

| Title         | Reference Design Report for a 200 W<br>3-Phase Inverter Using BridgeSwitch <sup>TM</sup><br>BRD1263C and LinkSwitch <sup>TM</sup> -TN2<br>LNK3204D in FOC Operation |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Specification | 340 VDC Input, 200 W Continuous Three Phase Inverter Output Power, 0.67 A <sub>RMS</sub> Continuous Motor Phase Current                                             |  |  |  |  |
| Application   | High-Voltage Brushless DC (BLDC) Motor Drive                                                                                                                        |  |  |  |  |
| Author        | Applications Engineering Department                                                                                                                                 |  |  |  |  |
| Document No.  | RDR-852                                                                                                                                                             |  |  |  |  |
| Date          | July 27, 2020                                                                                                                                                       |  |  |  |  |
| Revision      | 1.1                                                                                                                                                                 |  |  |  |  |

#### **Summary and Features**

- BridgeSwitch high-voltage half-bridge motor driver
- Integrated 600 V FREDFETs with ultra-soft, fast recovery diodes
- No heat sink
- Fully self-biased operation simplifies auxiliary power supply but can also support external bias operation as needed
- High-side and low-side cycle-by-cycle current limit
- Two level device over-temperature protection
- High-voltage bus monitor with four undervoltage threshold and one overvoltage threshold
- System level temperature monitor
- Single wire status update communication bus
- Supports any microcontroller (MCU) for sensorless field oriented control (FOC) through the signal interface
- Instantaneous phase current output signal for each BridgeSwitch
- Fault reporting for each device through the FAULT BUS pin on the interface
- +5 V supply ready through the interface

PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at <a href="https://www.power.com/company/intellectual-property-licensing/">https://www.power.com/company/intellectual-property-licensing/</a>.

| T | able of                | f Contents                                              |    |
|---|------------------------|---------------------------------------------------------|----|
| 1 | Intro                  | oduction                                                | 5  |
| 2 | Inve                   | rter Specification                                      | 7  |
| 3 | Sch                    | ematic                                                  | 8  |
| 4 | Circ                   | uit Description                                         | 12 |
|   | 4.1                    | Three-Phase BridgeSwitch Inverter                       | 12 |
|   | 4.2                    | BridgeSwitch Bias Supply                                | 12 |
|   | 4.3                    | PWM Input                                               | 12 |
|   | 4.4                    | Cycle-by-Cycle Current Limit                            | 13 |
|   | 4.5                    | System Underoltage (UV) and Overvoltage (OV) Protection | 13 |
|   | 4.6                    | System Level Temperature and Monitoring                 | 13 |
|   | 4.7                    | Fault Bus                                               | 13 |
|   | 4.8                    | Device ID                                               | 13 |
|   | 4.9                    | Microcontroller (MCU) Interface                         | 13 |
|   | 4.10                   | External Supply                                         |    |
|   | 4.11                   | Three-Phase Motor Interface                             |    |
|   | 4.12                   | Auxiliary Power Supply Circuit                          | 14 |
|   | 4.13                   | +5 V Linear Regulator                                   | 14 |
|   | 4.14                   | Current Sense Amplifier                                 | 14 |
| 5 | Prin                   | ted Circuit Board Layout                                |    |
| 6 | Bill (                 | of Materials                                            | 17 |
| 7 | Perf                   | ormance Data                                            |    |
|   | 7.1                    | Start-Up Operation                                      |    |
|   | 7.1.                   |                                                         |    |
|   | 7.1.2                  | - ······                                                |    |
|   | 7.2                    | Steady-State Operation                                  |    |
|   | 7.2.                   |                                                         |    |
|   | 7.2.                   | g =                                                     |    |
|   | 7.2.                   |                                                         |    |
|   | 7.2.                   |                                                         |    |
|   | 7.2.                   | <b>5</b> ,                                              |    |
|   |                        | Thermal Performance                                     |    |
|   | 7.3.                   | J (                                                     |    |
|   | 7.3.                   |                                                         |    |
|   | 7.3.3                  | ,                                                       |    |
|   | 7.3.4                  | •                                                       |    |
|   |                        | 3.4.1 Self Supply Mode                                  |    |
|   | 7.4                    | · · · · · · · · · · · · · · · · · · ·                   |    |
|   | 7. <del>4</del><br>7.5 | No-Load Input Power Consumption                         |    |
|   | 7.5. <sup>-</sup>      | Efficiency                                              |    |
|   | 7.5.<br>7.5.           | · · · · · · · · · · · · · · · · · · ·                   |    |
|   | 7.6                    | Device and System Level Protection / Monitoring         |    |
|   | 7.6.                   |                                                         |    |
|   | 7.6.2<br>7.6.2         |                                                         |    |
|   |                        |                                                         |    |

|   | 7.6.3  | Thermal Shutdown                                                         | 34  |
|---|--------|--------------------------------------------------------------------------|-----|
|   | 7.6.4  | Undervoltage (UV)                                                        |     |
|   | 7.6.5  | Overvoltage (OV)                                                         |     |
|   | 7.6.6  | System Thermal Fault                                                     |     |
|   | 7.7 Ab | onormal Motor Operation Test                                             |     |
|   | 7.7.1  | Operation Under Stalled (Motor) Conditions                               |     |
|   | 7.7.2  | Operation with One Motor Phase / Winding Disconnected                    | 39  |
|   | 7.7.3  | Running Overload Test                                                    |     |
| 8 | Appen  | dix                                                                      |     |
|   |        | oard Quick Reference                                                     |     |
|   | 8.1.1  |                                                                          |     |
|   |        |                                                                          | 42  |
|   | 8.1.2  | J4 Connector Pin Designation                                             |     |
|   | 8.1.3  | J5 Connector Pin Designation                                             | 43  |
|   | 8.2 Re | ecommended Start-up Sequence                                             | 44  |
|   | 8.3 St | atus Word Encoding                                                       | 45  |
|   | 8.4 Su | uggested Microcontroller Action/Decision To BridgeSwitch Fault Condition | s46 |
|   |        | verter Output Power Measurement                                          |     |
|   |        | urrent Capability vs. Ambient Temperature                                |     |
|   |        | ficiency Curve at Different Switching Frequencies                        |     |
|   |        | est Bench Set-up                                                         |     |
| 9 |        | on History                                                               |     |
|   |        |                                                                          |     |

Important Note:

During operation, the reference design board is subject to hazards including high voltages, rotating parts, bare wires, and hot surfaces. Energized DC bus capacitors require time to discharge after DC input disconnection.

All testing should use an isolation transformer to provide the DC input to the board.

#### 1 Introduction

This document describes a 200 W, 97% efficient, 3-phase inverter for high-voltage brushless DC (BLDC) motor application using three BridgeSwitch BRD1263C devices. The design shows the device performance, internal level monitoring, system level monitoring, and fault protection facilitated by the high level of integration of the BridgeSwitch half-bridge motor driver IC. A high-voltage, low component count buck converter employing a LinkSwitch-TN2 LNK3204D device supplies the current sense amplifier and optionally provides external bias for BridgeSwitch.

In addition, this document also contains the inverter specification, schematic, bill of materials, printed circuit board (PCB) layout, performance data, and test set-up. The provided waveforms along with the design performance are based on a sensorless field oriented control (FOC) method.

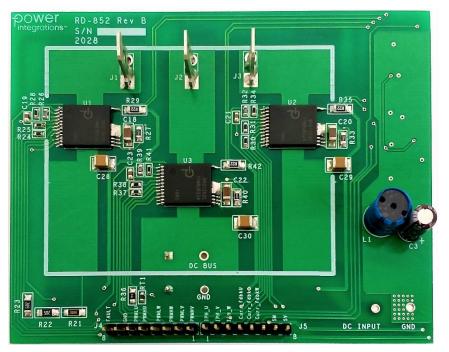



Figure 1 - Populated Circuit Board Top View.

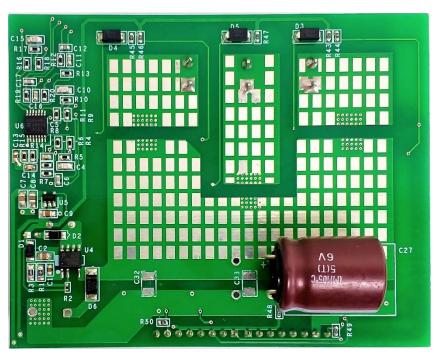
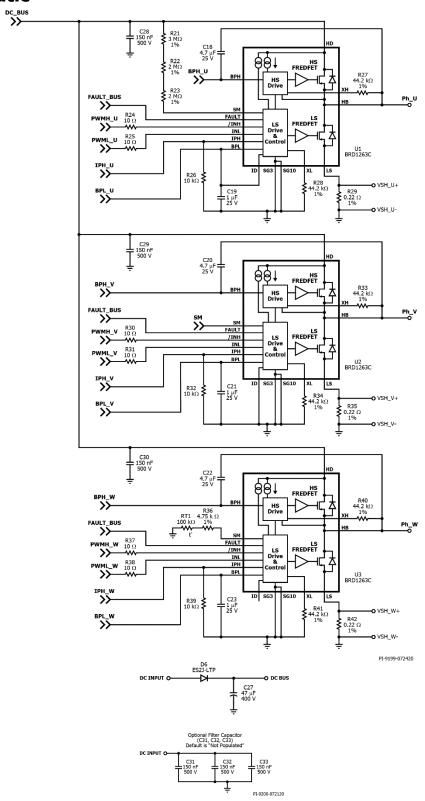



Figure 2 - Populated Circuit Board Bottom View.

## 2 Inverter Specification

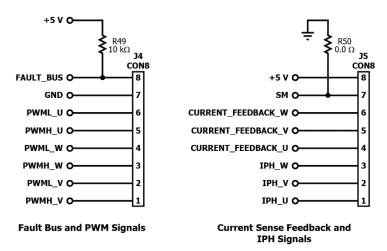
The table below provides the electrical specification of the 3-phase inverter design. The result section provides actual performance data.

| Description                             | Symbol                | Min          | Тур  | Max     | Unit             | Comment                                                         |
|-----------------------------------------|-----------------------|--------------|------|---------|------------------|-----------------------------------------------------------------|
| Input                                   |                       |              |      |         |                  |                                                                 |
| Voltage                                 | $V_{IN}$              | 270          | 340  | 365     | ٧                | 2-wire DC Input.                                                |
| Current                                 | $I_{IN}$              |              | 0.6  |         | A <sub>RMS</sub> | RMS.                                                            |
| Power                                   | $P_{IN}$              |              | 206  |         | W                | At Efficiency = 97%.                                            |
| Output                                  |                       |              |      |         |                  |                                                                 |
| Power                                   | P <sub>OUT</sub>      |              | 200  |         | W                | Inverter Output Power.                                          |
| Motor Phase Current                     | I <sub>MOT(RMS)</sub> |              | 0.67 |         | $A_{RMS}$        | Continuous RMS per Phase.                                       |
| Inverter Peak Output Current            | $I_{INT(PK)}$         |              | 2.25 |         | Α                | Inverter Peak Current.                                          |
| PWM Carrier Frequency <sup>1</sup>      | $f_{PWM}$             |              | 10   | 16      | kHz              | 3-Phase FOC Modulation.                                         |
| Efficiency                              | η                     |              | 97   |         | %                | Self-Supplied Operation.                                        |
| Output Speed                            | ω                     |              | 5000 |         | RPM              | Motor Speed at 200 W<br>Inverter Output.                        |
| Environmental                           |                       |              |      |         |                  |                                                                 |
| Ambient Temperature                     | T <sub>AMB</sub>      | -20          | 27   | 65      | °C               | Free Convection.                                                |
| Device Case Temperature                 | T <sub>PACKAGE</sub>  |              | 75   | 113     | °C               | 0.67 A <sub>RMS</sub> Phase Current in Self-Supplied Operation. |
| System Level Monitoring                 |                       |              |      |         |                  |                                                                 |
| DC Bus Sensing                          |                       |              |      |         |                  |                                                                 |
| OV Threshold                            | $V_{OV}$              |              | 422  |         | V                | Reported through                                                |
| 1 <sup>st</sup> UV Threshold            | V <sub>UV100</sub>    |              | 247  |         | ٧                | Status Communication Bus                                        |
| 2 <sup>nd</sup> UV Threshold            | $V_{UV85}$            |              | 212  |         | V                | (FAULT Pin).                                                    |
| 3 <sup>rd</sup> UV Threshold            | $V_{UV60}$            |              | 177  |         | ٧                |                                                                 |
| 4 <sup>th</sup> UV Threshold            | $V_{UV55}$            |              | 142  |         | ٧                |                                                                 |
| Over Current Protection <sup>2</sup>    | $I_{OCP}$             |              | 2.25 |         | $A_{PK}$         | At XL/XH = 44.2 $k\Omega$                                       |
| System Warning Temperature <sup>3</sup> | T <sub>SYS</sub>      | - J D\A\D\ 4 | 90   | ا مادان | °C               | with a town of a work.                                          |


Notes: 1. 20 kHz is the maximum recommended PWM frequency with self-supply or with external supply.

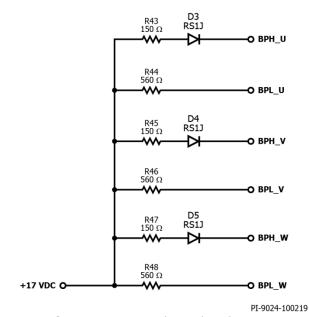
**Table 1** – Inverter Specification.

<sup>2.</sup> Can be manually configured depending on the value of XL/XH. For BRD1263C, the maximum current protection level is 2.25 A at XL/XH=44.2  $k\Omega$ .

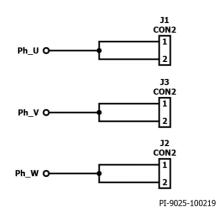

<sup>3.</sup> Sensed through an external thermistor, temperature threshold depends on chosen NTC and its location, requires verification in final application.

# 3 Schematic

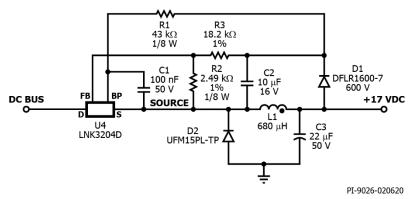



**Figure 3** – BridgeSwitch 3-Phase Inverter Circuit Schematic.

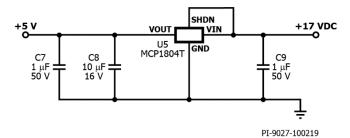





PI-9023-100219


**Figure 4** – Microcontroller Interface Schematic.




**Figure 5** – External Supply Schematic.



**Figure 6** –Three-Phase Motor Interface Schematic.



**Figure 7** – Auxiliary Schematic.



**Figure 8** – 5 V Linear Regulator Schematic.

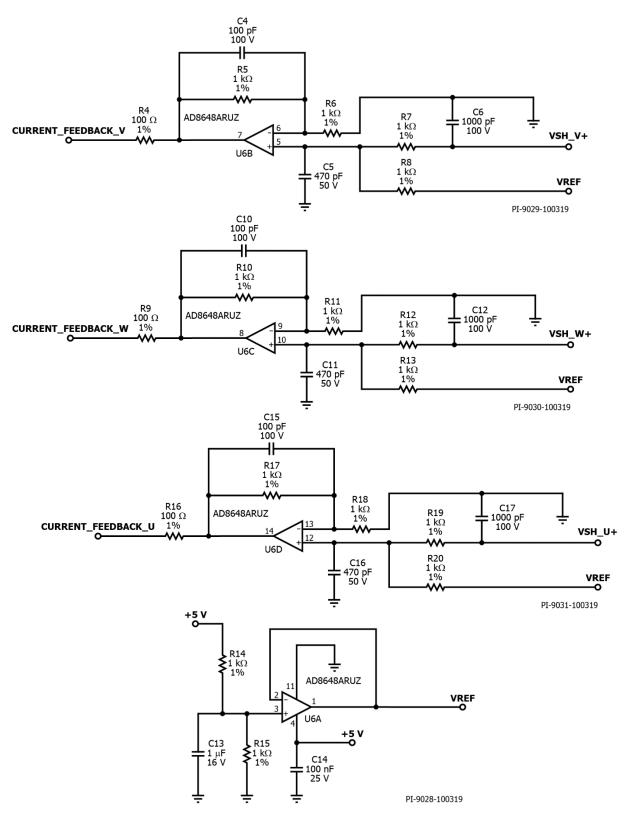



Figure 9 – Current Sense Amplifier Circuit Schematic.

## 4 Circuit Description

The overall schematic shows a 3-phase inverter utilizing three BridgeSwitch BRD1263C devices. The circuit design drives a high-voltage, 3-phase, brushless DC (BLDC) motor utilizing field oriented control (FOC) for controlling the motor. The BridgeSwitch IC combines two 600 V, N-channel power FREDFETs with its corresponding gate drivers into a low profile surface mount package. The BridgeSwitch power FREDFET features an ultra-soft, fast recovery diode ideally suited for inverter drives. Both drivers are fully self-supplied eliminating the need for the system power supply to provide gate drive power.

A LinkSwitch-TN2 LNK3204D device in a high-voltage buck converter configuration provides an optional +17 V supply for the BridgeSwitch IC (external bias) and input DC voltage for the +5 V linear regulator that supplies the current sense amplifier circuit.

In addition, the BridgeSwitch IC incorporates internal fault protection and system level monitoring. Internal fault protection includes cycle-by-cycle current limit for both FREDFETs and a two level thermal overload protection. On the other hand, system level monitoring includes high-voltage DC bus sensing with multi-level undervoltage thresholds and one overvoltage threshold. The BridgeSwitch IC can also be configured using external sensors such as a thermistor for system temperature monitoring. A single wire open drain bus communicates all detected fault or change of status to the system microcontroller.

## 4.1 Three-Phase BridgeSwitch Inverter

The three BridgeSwitch devices U1, U2, and U3 form the 3-phase inverter. The output of the inverter connects to the 3-phase BLDC motor through connectors J1, J2, and J3.

## 4.2 **BridgeSwitch Bias Supply**

Capacitors C19, C21, and C23 provide self-supply decoupling for the integrated low-side controller and gate driver. An internal high-voltage current source recharges such capacitors as soon as the voltage level starts to dip. On the other hand, capacitors C18, C20, and C22 provide self-supply decoupling for the integrated high-side controller and gate driver. Internal high-voltage current sources recharge these capacitors whenever the half-bridge point of the respective device drops to the low-side source voltage level (i.e. the low-side FREDFET turns on).

## 4.3 **PWM Input**

Input PWM signals PWML\_U, PWMH\_U, PWML\_V, PWMH\_V, PWML\_W, PWMH\_W, control the switching states of the integrated high-side and low-side power FREDFETs. The system microcontroller provides the required PWM signal and desired switching frequency.

#### 4.4 Cycle-by-Cycle Current Limit

Resistors R28, R34, R41, R27, R33, and R40 set the cycle-by-cycle current limit level for the integrated low side and high-side power FREDFETs. A selected value of 44.2 k $\Omega$  set the current limit to 100% of the default level or 2.25 A<sub>PK</sub>.

## 4.5 System Underoltage (UV) and Overvoltage (OV) Protection

BridgeSwitch U1 monitors the DC bus voltage through resistors R21 (3 M $\Omega$ ), R22 (2 M $\Omega$ ), and R23 (2 M $\Omega$ ). The combined resistance of 7 M $\Omega$  sets the undervoltage thresholds to 247 V, 212 V, 177 V, and 142 V. The bus overvoltage threshold is at 422 V. The FAULT pin reports any detected bus voltage fault condition.

#### 4.6 System Level Temperature and Monitoring

The BridgeSwitch IC (U3) monitors the system temperature through thermistor RT1 connected to the SM pin. Resistor R36 tunes the threshold for a system level fault of 90 °C. The device reports a detected status change of the externally set system level temperature through the FAULT pin.

#### 4.7 Fault Bus

The BridgeSwitch devices (U1, U2, and U3) report any detected internal and system status change through pin 8 of connector J4. The system microcontroller can take action in accordance to the status update reported by the device. Such action could be for instance inverter shutdown, latch, restart, warning, etc.

#### 4.8 **Device ID**

Each BRD1263C assigns itself a unique device ID through the connection of pin 11 (ID pin). The pin can be floating, connected to the SG pin, or connected to the BPL pin. The device ID allows the specific device flagging a fault to communicate its physical location to the system microcontroller.

## 4.9 Microcontroller (MCU) Interface

Connectors J4 and J5 serves as an interface between the system microcontroller and the BridgeSwitch three phase inverter which contains the following signals:

- > FAULT\_BUS Pin dedicated for fault reporting of all BridgeSwitch devices.
- ➤ **GND** Common ground interface between the microcontroller and the inverter board.
- PWMH\_U, PWML\_U, PWMH\_V, PWML\_V, PWMH\_W, and PWML\_W PWM input signal interface from the system microcontroller to the BridgeSwitch device.
- ➤ +5 V Voltage supply pin for microcontroller as needed.
- > **SM** Configurable system monitoring pin for the BridgeSwitch IC (U2).
- Curr\_fdbkU, Curr\_fdbkV, Curr\_fdbkW Current feedback information needed by the microcontroller (MCU). This signal directly comes from the inverter current sense resistor passing through the current sense amplifier circuit.



➤ IPH\_U, IPH\_V, IPH\_W — Instantaneous phase current information of the lowside power FREDFET drain to source current of each BridgeSwitch device coming from the IPH pin.

#### 4.10 External Supply

Components R43, R44, R45, R46, R47, R48 and diodes D3, D4, and D5 are responsible for providing external supply to the BridgeSwitch BPL/BPH pin through device U4. External supply operation is optional for applications that require lower inverter no-load input power or operate at elevated ambient temperatures. Otherwise, these resistors and diode components can be depopulated. If depopulated, BPL/BPH supply will be drawn internally through the BridgeSwitch device (self supply).

#### 4.11 Three-Phase Motor Interface

Connectors J1, J2, and J3 are mechanical connectors that directly connect the BridgeSwitch 3-phase inverter to the BLDC motor.

#### 4.12 Auxiliary Power Supply Circuit

Device U4 (LNK3204D) is a high-side buck switcher IC responsible for providing optional +17 V supply for BPL/BPH (external bias) and +5 V linear regulator. It directly steps down the high input DC voltage to the desired low output voltage. For more information about LNK3204D, please refer to the data sheet through the following link: <a href="https://ac-dc.power.com/design-support/product-documents/data-sheets/linkswitch-tn2-data-sheet/">https://ac-dc.power.com/design-support/product-documents/data-sheets/linkswitch-tn2-data-sheet/</a>

## 4.13 *+5 V Linear Regulator*

Device U5 is a +5 V linear regulator that provides DC supply to the current sense amplifier circuit. It can also be used to supply an external microcontroller through pin 8 of connector J5.

## 4.14 Current Sense Amplifier

Components U6B, U6C, and U6D are current sense amplifiers which receive data from sense resistors R29, R35, and R42. The current information from these sense resistors are being offset to 2.5 VDC level in the current sense op-amp output pins. The U6A circuit provides the 2.5 VDC offset reference voltage. The current information from the outputs of U6B, U6C, and U6D are sent to the microcontroller (MCU) which modulates the PWM input to the BridgeSwitch inverter maintaining desired power and RPM.

Note: U6A, U6B, U6C, and U6D are op-amps in one IC package (Quad op-amp, U6)

# **5 Printed Circuit Board Layout**

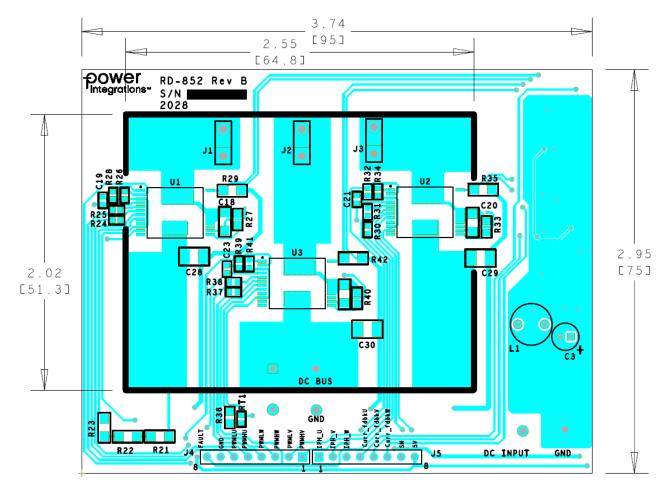



Figure 10 - Printed Circuit Board Layout Top View.

#### Note:

- 1. The overall PCB size dimension is 95mm x 75mm (L x W).
- 2. The inverter PCB area/dimension is  $64.8 \text{mm} \times 51.3 \text{mm} \text{ (L x W)}$  in black rectangle.

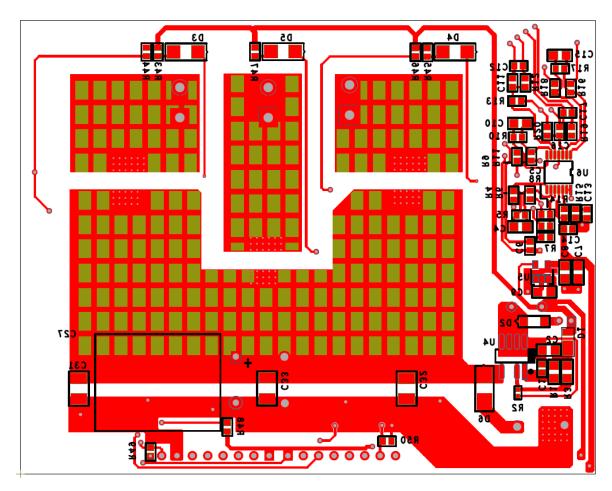



Figure 11 – Printed Circuit Board Layout Bottom View.

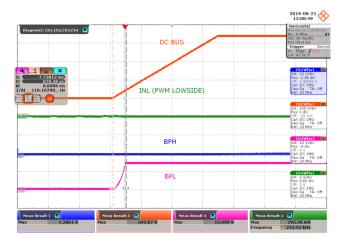
#### Note:

- 1. The overall PCB size dimension is 95mm x 75mm (L x W).
- 2. The inverter PCB area/dimension is  $64.8 \text{mm} \times 51.3 \text{mm} \text{ (L x W)}$ .

# **6** Bill of Materials

| Item | Qty | Ref Des                                                                      | Ref Des Description Mfg Part Number                                                       |                                                    |                       |
|------|-----|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|
| 1    | 1   | C1                                                                           | 100 nF , ±10%, 50 V, Ceramic, X7R,0603                                                    | CGA3E2X7R1H104K080AA                               | Mfg<br>TDK            |
| 2    | 2   | C2,C8                                                                        | 10 μF, ±10%, 16V, X7R, Ceramic, SMT, MLCC 0805                                            | CL21B106KOQNNNE                                    | Samsung               |
| 3    | 1   | C3                                                                           | 22 μF, 50 V, Electrolytic, (5 x 11)                                                       | UPW1H220MDD                                        | Nichicon              |
| 4    | 3   | C4,C10,C15                                                                   | 100 pF, 100 V, Ceramic, COG, 0805                                                         | C0805C101J1GACTU                                   | Kemet                 |
| 5    | 3   | C5,C11,C16                                                                   | 470 pF 50 V, Ceramic, C0G/NP0, 0603                                                       | VJ0603A471JXAAC                                    | Vishay                |
| 6    | 3   | C6,C12,C17                                                                   | 1000 pF, 100 V, Ceramic, NP0, 0603                                                        | C1608C0G2A102J                                     | TDK                   |
| 7    | 2   | C7,C9                                                                        | 1 μF, 50 V, Ceramic, X5R, 0805                                                            | 08055D105KAT2A                                     | AVX                   |
| 8    | 1   | C13                                                                          | 1 μF 16 V, Ceramic, X7R,0603                                                              | CL10B105KO8VPNC                                    | Samsung               |
| 9    | 1   | C14                                                                          | 100 nF, 25 V, Ceramic, X7R, 0603                                                          | VJ0603Y104KXXAC                                    | Vishay                |
| 10   | 3   | C18,C20,C22                                                                  | 4.7 μF, ±10%, 25 V, Ceramic, X7R, 1206                                                    | GCM31CR71E475KA55L                                 | Murata                |
| 11   | 3   | C19,C21,C23                                                                  | 1 μF, ±10%, 25 V, Ceramic, X7R, 0603                                                      | CGA3E1X7R1E105K080AE                               | TDK                   |
| 12   | 1   | C27                                                                          | 47 μF, 400 V, Electrolytic, (16 x 20)                                                     | EKXJ401ELL470ML20S                                 | United Chemi-Con      |
| 13   | 6   | C28, C29, C30,<br>C31, C32, C33                                              | 150 nF, 500 V, Ceramic, X7R, 1210                                                         | C1210V154KCRACTU                                   | Kemet                 |
| 14   | 1   | D1                                                                           | 600 V, 1 A, Rectifier, Glass Passivated,<br>POWERDI123                                    | DFLR1600-7                                         | Diodes, Inc.          |
| 15   | 1   | D2                                                                           | 600 V, 1 A, Ultrafast Recovery, 75 ns, SOD-123                                            | UFM15PL-TP                                         | Micro Commercial      |
| 16   | 3   | D3,D4,D5                                                                     | 600 V, 1 A, Fast Recovery, 250 ns, SMA                                                    | RS1J-13-F                                          | Diodes, Inc.          |
| 17   | 1   | D6                                                                           | 600 V, 2 A, Super Fast, 35 ns, DO-214AC, SMA                                              | ES2J-LTP                                           | Micro Commercial      |
| 18   | 3   | J1,J2,J3                                                                     | CONN QC TAB 0.250 SOLDER                                                                  | 1287-ST                                            | KeyStone              |
| 19   | 2   | J4,J5                                                                        | 8 Position (1 x 8) header, 0.1 pitch, Vertical, Au                                        | P9101-08-D32-1                                     | Protectron            |
| 20   | 1   | L1                                                                           | 680 μH, 0.36 A                                                                            | SBC3-681-361                                       | SUNX                  |
| 21   | 1   | R1                                                                           | RES, 43 kΩ, 5%, 1/8 W, Thick Film, 0805                                                   | ERJ-6GEYJ433V                                      | Panasonic             |
| 22   | 1   | R2                                                                           | RES, 2.49 kΩ, 1%, 1/10 W, Thick Film, 0402 ERJ-2RKF2491X                                  |                                                    | Panasonic             |
| 23   | 1   | R3                                                                           | RES, 18.2 kΩ, 1%, 1/8 W, Thick Film, 0805                                                 | .8.2 kΩ, 1%, 1/8 W, Thick Film, 0805 ERJ-6ENF1822V |                       |
| 24   | 3   | R4,R9,R16                                                                    | RES, 100 Ω, 1%, 1/16 W, Thick Film, 0603                                                  | ERJ-3EKF1000V                                      | Panasonic             |
| 25   | 14  | R5, R6, R7, R8,<br>R10, R11, R12,<br>R13, R14, R15,<br>R17, R18, R19,<br>R20 | RES, 1 k $\Omega$ , 1%, 1/16 W, Thick Film, 0603                                          | ERJ-3EKF1001V                                      | Panasonic             |
| 26   | 1   | R21                                                                          | RES, 3 MΩ, 1%, 1/4 W, Thick Film, 1206                                                    | KTR18EZPF3004                                      | Rohm Semi             |
| 27   | 2   | R22,R23                                                                      | RES, 2.00 MΩ, 1%, 1/4 W, Thick Film, 1206                                                 | ERJ-8ENF2004V                                      | Panasonic             |
| 28   | 6   | R24, R25, R30,<br>R31, R37, R38                                              | RES, 10 $\Omega$ , 5%, 1/10 W, Thick Film, 0603                                           | ERJ-3GEYJ100V                                      | Panasonic             |
| 29   | 4   | R26, R32, R39,<br>R49                                                        | RES, $10 \text{ k}\Omega$ , 5%, $1/10 \text{ W}$ , Automotive, AEC-Q200, Thick Film, 0603 | ERJ-3GEYJ103V                                      | Panasonic             |
| 30   | 3   | R27,R33,R40                                                                  | RES, 44.2 kΩ, 1%, 1/8 W, Thick Film, 0805                                                 | ERJ-6ENF4422V                                      | Panasonic             |
| 31   | 3   | R28,R34,R41                                                                  | RES, 44.2 kΩ, 1%, 1/16 W, Thick Film, 0603                                                | ERJ-3EKF4422V                                      | Panasonic             |
| 32   | 3   | R29,R35,R42                                                                  | RES, 0.22 R, 1%, 1/4 W, Thick Film, 1206                                                  | ERJ-8RQFR22V                                       | Panasonic             |
| 33   | 1   | R36                                                                          | RES, 4.75 kΩ, 1%, 1/8 W, Thick Film, 0805                                                 | ERJ-6ENF4751V                                      | Panasonic             |
| 34   | 3   | R43,R45,R47                                                                  | RES, 150 Ω, 5%, 1/10 W, Thick Film, 0603                                                  | ERJ-3GEYJ151V                                      | Panasonic             |
| 35   | 3   | R44,R46,R48                                                                  | RES, 560 Ω, 5%, 1/10 W, Thick Film, 0603                                                  | ERJ-3GEYJ561V                                      | Panasonic             |
| 36   | 1   | R50                                                                          | RES, 0 Ω, 5%, 1/10 W, Thick Film, 0603                                                    | ERJ-3GEY0R00V                                      | Panasonic             |
| 37   | 1   | RT1                                                                          | NTC Thermistor, 100 kΩ, 5%, 0603                                                          | ERT-J1VS104JA                                      | Panasonic             |
| 38   | 3   | U1,U2,U3                                                                     | BridgeSwitch, Max. BLDC Motor Current 3A (DC)                                             | BRD1263C                                           | Power<br>Integrations |
| 39   | 1   | U4                                                                           | LinkSwitch-TN2, SO-8C                                                                     | LNK3204D                                           | Power<br>Integrations |
| 40   | 1   | U5                                                                           | IC, REG, LDO, 5.0 V, 0.15 A, 28 Vin max, SOT23-5, SC-74A, SOT-753 MCP1804T-5002I/OT       |                                                    | MicroChip             |
| 41   | 1   | U6                                                                           | IC, GP OPAmp, Quad, R2R, 14-TSSOP                                                         | AD8648ARUZ-REEL                                    | Analog Device         |

Power Integrations, Inc.
Tel: +1 (408) 414-9200
www.power.com


#### 7 Performance Data

This section presents waveform plots and performance data of the BridgeSwitch inverter. The high-voltage (VBUS) level is 340 VDC unless stated otherwise. Light load measurements describe the inverter operating with no mechanical brake load applied to the motor. Full load operation describes the inverter operating at 200 W output power (refer to Appendix for the details on the method used to measure the output power of a 3-phase inverter). All measurements were performed at 10 kHz PWM frequency, room ambient temperature, and three-phase field oriented control (3-phase FOC) type of modulation.

## 7.1 **Start-Up Operation**

#### 7.1.1 BPL and BPH Start-Up Waveforms

The waveforms below show the low-side and high-side BYPASS pin voltages of device U3 (Phase W) after VBUS = 340 VDC bus turns on. The start-up power up sequence follows the recommended start-up sequence described in section 8.1. The VBUS turn-on slew rate is set at 5 V / ms.



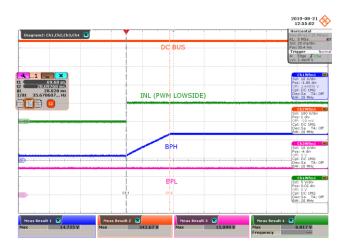



Figure 12 – BPL/BPH Start-up at Light Load, INL = 0 V. Figure 13 – BPL/BPH Start-up at Light Load, INL = 5 V.

CH2:  $V_{BUS}$ , 100 V / div. CH4:  $V_{INL}$ , 5 V / div. CH1:  $V_{BPH}$ , 10 V / div. CH3:  $V_{BPL}$ , 10 V / div. Time Scale: 20 ms / div. BPL Rise Time = 8.6 ms. CH2:  $V_{BUS}$ , 100 V / div. CH4:  $V_{INL}$ , 5 V / div. CH1:  $V_{BPH}$ , 10 V / div. CH3:  $V_{BPL}$ , 10 V / div. Time Scale: 20 ms / div. BPH Rise Time = 28 ms.



#### 7.1.2 Motor Start-Up Waveforms

The waveforms below demonstrate the motor start-up of the BridgeSwitch inverter at light load up to 50 W loading condition. VBUS is set at 340 VDC and motor maximum speed is set at 5000 RPM.

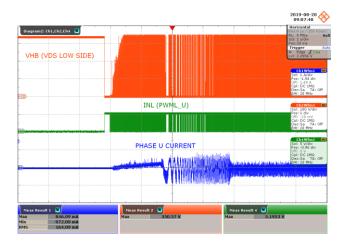



Figure 14 - Motor Start-up at Light Load.

CH2: V<sub>HB</sub>, 100 V / div.

CH4:  $V_{INL}$ , 5 V / div. CH1:  $I_{PHASE\_CURRENT}$ , 1 A / div.

Time Scale: 2 s / div.

Maximum Phase Peak Current = 846 mA<sub>PK</sub>. Maximum VHB Peak Voltage =  $350.57 V_{PK}$ .

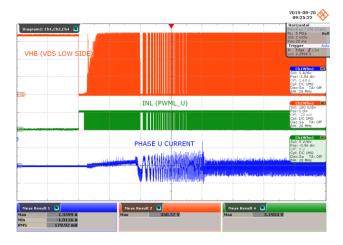
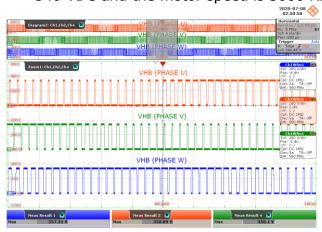



Figure 15 - Motor Start-up at 50 W Load.

CH2: V<sub>HB</sub>, 100 V / div.

CH4: V<sub>INL</sub>, 5 V / div.

CH1: I<sub>PHASE\_CURRENT</sub>, 1 A / div.


Time Scale: 2 s / div.

Maximum Phase Peak Current =  $1.35 A_{PK}$ . Maximum VHB Peak Voltage =  $350.57 V_{PK}$ .

## 7.2 **Steady-State Operation**

## 7.2.1 Phase Voltages (Drain to Source) During Steady-State

The waveforms below show the phase voltages of the BridgeSwitch (low side drain to source voltage) 3-phase inverter using field oriented control. The maximum peak voltage was measured from light to full load (inverter load) during steady-state operation. VBUS = 340 VDC and the motor speed is 5000 RPM.



**Figure 16** – Drain to Source Voltage at Light Load.

CH2: V<sub>HB\_PHASEU</sub>, 200 V / div. CH4: V<sub>HB\_PHASEV</sub>, 200 V / div. CH1: V<sub>HB\_PHASEW</sub>, 200 V / div.

Time Scale: 4 ms / div.

Maximum Peak Voltage (U) =  $358.89 V_{PK}$ . Maximum Peak Voltage (V) =  $358.10 V_{PK}$ . Maximum Peak Voltage (W) =  $357.31 V_{PK}$ .

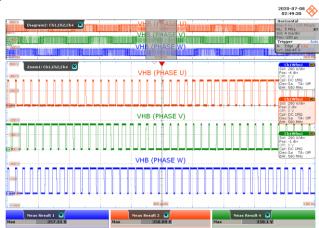



Figure 17 - Drain to Source Voltage at 30 W Load.

CH2: V<sub>HB\_PHASEU</sub>, 200 V / div. CH4: V<sub>HB\_PHASEV</sub>, 200 V / div. CH1: V<sub>HB\_PHASEW</sub>, 200 V / div.

Time Scale: 4 ms / div.

Maximum Peak Voltage (U) =  $358.89 \text{ V}_{PK}$ . Maximum Peak Voltage (V) =  $358.10 \text{ V}_{PK}$ . Maximum Peak Voltage (W) =  $357.31 \text{ V}_{PK}$ .

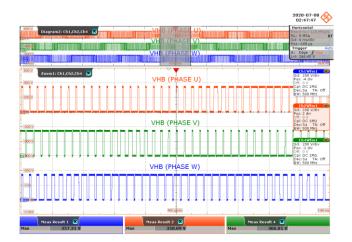



Figure 18 - Drain to Source Voltage at 100 W Load.

CH2:  $V_{HB\_PHASEV}$ , 200 V / div. CH4:  $V_{HB\_PHASEV}$ , 200 V / div. CH1:  $V_{HB\_PHASEW}$ , 200 V / div.

Time Scale: 4 ms / div.

Maximum Peak Voltage (U) =  $358.89 V_{PK}$ . Maximum Peak Voltage (V) =  $366.01 V_{PK}$ . Maximum Peak Voltage (W) =  $357.31 V_{PK}$ .

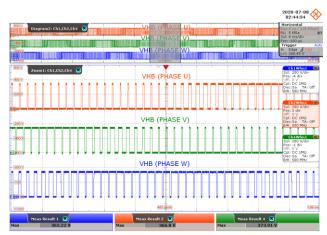



Figure 19 - Drain to Source Voltage at 200 W Load.

CH2:  $V_{HB\_PHASEV}$ , 200 V / div. CH4:  $V_{HB\_PHASEV}$ , 200 V / div. CH1:  $V_{HB\_PHASEW}$ , 200 V / div.

Time Scale: 4 ms / div.

Maximum Peak Voltage (U) = 366.80  $V_{PK}$ . Maximum Peak Voltage (V) = 373.91  $V_{PK}$ . Maximum Peak Voltage (W) = 365.22  $V_{PK}$ .

#### 7.2.2 High-Side Drain to Source Voltage Slew Rate

The waveforms below show the voltage slew rate at TURN ON and TURN OFF transitions of the high-side BridgeSwitch FREDFET. The measurements were taken at 340 VDC, 5000 RPM, 100 W and 200 W loading condition.

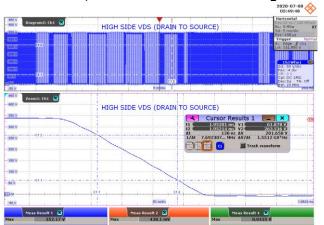



Figure 20 -TURN ON Slew Rate, 100 W Load.

CH1: V<sub>DS\_HIGHSIDE</sub>, 50 V / div.

Time Scale: 5 ms / div.

Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 1.55 V / ns.

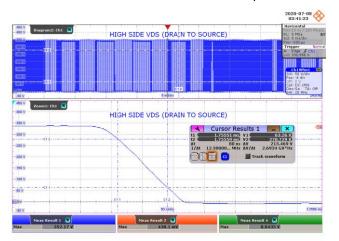



Figure 22 —TURN ON Slew Rate, 200 W Load.

CH1: V<sub>DS\_HIGHSIDE</sub>, 50 V / div.

Time Scale: 5 ms / div.

Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 2.69 V / ns.

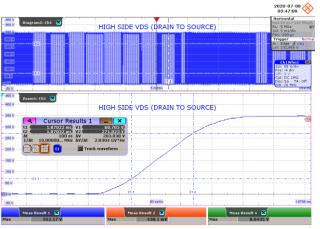



Figure 21 – TURN OFF Slew Rate, 100 W Load.

CH1:  $V_{DS\_HIGHSIDE}$ , 50 V / div.

Time Scale: 5 ms / div.

Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 2.03 V / ns.

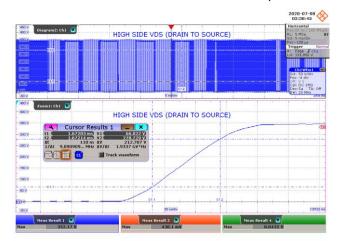



Figure 23 – TURN OFF Slew Rate, 200 W Load.

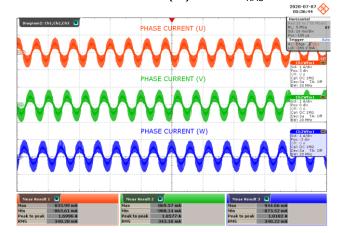

CH1:  $V_{DS\ HIGHSIDE}$ , 50 V / div.

Time Scale: 5 ms / div.

Time Scale (Zoomed Area): 50 ns / div. Measured Slew Rate = 1.93 V / ns.

## 7.2.3 Phase Currents During Steady-State

The waveforms below show the phase currents of the BridgeSwitch 3-phase inverter using field oriented method of control (FOC) . The maximum peak currents were measured from light load to 200 W loading condition during steady-state operation.






**Figure 24** – Phase Current at Light Load.

CH1:  $I_{PHASEU}$ , 1 A / div. CH2:  $I_{PHASEV}$ , 1 A / div. CH3:  $I_{PHASEW}$ , 1 A / div. Time Scale: 10 ms / div. RMS Current (U) = 77 mA<sub>RMS</sub>. RMS Current (V) = 74 mA<sub>RMS</sub>. RMS Current (W) = 74 mA<sub>RMS</sub>. CH1:  $I_{PHASEU}$ , 1 A / div. CH2:  $I_{PHASEV}$ , 1 A / div. CH3:  $I_{PHASEW}$ , 1 A / div. Time Scale: 10 ms / div. RMS Current (U) = 109 mA<sub>RMS</sub>. RMS Current (V) = 104 mA<sub>RMS</sub>. RMS Current (W) = 105 mA<sub>RMS</sub>.

Figure 25 - Phase Current at 30 W Load.



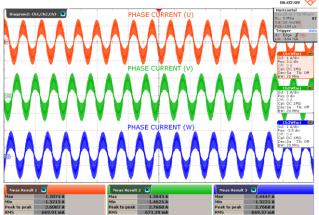



Figure 26 - Phase Current at 100 W Load.

CH1:  $I_{PHASEU}$ , 1 A / div. CH2:  $I_{PHASEV}$ , 1 A / div. CH3:  $I_{PHASEW}$ , 1 A / div. Time Scale: 10 ms / div. RMS Current (U) = 340 mA<sub>RMS</sub>. RMS Current (V) = 343 mA<sub>RMS</sub>. RMS Current (W) = 340 mA<sub>RMS</sub>.

Figure 27 - Phase Current at 200 W Load.

CH1:  $I_{PHASEU}$ , 1 A / div. CH2:  $I_{PHASEV}$ , 1 A / div. CH3:  $I_{PHASEW}$ , 1 A / div. Time Scale: 10 ms / div. RMS Current (U) = 669 mA<sub>RMS</sub>. RMS Current (V) = 671 mA<sub>RMS</sub>. RMS Current (W) = 669 mA<sub>RMS</sub>.

#### 7.2.4 INL and /INH Signals

The waveforms below show the low-side (INL) and high-side (/INH) input PWM signals during light load and full load condition at steady-state operation. The PWM frequency is set at 10 kHz with a constant motor speed of 5000 RPM.





**Figure 28 –** INL and /INH Signal at Light Load.

CH2: V<sub>HB PHASEW</sub>, 100 V / div.

CH4:  $V_{INL}$ , 5 V / div. CH1:  $V_{INH}$ , 5 V / div. Time Scale: 2 ms / div.

Time Scale (Zoomed Area): 50  $\mu$ s / div.

Figure 29 – INL and /INH Signal at 30 W Load.

CH2: V<sub>HB PHASEW</sub>, 100 V / div.

CH4: V<sub>INL</sub>, 5 V / div. CH1: V<sub>INH</sub>, 5 V / div.

Time Scale: 2 ms / div.

Time Scale (Zoomed Area): 50  $\mu$ s / div.

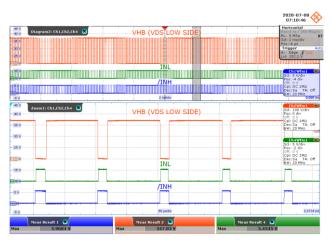





Figure 30 – INL and /INH Signal at 100 W Load.

CH2: V<sub>HB PHASEW</sub>, 100 V / div.

CH4:  $V_{INL}$ , 5 V / div. CH1:  $V_{INH}$ , 5 V / div. Time Scale: 2 ms / div.

Time Scale (Zoomed Area): 50 µs / div.

Figure 31 – INL and /INH Signal at 200 W Load.

CH2: V<sub>HB PHASEW</sub>, 100 V / div.

CH4: V<sub>INL</sub>, 5 V / div. CH1: V<sub>INH</sub>, 5 V / div.

Time Scale: 2 ms / div.

Time Scale (Zoomed Area): 50  $\mu$ s /

div.

#### 7.2.5 BPL and BPH during Steady-State

The waveforms below show the BPL and BPH (low-side and high-side self-supply bias level respectively) from light load to full load condition during steady-state operation.



Figure 32 — BPL and BPH Signal at Light Load.

CH2:  $V_{HB\_PHASEW}$ , 100 V / div. CH4:  $V_{BPL}$ , 10 V / div. CH1:  $V_{BPH}$ , 10 V / div. Time Scale: 4 ms / div.

BPL Average Voltage = 14.17 V. BPH Average Voltage = 14.44 V.



Figure 33 — BPL and BPH Signal at 30W Load.

CH2:  $V_{HB\_PHASEW}$ , 100 V / div. CH4:  $V_{BPL}$ , 10 V / div.

CH1:  $V_{BPH}$ , 10 V / div. Time Scale: 4 ms / div.

BPL Average Voltage = 14.18 V. BPH Average Voltage = 14.45 V.



Figure 34 – BPL and BPH Signal at 100W Load.

CH2:  $V_{HB\_PHASEW}$ , 100 V / div.

CH4:  $V_{BPL}$ , 10 V / div. CH1:  $V_{BPH}$ , 10 V / div. Time Scale: 4 ms / div.

BPL Average Voltage = 14.18 V.

BPH Average Voltage = 14.44 V.




Figure 35 – BPL and BPH Signal at 200W Load.

CH2:  $V_{HB\_PHASEW}$ , 100 V / div.

CH4: V<sub>BPL</sub>, 10 V / div. CH1: V<sub>BPH</sub>, 10 V / div.

Time Scale: 4 ms / div.

BPL Average Voltage = 14.18 V. BPH Average Voltage = 14.43 V.

#### 7.3 Thermal Performance

The thermal scans below depict on-board device thermal performance after 20 minutes each for 30 W, 100 W, and 200 W inverter output power running at a constant speed of 5000 RPM, 10 kHz PWM switching frequency, 3-phase FOC modulation, BridgeSwitch device at self and external supply mode, with an ambient temperature of 27 deg C. The auxiliary circuit, +5 V linear regulator, and input diode were disabled to solely reflect the inverter temperature by depopulating components U4, U5, and D6. An external +5 VDC supply was provided between pins +5 V and GND for the microcontroller and current sense amplifier. An additional +17 VDC supply was used during external supply mode.

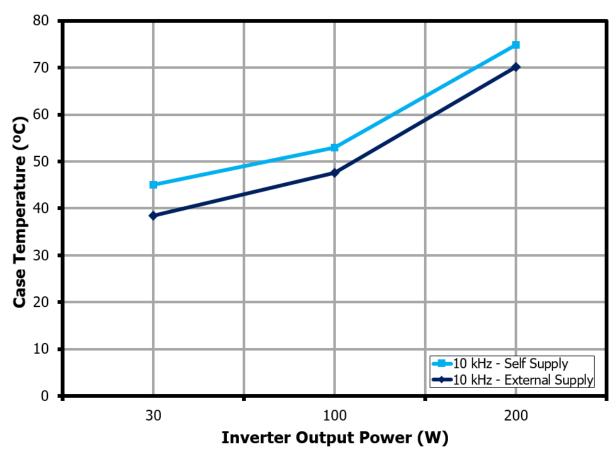
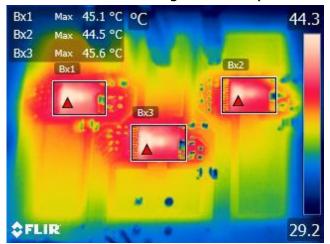




Figure 36 – Thermal Performance at Self and External Supply Mode.

## 7.3.1 30 W Loading Condition (105 mA Average Motor Phase Current)



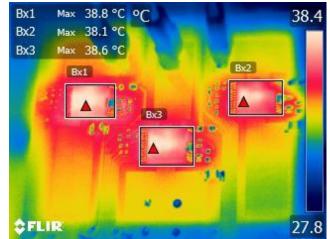
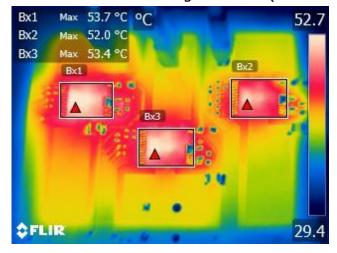




Figure 37 - Self Supply Mode.

Figure 38 - External Supply Mode.

## 7.3.2 100 W Loading Condition (340 mA Average Motor Phase Current)





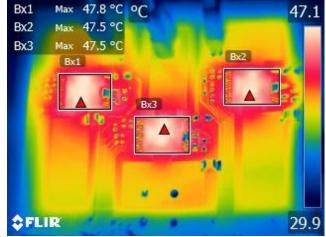
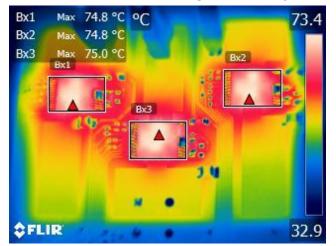




Figure 40 – External Supply Mode.

## 7.3.3 200 W Loading Condition (670 mA Average Motor Phase Current)






Figure 41 – Self Supply Mode.

**Figure 42** – External Supply Mode.

#### 7.3.4 Thermal Scan Summary Tables

## 7.3.4.1 Self Supply Mode

| Phase | Device   | <b>Inverter Output Power</b> |       |       |  |  |
|-------|----------|------------------------------|-------|-------|--|--|
| Phase | Device   | 30 W                         | 100 W | 200 W |  |  |
| U     | U1       | 45.1                         | 53.7  | 74.8  |  |  |
| V     | U2       | 44.5                         | 52.0  | 74.8  |  |  |
| W     | U3       | 45.6                         | 53.4  | 75.0  |  |  |
|       | Ave.Temp | 45.1                         | 53.0  | 74.9  |  |  |

## 7.3.4.2 External Supply Mode

| Dhase | Device   | <b>Inverter Output Power</b> |       |       |  |  |
|-------|----------|------------------------------|-------|-------|--|--|
| Phase | Device   | 30 W                         | 100 W | 200 W |  |  |
| U     | U1       | 38.8                         | 47.8  | 70.7  |  |  |
| V     | U2       | 38.1                         | 47.5  | 69.2  |  |  |
| W     | U3       | 38.6                         | 47.5  | 70.7  |  |  |
|       | Ave.Temp | 38.5                         | 47.6  | 70.2  |  |  |

## 7.4 **No-Load Input Power Consumption**

The graph below shows the BridgeSwitch 3-phase inverter no-load input power measured at different input voltages. Voltage was measured directly at the positive input DC BUS of the inverter. The auxiliary circuit, +5 V linear regulator, and current sense amplifier were disabled by depopulating components U4, U5, and U6.

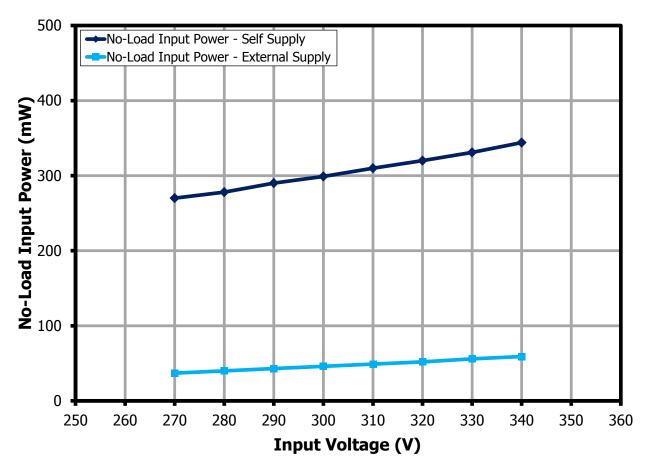



Figure 43 - No-Load Input Power.

## 7.5 *Efficiency*

The graph and table below shows the BridgeSwitch inverter efficiency at 340 VDC input, 10 kHz PWM switching frequency, a constant motor speed of 5000 RPM, 3-phase FOC modulation, BridgeSwitch devices at self and external supply mode, and at room ambient temperature. The auxiliary circuit, +5 V linear regulator, input diode, and current sense amplifier were disabled for efficiency data accuracy. This was accomplished by measuring the input voltage directly at the positive input DC BUS of the inverter, and depopulating components U4, U5, and D6. An external +5 VDC supply was provided between pins +5 V and GND for the microcontroller and current sense amplifier. An additional +17 VDC supply was used during external supply mode.

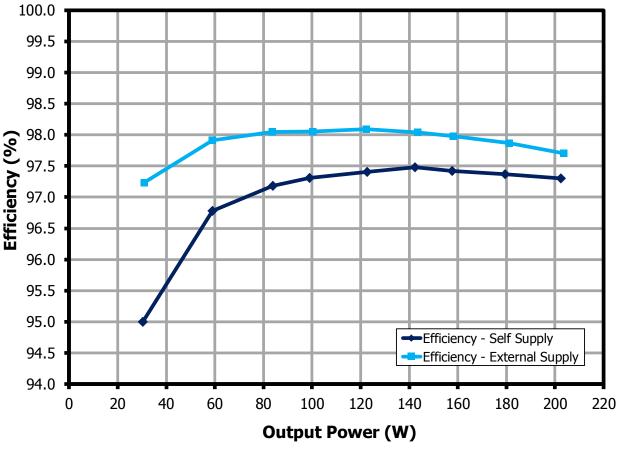



Figure 44 - Inverter Efficiency Graph.

## 7.5.1 Efficiency Table at Self Supply Mode

| DC<br>Input<br>Voltage<br>(V <sub>IN</sub> ) | Input<br>DC<br>Current<br>(mA) | Input<br>Power<br>(W) | I <sub>RMS</sub> U<br>(mA) | I <sub>RMS</sub> V<br>(mA) | I <sub>RMS</sub> W<br>(mA) | Inverter<br>Output<br>Power<br>(W) | Inverter<br>Efficiency<br>(%) |
|----------------------------------------------|--------------------------------|-----------------------|----------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------|
| 340                                          | 94                             | 31.96                 | 111                        | 105                        | 102                        | 30.36                              | 95.00                         |
| 340                                          | 179                            | 61.06                 | 205                        | 204                        | 201                        | 59.09                              | 96.78                         |
| 340                                          | 253                            | 86.24                 | 285                        | 288                        | 283                        | 83.81                              | 97.18                         |
| 340                                          | 299                            | 101.78                | 335                        | 337                        | 334                        | 99.04                              | 97.31                         |
| 340                                          | 370                            | 125.88                | 414                        | 412                        | 411                        | 122.61                             | 97.40                         |
| 340                                          | 429                            | 146.04                | 477                        | 475                        | 472                        | 142.36                             | 97.48                         |
| 340                                          | 476                            | 161.89                | 524                        | 521                        | 517                        | 157.71                             | 97.42                         |
| 340                                          | 542                            | 184.39                | 597                        | 597                        | 594                        | 179.54                             | 97.37                         |
| 340                                          | 612                            | 208.09                | 670                        | 670                        | 667                        | 202.47                             | 97.30                         |

**Table 2 –** Efficiency Table with BridgeSwitch at Self Supply Mode.

## 7.5.2 Efficiency Table at External Supply Mode

| DC<br>Input<br>Voltage<br>(V <sub>IN</sub> ) | Input<br>DC<br>Current<br>(mA) | Input<br>Power<br>(W) | I <sub>RMS</sub> U<br>(mA) | I <sub>RMS</sub> V<br>(mA) | I <sub>RMS</sub> W<br>(mA) | Inverter<br>Output<br>Power<br>(W) | Inverter<br>Efficiency<br>(%) |
|----------------------------------------------|--------------------------------|-----------------------|----------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------|
| 340                                          | 94                             | 31.83                 | 115                        | 110                        | 109                        | 30.95                              | 97.23                         |
| 340                                          | 177                            | 60.31                 | 205                        | 197                        | 198                        | 59.05                              | 97.91                         |
| 340                                          | 251                            | 85.34                 | 289                        | 285                        | 280                        | 83.67                              | 98.04                         |
| 340                                          | 301                            | 102.34                | 343                        | 344                        | 341                        | 100.35                             | 98.06                         |
| 340                                          | 366                            | 124.59                | 411                        | 414                        | 408                        | 122.21                             | 98.09                         |
| 340                                          | 430                            | 146.45                | 481                        | 484                        | 479                        | 143.58                             | 98.04                         |
| 340                                          | 474                            | 161.28                | 527                        | 531                        | 526                        | 158.02                             | 97.98                         |
| 340                                          | 544                            | 185.09                | 600                        | 604                        | 599                        | 181.14                             | 97.87                         |
| 340                                          | 612                            | 208.33                | 669                        | 674                        | 668                        | 203.55                             | 97.71                         |

**Table 3 –** Efficiency Table with BridgeSwitch at External Supply Mode.

## 7.6 Device and System Level Protection / Monitoring

#### 7.6.1 Overcurrent Protection (OCP)

The waveforms below show the current limit triggering of the BridgeSwitch device. For this test, current set resistors  $R_{XL}$  and  $R_{XH}$  were adjusted to 115  $k\Omega$  resulting in a current limit of approximately 1  $A_{pk}$ .



**Figure 45** – OCP at  $R_{XL}/R_{XH}=115~k\Omega$ ,  $I_{LIM}=1~A$ .

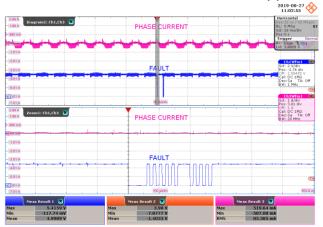
CH2:  $V_{BUS}$ , 100 V / div. CH3:  $I_{PHASE}$ , 1 A / div. CH1:  $V_{FAULT}$ , 2 V / div. Time Scale: 500 ms / div.

Time Scale (Zoomed Area): 100  $\mu$ s / div.

FAULT Flag Reading = 0000010.



**Figure 46** – OCP Fault Clear at  $R_{XL}/R_{XH} = 115 \text{ k}\Omega$ .


CH2: V<sub>BUS</sub>, 100 V / div. CH3: I<sub>PHASE</sub>, 1 A / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 500 ms / div.

Time Scale (Zoomed Area): 100 µs / div.

FAULT Clear = 0000000.

#### 7.6.2 Thermal Warning

The waveforms below depict the low-side FREDFET over-temperature warning. A localized external heat source was applied to the device to force temperature rise.



**Figure 47** – Thermal Warning at No-Load.

CH3: I<sub>PHASE</sub>, 1 A / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area): 100  $\mu\text{s}$  / div.

FAULT Flag/Reading = 0000100.

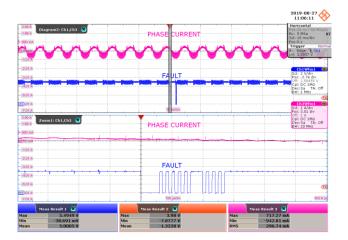
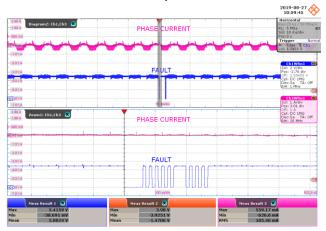




Figure 49 – Thermal Warning at 100 W.

CH3:  $I_{PHASE}$ , 1 A / div. CH1:  $V_{FAULT}$ , 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area): 100  $\mu$ s / div.

FAULT Flag/Reading = 0000100.



**Figure 48** – Thermal Warning at 30 W.

CH3: I<sub>PHASE</sub>, 1 A / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area): 100 µs / div.

FAULT Flag/Reading = 0000100.

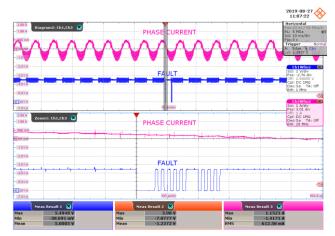



Figure 50 – Thermal Warning at 200 W.

CH3: I<sub>PHASE</sub>, 1 A / div. CH1: V<sub>FAULT</sub>, 2 V / div.

Time Scale: 10 ms / div.

Time Scale (Zoomed Area): 100 µs / div.

FAULT Flag/Reading = 0000100.



#### 7.6.3 Thermal Shutdown

The waveform below depicts the low-side FREDFET over-temperature shutdown. A localized external heat source was applied to a single BridgeSwitch device (U2) to force temperature rise while the inverter is running at 100 W loading condition.

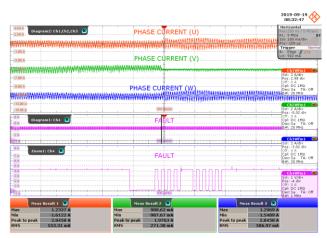
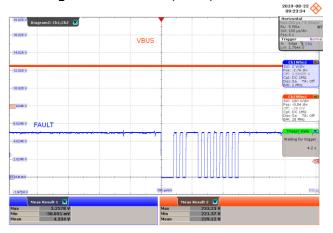



Figure 51 - Thermal Shutdown.

CH1: I<sub>PHASEU</sub>, 2 A / div. CH2: I<sub>PHASEV</sub>, 2 A / div. CH3: I<sub>PHASEW</sub>, 2 A / div.


CH4: V<sub>FAULT</sub>, 1 V / div. Time Scale: 100 ms / div.

Time Scale (Zoomed FAULT):  $100 \mu s$  / div.

FAULT Flag/Reading = 0001000.

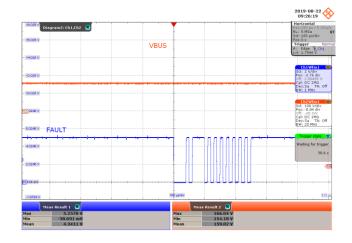
#### 7.6.4 Undervoltage (UV)

The test results below demonstrate the integrated bus UV monitoring function and status reporting through the communication bus (FAULT pin). Device U1 senses the bus voltage through resistors R21, R22, and R23.



VBUS DOZGO V ... FAULT

**Figure 52** – UVP, 5000 RPM, No-Load, 340 V to 220 V.


CH2:  $V_{BUS}$ , 100 V / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 100 us / div. UV Level = 100%.

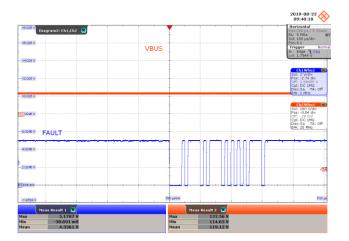

FAULT Flag Reading = 0100000.

Figure 53 – UVP, 5000 RPM, No-Load, 220 V to 190 V. CH2:  $V_{BUS}$ , 100 V / div.

CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 100 µs / div. UV Level = 85%.

FAULT Flag Reading = 0110000.



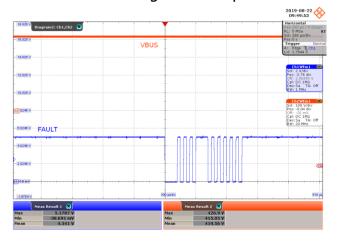


**Figure 54 –** UVP, 5000 RPM, No-Load, 190 V to 160 V.

CH2:  $V_{BUS}$ , 100 V / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 100 µs / div. UV Level = 70%.

FAULT Flag Reading = 1000000.

Figure 55 - UVP, 5000 RPM, No-Load, 160 V to 120 V.


CH2:  $V_{BUS}$ , 100 V / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale:  $100 \mu s / div$ . UV Level = 55%.

FAULT Flag Reading = 1010000.



#### 7.6.5 Overvoltage (OV)

The waveforms below illustrate the bus OV monitoring feature. The bus sensing resistance is set at 7 M $\Omega$  (total value of R21, R22, and R23) giving an overvoltage (OV) level threshold of 422 VDC. The BridgeSwitch device stops switching and reports the OV fault condition as soon as the bus voltage exceeds the OV threshold. Switching resumes after the bus voltage level drops below the OV detection threshold.



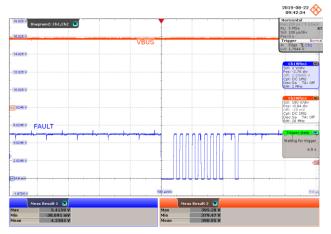
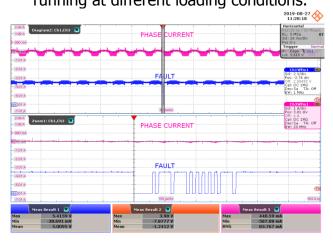



Figure 56 - OVP, 340 V to 425 V.

CH2:  $V_{BUS}$ , 100 V / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale:  $100 \mu s / div$ . Measured OVP Level = 426.90 V. FAULT Flag/Reading = 0010000.


**Figure 57** – OVP Clear, 425 V to 340 V.

CH2:  $V_{BUS}$ , 100 V / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale:  $100 \mu s / div$ . OV Fault Clear.

FAULT Flag/Reading = 0000000.

#### 7.6.6 System Thermal Fault

The waveforms below show the system thermal warning flag of the BridgeSwitch device through an external thermistor RT1. The device checks the resistance connected to the SM pin every 1 second for a period of 10 ms. The system temperature fault was simulated by applying a localized external heat to sense thermistor RT1 with the motor running at different loading conditions.



**Figure 58** – System Thermal Fault, 5000 RPM, Light Load.

CH3: I<sub>PHASE</sub>, 1 A / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area): 100  $\mu s$  / div.

FAULT Flag/Reading = 1100000.

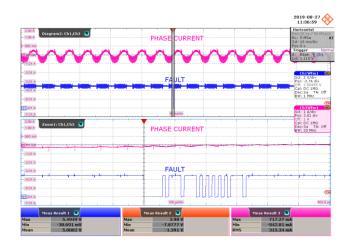
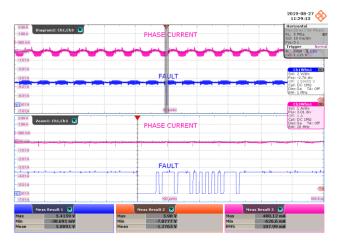




Figure 60 – System Thermal Fault, 5000 RPM, 100 W.

CH3:  $I_{PHASE}$ , 1 A / div. CH1:  $V_{FAULT}$ , 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area):  $100 \mu s / div$ .

FAULT Flag/Reading = 1100000.



**Figure 59** – System Thermal Fault, 5000 RPM, 30 W Load.

CH3:  $I_{PHASE}$ , 1 A / div. CH1:  $V_{FAULT}$ , 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area): 100  $\mu\text{s}$  / div.

FAULT Flag/Reading = 1100000.

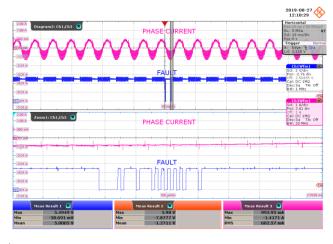



Figure 61 - System Thermal Fault, 5000 RPM, 200 W.

CH3: I<sub>PHASE</sub>, 1 A / div. CH1: V<sub>FAULT</sub>, 2 V / div. Time Scale: 10 ms / div.

Time Scale (Zoomed Area):  $100 \mu s$  / div.

FAULT Flag/Reading = 1100000.

# 7.7 Abnormal Motor Operation Test

This paragraph provides results during abnormal operation tests for appliances with motors as described in IEC 60335-1 (Safety of household and similar electrical appliances). The tests include:

- Operation under stalled motor conditions
- Operation with one motor winding disconnected
- Running overload test

The test results demonstrate the integrated protection features of the BridgeSwitch under such abnormal operations.

#### 7.7.1 Operation Under Stalled (Motor) Conditions

For the motor stalled condition, the inverter is initially running at 340 VDC, 100 W and 200 W output load, and a motor speed of 5000 RPM. The load was then ramped up drastically to simulate sudden brake or sudden stoppage of motor rotation.

#### Stalled Condition at 100 W

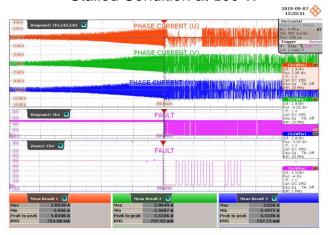



Figure 62 – At Stalled Condition, 100 W Load.

CH1:  $I_{PHASE(U)}$ , 2 A / div. CH2:  $I_{PHASE(V)}$ , 2 A / div. CH3:  $I_{PHASE(W)}$ , 2 A / div. CH4:  $V_{FAULT}$ , 1 V / div. Time Scale: 500 ms / div. Time Scale (Zoomed): 100  $\mu$ s / div. 1st FAULT = 0000010, LS FET OC.

#### Stalled Condition at 200 W

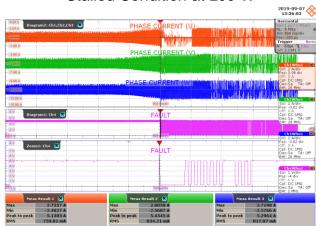
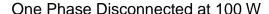




Figure 63 - At Stalled Condition, 200 W Load.

CH1:  $I_{PHASE(U)}$ , 2 A / div. CH2:  $I_{PHASE(V)}$ , 2 A / div. CH3:  $I_{PHASE(W)}$ , 2 A / div. CH4:  $V_{FAULT}$ , 1 V / div. Time Scale: 500 ms / div. Time Scale (Zoomed): 100  $\mu$ s / div. 1st FAULT = 0000010, LS FET OC.

# 7.7.2 Operation with One Motor Phase / Winding Disconnected

The figures below depict the motor phase currents and fault flag during operation with one motor winding disconnected. One phase is disconnected while the motor is running at 100 W and 200 W load (at 340 VDC input, and a motor speed of 5000 RPM). Reconnection of phase was also tested per loading condition to determine the robustness of the BridgeSwitch inverter. No damage was incurred in the motor, as well as in the BridgeSwitch inverter during and after the test.



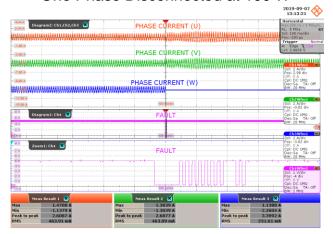



Figure 64 – At Running Condition, 340 VDC Input.

CH1:  $I_{PHASE(U)}$ , 2 A / div. CH2:  $I_{PHASE(V)}$ , 2 A / div. CH3:  $I_{PHASE(W)}$ , 2 A / div. CH4:  $V_{FAULT}$ , 1 V / div. Time Scale: 100 ms / div.

Time Scale (Zoomed FAULT):  $100 \mu s$  / div.

FAULT Flag = 0000010, LS FET OC.

One Phase Reconnected at 100 W

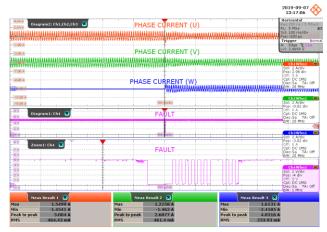



Figure 65 – At Running Condition, 340 VDC Input.

CH1: I<sub>PHASE(U)</sub>, 2 A / div. CH2: I<sub>PHASE(V)</sub>, 2 A / div. CH3: I<sub>PHASE(W)</sub>, 2 A / div. CH4: V<sub>FAULT</sub>, 1 V / div. Time Scale: 100 ms / div.

Time Scale (Zoomed FAULT):  $100~\mu s$  / div.

FAULT Flag = 0000010, LS FET OC.

# 2019-09-07 € 13:18:08 PHASE CURRENT (U PHASE

#### One Phase Disconnected at 200 W

Figure 66 – At Running Condition, 340 VDC Input.

CH1:  $I_{PHASE(U)}$ , 2 A / div. CH2:  $I_{PHASE(V)}$ , 2 A / div. CH3:  $I_{PHASE(W)}$ , 2 A / div. CH4:  $V_{FAULT}$ , 1 V / div. Time Scale: 100 ms / div.

Time Scale (Zoomed FAULT): 100  $\mu s$  / div. FAULT Flag = 0000010, LS FET OC.

**Note:** During 200 W loss of phase condition, the motor stops rotating or remains in stalled condition even when the phase is reconnected.

# 7.7.3 Running Overload Test

The figures below depict the motor phase currents and status update flag during a running overload fault condition. During this test, the motor load is increased such that the current through the motor windings increases by 10% until steady conditions are established. The load is then increased again and the test repeats until the BridgeSwitch protection engages or the motor stalls. During the overload condition, the motor is non-operational with no device or motor damage.

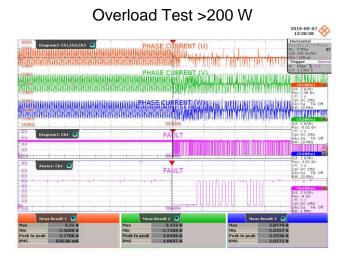



Figure 67 - At Running Condition, 340 VDC Input.

CH1:  $I_{PHASE(U)}$ , 2 A / div. CH2:  $I_{PHASE(V)}$ , 2 A / div. CH3:  $I_{PHASE(W)}$ , 2 A / div. CH4:  $V_{FAULT}$ , 1 V / div. Time Scale: 100 ms / div. Time Scale (Zoomed FAULT): 100  $\mu$ s / div. 1st FAULT Flag = 0000010, LS FET Over-Current.

**Note:** During the overload condition, the motor stops rotating or remains in stalled condition.

# 8 Appendix

#### 8.1 **Board Quick Reference**

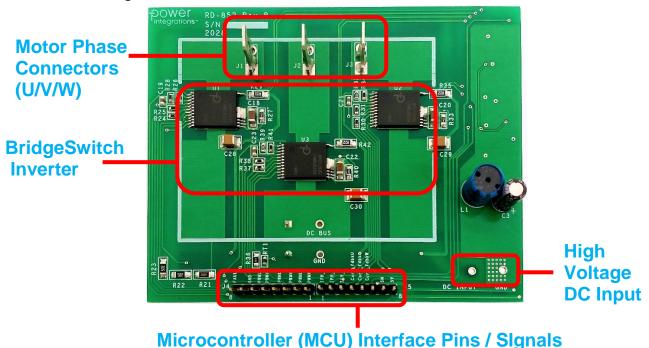



Figure 68 - RD-852 Board Quick Reference / Guide.

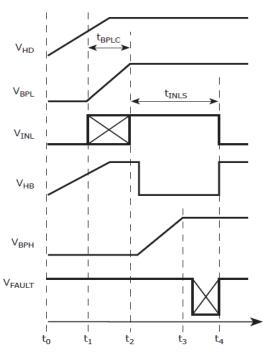
- 8.1.1 The Microcontroller (MCU) Interface Contains the Following Pins / Signals
  - > FAULT\_BUS Pin dedicated for fault reporting of all BridgeSwitch devices.
  - > **GND** Common ground interface between the microcontroller and the inverter board.
  - PWMH\_U, PWML\_U, PWMH\_V, PWML\_V, PWMH\_W, and PWML\_W PWM input signal interface from the system microcontroller to the BridgeSwitch device.
  - > +5 V Voltage supply pin for microcontroller as needed.
  - > **SM** Configurable system monitoring pin for BridgeSwitch IC (U2).
  - ➤ Curr\_fdbkU, Curr\_fdbkV, Curr\_fdbkW Current feedback information needed by the microcontroller (MCU). This signal directly comes from the inverter current sense resistor passing through the current sense amplifier circuit.
  - ➤ **IPH\_U, IPH\_W** Instantaneous phase current information of the low-side power FREDFET Drain to Source current of each BridgeSwitch device coming from the IPH pin.

Note: On the RD board, proper labels for the pin designations of connectors are provided.

# 8.1.2 J4 Connector Pin Designation

| Pin<br>No. | Signal    | Туре         | Comments                                                 |
|------------|-----------|--------------|----------------------------------------------------------|
| 1          | PWML_V    | Input        | Gate drive signal for low-side power FREDFET phase V.    |
| 2          | PWMH_V    | Input        | Gate drive signal for high-side power FREDFET phase V.   |
| 3          | PWML_W    | Input        | Gate drive signal for low-side power FREDFET phase W.    |
| 4          | PWMH_W    | Input        | Gate drive signal for high-side power FREDFET phase W.   |
| 5          | PWML_U    | Input        | Gate drive signal for low-side power FREDFET phase U.    |
| 6          | PWMH_U    | Input        | Gate drive signal for high-side power FREDFET phase U.   |
| 7          | GND       | n/a          | Ground reference for connector input and output signals. |
| 8          | FAULT_BUS | Input/Output | Single wire, bi-directional fault communication bus.     |

# 8.1.3 J5 Connector Pin Designation


| Pin<br>No. | Signal     | Туре   | Comments                                                                                                                                     |  |
|------------|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1          | IPH_U      | Output | Voltage signal proportional to instantaneous phase low-side FREDFET Drain current of Phase U.                                                |  |
| 2          | IPH_V      | Output | Voltage signal proportional to instantaneous phase low-side FREDFET Drain current of Phase V.                                                |  |
| 3          | IPH_W      | Output | Voltage signal proportional to instantaneous phase low-side FREDFET Drain current of Phase W.                                                |  |
| 4          | Curr_fdbkU | Output | Current feedback information needed by the microcontroller for phase U.                                                                      |  |
| 5          | Curr_fdbkV | Output | Current feedback information needed by the microcontroller for phase V.                                                                      |  |
| 6          | Curr_fdbkW | Output | Current feedback information needed by the microcontroller for phase W.                                                                      |  |
| 7          | SM_W       | Input  | External input for system sensing (i.e. can be connected to external thermistor for system temperature monitor via status communication bus) |  |
| 8          | +5 V       | Output | Voltage supply pin for microcontroller as needed                                                                                             |  |

**Note**: On the RD board, proper labels for the pin designations of connectors are provided.



# 8.2 Recommended Start-up Sequence

BridgeSwitch devices have internal self-supply supporting commutation PWM frequencies up to 20 kHz. To ensure sufficient supply voltage levels across the BPL pin capacitor and the BPH pin capacitor at inverter start-up, the system micro-controller (MCU) should follow the recommended power-up sequence as depicted below.



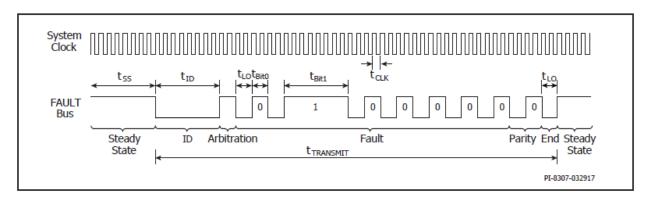
**Figure 69 –** Recommended Power-up Sequence with Self-Supplied Operation.

The table below lists activities occurring during the recommended power-up sequence.

| <b>Time Point</b> | Activity                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $t_0$             | High-voltage DC bus is applied                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| t <sub>1</sub>    | <ul> <li>Internal current source starts charging BPL pin capacitor once HD pin voltage reaches V<sub>HD(START)</sub></li> <li>System MCU may start setting low-side power-FREDFET control signal INL to high</li> </ul>                                                                                                                     |  |  |  |  |  |
| t <sub>2</sub>    | <ul> <li>BPL pin voltage reaches V<sub>BPL</sub> (typ. 14.5 V)</li> <li>Device determines external device settings</li> <li>Internal Gate drive logic turns on low-side power FREDFET after device setup completes and once INL becomes high or if it is high already</li> <li>Internal current source charges BPH pin capacitor</li> </ul> |  |  |  |  |  |
| t <sub>3</sub>    | <ul> <li>BPH pin voltage reaches V<sub>BPH</sub> with respect to HB pin (typically 14.5 V)</li> <li>Device starts communicating successful power-up through fault pin Note: The device does not send a status update if the internal power-up sequence did not complete successfully</li> </ul>                                             |  |  |  |  |  |
| t <sub>4</sub>    | <ul> <li>BridgeSwitch is ready for state operation (indicated by communicated status update at time point t<sub>3</sub>)</li> <li>System MCU turns off low-side FREDFET</li> </ul>                                                                                                                                                          |  |  |  |  |  |

**Table 4** – Power-up Sequence with Self-Supplied Operation.




# 8.3 Status Word Encoding

| FAULT                              | Bit 0 | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| HV Bus OV                          | 0     | 0     | 1     |       |       |       |       |
| HV Bus UV 100%                     | 0     | 1     | 0     |       |       |       |       |
| HV Bus UV 85%                      | 0     | 1     | 1     |       |       |       |       |
| HV Bus UV 70%                      |       | 0     | 0     |       |       |       |       |
| HV Bus UV 55%                      |       | 0     | 1     |       |       |       |       |
| System Thermal Fault               |       | 1     | 0     |       |       |       |       |
| LS Driver Not Ready <sup>[1]</sup> |       | 1     | 1     |       |       |       |       |
| LS FET Thermal Warning             |       |       |       | 0     | 1     |       |       |
| LS FET Thermal Shutdown            |       |       |       | 1     | 0     |       |       |
| HS Driver Not Ready <sup>[2]</sup> |       |       | 1     | 1     |       |       |       |
| LS FET Over-Current 1              |       |       |       | 1     |       |       |       |
| HS FET Over-Current                |       |       |       |       | 1     |       |       |
| Device Ready (No Faults)           | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### **Notes:**

- 1. Includes XL pin open/short-circuit fault, IPH pin to XL pin short-circuit, and trim bit corruption
- 2. Includes HS-to-LS communication loss,  $V_{\text{BPH}}$  or internal 5 V rail out of range, and XH pin open/short-circuit fault

**Table 5** – BridgeSwitch Fault Encoding.



**Figure 70** – Fault Status Communication Bit Stream.

# 8.4 Suggested Microcontroller Action/Decision To BridgeSwitch Fault Conditions

| Fault                   | Fault ID | <b>Action/Decision</b> |
|-------------------------|----------|------------------------|
| HV Bus Overvoltage      | 001xxxx  | Shutdown               |
| HV 100%                 | 010xxxx  | Warning                |
| HV Bus 85%              | 011xxxx  | Warning                |
| HV Bus 70%              | 100xxxx  | Warning                |
| HV Bus 55%              | 101xxxx  | Warning                |
| System Thermal          | 110xxxx  | Shutdown               |
| LS Driver Not Ready     | 111xxxx  | Shutdown               |
| LS FET Thermal Warning  | xxx010x  | Warning                |
| LS FET Thermal Shutdown | xxx10xx  | Shutdown               |
| LS FET Over-Current     | xxxxx1x  | Shutdown               |
| HS Driver Not Ready     | xxx11xx  | Shutdown               |
| HS FET Over-Current     | xxxxxx1  | Shutdown               |
| Device Ready            | 0000000  | None                   |

# 8.5 Inverter Output Power Measurement

The 3-phase inverter output power  $(P_{OUT})$  measurement uses the "two wattmeter" method as illustrated below.

$$P_{OUT} = P_{CH1} + P_{CH2}$$

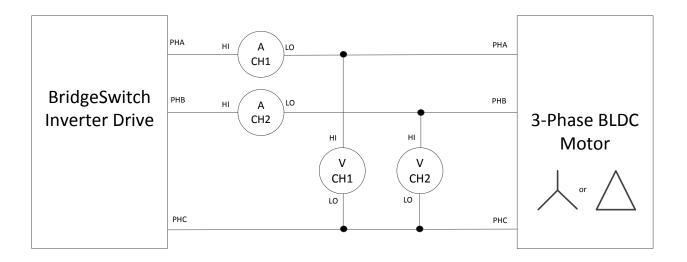



Figure 71 – Inverter Output Power Measurement.

# 8.6 Current Capability vs. Ambient Temperature

The figure below depicts the continuous RMS current capability of the RDR-852 example design under different operating conditions: 5 kHz, 10 kHz and 15 kHz PWM frequency and the three BRD1263C devices operating self-supplied or with external supply at their respective BPL and BPH pins. The DC bus voltage is 340 VDC and the motor is operating at a speed of 5000 RPM. Each curve details the available continuous RMS current at different board ambient temperatures with a package temperature of 100 °C (average of all three devices).

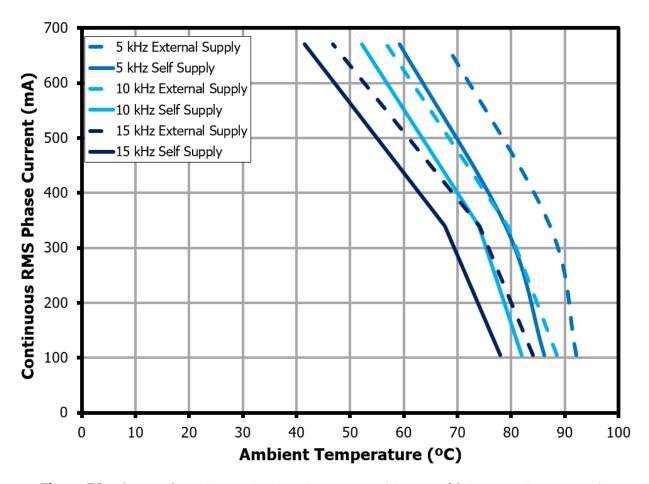
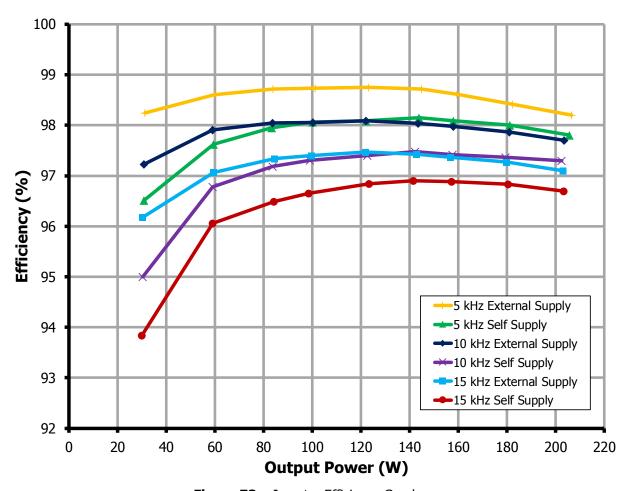




Figure 72 - Current Capability vs. Ambient Temperature (Max. 100 °C Package Temperature).

# 8.7 Efficiency Curve at Different Switching Frequencies

The graph and table below shows the BridgeSwitch inverter efficiency at 340 VDC input, 5 kHz, 10 kHz, 15 kHz PWM switching frequencies, a constant motor speed of 5000 RPM, 3-phase FOC modulation, BridgeSwitch devices at self and external supply mode, and at room ambient temperature. The auxiliary circuit, +5 V linear regulator, input diode and current sense amplifier were disabled for efficiency data accuracy. This was accomplished by measuring the input voltage directly at the positive input DC BUS of the inverter, and depopulating components U4, U5, and D6. An external +5 VDC supply was provided between pins +5 V and GND for the microcontroller and current sense amplifier. An additional +17 VDC supply was used during external supply mode.



**Figure 73** – Inverter Efficiency Graph.

# 8.8 Test Bench Set-up

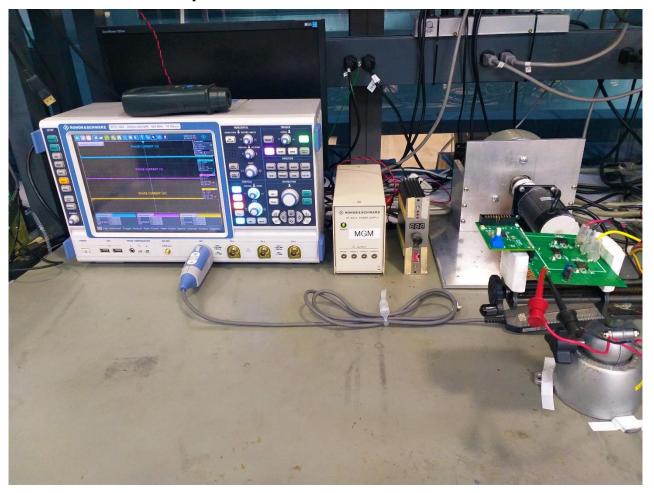



Figure 74 – Actual Bench Set-up.

#### **EQUIPMENT USED:**

- 1. **Motor** 300 W, 5000 RPM, Model: 57BL110S30-3150TF0
- 2. **Motor brake load** 24 VDC, 300 W motor brake load, Model: HB-503B by China-Tension
- 3. **Brake load control** 24 VDC, 500 mA brake load control, Model: ICS-500 by China-Tension
- 4. **Coupler** 8 mm X 17 mm motor coupler
- 5. **High-voltage DC source** Agilent 6812B, used for supplying 340 VDC to the 3-phase inverter
- 6. **Low-voltage DC source** Technique QT3005D-3 power supply, used for supplying 24 VDC for brake load control.

#### **Revision History** 9

| Date      | Author | Rev. | Description & Changes                | Approval    |
|-----------|--------|------|--------------------------------------|-------------|
| 04-Feb-20 | MQC    | 1.0  | Initial Release.                     | Apps & Mktg |
| 27-Jul-20 | SM     | 1.1  | Schematic, PCB, and Various Updates. | Apps & Mktg |

#### For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

#### **Patent Information**

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <a href="https://www.power.com/">www.power.com/</a>. Power Integrations grants its customers a license under certain patent rights as set forth at <a href="https://www.power.com/">https://www.power.com/</a>.ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

#### **Power Integrations Worldwide Sales Support Locations**

#### **WORLD HEADQUARTERS**

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service:

Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

#### **CHINA (SHANGHAI)**

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail:\_chinasales@power.com

#### **CHINA (SHENZHEN)**

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com **GERMANY** (AC-DC/LED Sales)

Einsteinring 24 85609 Dornach/Aschheim Germany

Tel: +49-89-5527-39100 e-mail: eurosales@power.com

**GERMANY** (Gate Driver Sales) HellwegForum 1 59469 Ense Germany

Tel: +49-2938-64-39990 e-mail: igbt-driver.sales@ power.com

# INDIA

#1, 14<sup>th</sup> Main Road Vasanthanagar Bangalore-560052 India

Phone: +91-80-4113-8020 e-mail: indiasales@power.com

#### ITALY

Via Milanese 20, 3<sup>rd</sup>. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

#### JAPAN

1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

Yusen Shin-Yokohama 1-chome

#### **KOREA**

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

# SINGAPORE

51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160

e-mail: singaporesales@power.com

# **TAIWAN** 5F, No. 318, Nei Hu Rd.,

Sec. 1 Nei Hu District Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

#### UK

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG

Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com



# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Power Integrations manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ