS        |

| AC Input<br>Voltage<br>(VAC) | Surge<br>Voltage<br>(kV) | Phase Angle<br>(°) | Generator<br>Impedance<br>(Ω) | Number of<br>Strikes | Test Result |
|------------------------------|--------------------------|--------------------|-------------------------------|----------------------|-------------|
| 230                          | +4                       | 90                 | 2                             | 10                   | PASS        |
| 230                          | -4                       | 90                 | 2                             | 10                   | PASS        |
| 230                          | +4                       | 270                | 2                             | 10                   | PASS        |
| 230                          | -4                       | 270                | 2                             | 10                   | PASS        |
| 230                          | +4                       | 0                  | 2                             | 10                   | PASS        |
| 230                          | -4                       | 0                  | 2                             | 10                   | PASS        |

#### Common Mode Surge, 1.2 / 50 $\mu sec$ 17.3

| AC Input<br>Voltage<br>(VAC) | Surge<br>Voltage<br>(kV) | Phase Angle<br>(°) | Generator<br>Impedance<br>(Ω) | Number of<br>Strikes | Test Result |
|------------------------------|--------------------------|--------------------|-------------------------------|----------------------|-------------|
| 115                          | +4                       | 90                 | 12                            | 10                   | PASS        |
| 115                          | -4                       | 90                 | 12                            | 10                   | PASS        |
| 115                          | +4                       | 270                | 12                            | 10                   | PASS        |
| 115                          | -4                       | 270                | 12                            | 10                   | PASS        |
| 115                          | +4                       | 0                  | 12                            | 10                   | PASS        |
| 115                          | -4                       | 0                  | 12                            | 10                   | PASS        |

| AC Input<br>Voltage<br>(VAC) | Surge<br>Voltage<br>(kV) | Phase Angle<br>(°) | Generator<br>Impedance<br>(Ω) | Number of<br>Strikes | Test Result |
|------------------------------|--------------------------|--------------------|-------------------------------|----------------------|-------------|
| 230                          | +4                       | 90                 | 12                            | 10                   | PASS        |
| 230                          | -4                       | 90                 | 12                            | 10                   | PASS        |
| 230                          | +4                       | 270                | 12                            | 10                   | PASS        |
| 230                          | -4                       | 270                | 12                            | 10                   | PASS        |
| 230                          | +4                       | 0                  | 12                            | 10                   | PASS        |
| 230                          | -4                       | 0                  | 12                            | 10                   | PASS        |

# **18 Revision History**

| Date      | Author | Revision | Description and Changes                  | Reviewed    |
|-----------|--------|----------|------------------------------------------|-------------|
| 07-May-18 | RH     | 1.0      | Initial Release                          | Apps & Mktg |
| 07-Mar-20 | KM     | 1.1      | Added Alternates for C13 and Q2, Q4, Q5. | Apps & Mktg |
| 30-Jul-20 | KM     | 1.2      | Converted to RDR.                        | Apps & Mktg |
| 31-Aug-20 | KM     | 1.3      | Updated Figure 33.                       | Apps & Mktg |
| 02-Sep-20 | RH     | 1.4      | Spec Table Update.                       | Apps & Mktg |

## For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

#### Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <a href="WWW.power.com">WWW.power.com</a>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Ospeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. @Copyright 2015 Power Integrations, Inc.

### Power Integrations Worldwide Sales Support Locations

## WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

## **GERMANY**

(IGBT Driver Sales) HellwegForum 1 59469 Ense, Germany Tel: +49-2938-64-39990 Email: igbtdriver.sales@power.com

KORFA RM 602, 6FL Korea City Air Terminal B/D, Samsung-Dong, Kangnam-Gu,

Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630

e-mail: koreasales@power.com

### CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail:

chinasales@power.com INDIA

#1, 14th Main Road . Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail:

indiasales@power.com

### SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 singaporesales@power.com

## CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

### ITALY

Via Milanese 20, 3<sup>rd</sup>. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com

### **TATWAN**

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

### GERMANY

(AC-DC/LED Sales) Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com

### JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

### UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road Cambridge CB4 1YG Phone: +44 (0) 1223-446483 e-mail: eurosales@power.com



www.power.com

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Power Integrations manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ