SID1102K SCALE-iDriver Family

Up to 5 A Single Channel IGBT/MOSFET Gate Driver Providing Reinforced Galvanic Isolation up to 1200 V Blocking Voltage

Product Highlights

Highly Integrated, Compact Footprint

- Single channel providing up to 5 A peak gate drive current
- Auxiliary outputs for external booster stage for increased peak drive current
- Integrated FluxLink™ technology providing safe isolation between primary-side and secondary-side
- · Rail-to-rail stabilized output voltage
- Unipolar supply voltage for secondary-side
- Suitable for 600 V / 650 V / 1200 V IGBT and MOSFET switches
- · Up to 75 kHz switching frequency
- Propagation delay jitter ±5 ns
- -40 °C to 125 °C operating ambient temperature
- High common-mode transient immunity
- · eSOP package with 9.5 mm creepage and clearance

Protection / Safety Features

 Undervoltage lock-out protection for primary and secondary-side (UVLO)

Full Safety and Regulatory Compliance

- 100% production partial discharge test
- 100% production HIPOT compliance testing at 6 kV RMS 1 s
- · Reinforced insulation meets VDE V 0884-10

Green Package

· Halogen free and RoHS compliant

Applications

- · General purpose and servo drives
- UPS, solar, welding inverters and power supplies

Description

The SID1102K is a single channel IGBT and MOSFET gate driver in an eSOP package. Reinforced galvanic isolation is provided by Power Integrations' revolutionary solid insulator FluxLink technology. Up to 5 A peak output drive current enables the product to drive devices with nominal currents of up to 300 A. For gate drive requirements that exceed the stand-alone capability of SID1102K, additionally AUXGL and AUXGH output pins can drive external n-channel MOSFETs as a booster stage, giving customers full freedom and control of their system design.

Controller (PWM) signals are compatible with 5 V CMOS logic, which may also be adjusted to 15 V levels by using external resistor divider.

Product Portfolio	
Product ¹	Peak Output Drive Current
SID1102K	5 Δ without external hooster

Table 1. SCALE-iDriver Portfolio. Notes:

1. Package: eSOP-R16B.

Figure 2. eSOP-R16B Package.

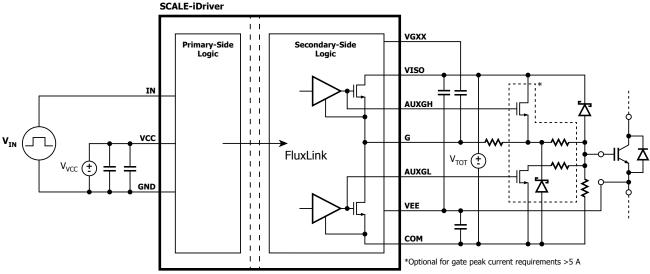


Figure 1. Typical Application Schematic with External n-Channel MOSFET Booster Stage.

PI-8527-111317

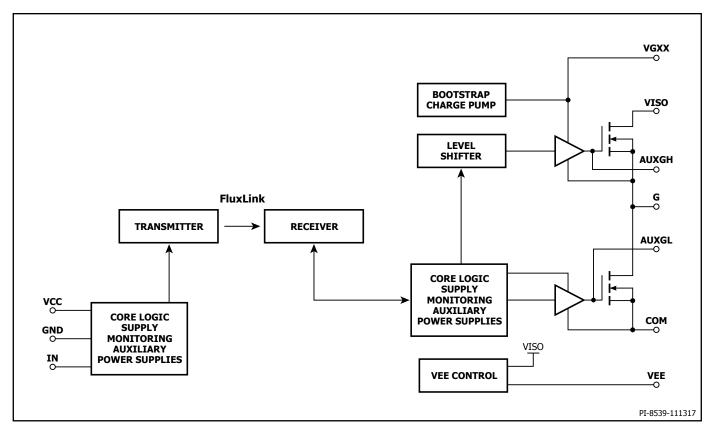


Figure 3. Functional Block Diagram.

Pin Functional Description

VCC Pin (Pin 1)

This pin is the primary-side supply voltage connection.

GND Pin (Pin 3-6)

This pin is the connection for the primary-side ground potential. All primary-side voltages refer to the pin.

IN Pin (Pin 7)

This pin is the input for the logic command signal.

NC Pins (Pin 8, Pin 9)

These pins must be un-connected. Minimum PCB pad size for soldering is required.

VEE Pin (Pin 10)

Common (IGBT emitter/MOSFET source) output supply voltage.

AUXGH Pin (Pin 11)

This pin is the high side driver signal for external n-channel MOSFET booster stage.

VGXX Pin (Pin 12)

This pin is the bootstrap and charge pump supply voltage source.

G Pin (Pin 13)

This pin is the driver output (turn-on/turn-off) connection.

VISO Pin (Pin 14)

This pin is the input for the secondary-side positive supply voltage.

COM Pin (Pin 15)

This pin provides the secondary-side reference potential.

AUXGL Pin (Pin 16)

This pin is the low side driver signal for external n-channel MOSFET booster stage.

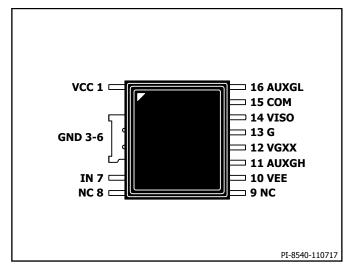


Figure 4. Pin Configuration.

SCALE-iDriver Functional Description

The single channel SCALE-iDriver $^{\text{TM}}$ SID1102K drives IGBTs and MOSFETs or other semiconductor power switches with a blocking voltage of up to 1200 V and provides reinforced isolation between micro-controller and the power semiconductor switch.

Command signals are transferred from the primary (IN) to secondary-side via FluxLink isolation technology. The G pin supplies a positive gate voltage and charges the semiconductor gate during the turn-on process. During the turn-off process the G pin supplies the negative voltage and discharges the gate.

Additionally, dedicated AUXGL and AUXGH output pins are available to drive external n-channel MOSFETs as booster stage that can be configured to provide increased peak output gate drive current.

Power Supplies

The SID1102K requires two power supplies. One for the primary-side (V_{VCC}), which powers the primary-side logic and communication with the secondary (insulated) side. The other supply voltage (V_{TOT}) is required for the secondary-side. V_{TOT} is applied between VISO pin and COM pin. V_{TOT} should be insulated from the primary-side and should provide at least the same insulation capabilities as the SCALE-iDriver. V_{TOT} should have a low capacitive coupling to the primary or any other secondary-side. The positive gate-emitter source voltage is provided by V_{VISO} , which is internally generated and stabilized to 15 V (typically) with respect to VEE. The negative gate-emitter source voltage is provided by VEE with respect to COM. Due to the limited current sourcing/sinking capabilities of the VEE pin, any additional load needs to be applied between the VISO and COM pins. No additional load between VISO and VEE pins or between VEE and COM pins is allowed.

Input (Primary-Side)

The input (IN) logic is designed to work directly with micro-controllers using 5 V CMOS logic. If the physical distance between the controller and the SCALE-iDriver is large or if a different logic level is required, the resistive divider in Figure 6 is recommended. This solution adjusts the logic level as necessary and will also improve the driver's noise immunity.

Gate driver commands are transferred from the IN pin to the G pin with a propagation delay $t_{_{P(LH)}}$ and $t_{_{P(HL)}}.$

Output (Secondary-Side)

The gate of the power semiconductor switch should be connected to the SCALE-iDriver output via pin G, using suitable gate resistor $R_{\rm G}$ as shown in Figure 7.

Note that most power semiconductor data sheets specify an internal gate resistor $R_{\mbox{\tiny GINT}'}$ which is already integrated into power semiconductor switch. In addition to $R_{\mbox{\tiny GINT}'}$ external resistor device $R_{\mbox{\tiny G}}$ is specified to set-up the gate current level to the application requirements. Careful consideration should be given to the power dissipation and peak current associated with the external gate resistor.

The G pin output current source $(I_{G(H)'},I_{G(L)})$ of SID1102K is capable of sinking and sourcing (typically) 5 A at 25 °C. The SCALE-iDriver's internal resistances are described as R_{GHI} and R_{GLI} respectively. If the gate resistor attempts to draw a higher peak current, the peak current will be internally limited to a safe value.

Safe Power-Up and Power-Down

It is recommended during power-up and power-down that the IN pin stays at logic low. Any supply voltage related to VCC, VISO, VEE and VGXX pins should be stabilized using ceramic capacitors $\rm C_{1r}$ $\rm C_{2r}$ $\rm C_{51r}$ and $\rm C_{GXX}$ respectively as shown in Figure 5 and Figure 7. After supply voltages reach their nominal values, the driver will begin to function after a time delay $\rm t_{START}$

Short-Pulse Operation

If command signals applied to the IN pin are shorter than the minimum specified by $t_{\mbox{\tiny GE(MIN)}},$ then SID1102K output signals at G, AUXGH, and AUXGL pins will extend to value $t_{\mbox{\tiny GE(MIN)}}.$ The duration of pulses longer than $t_{\mbox{\tiny GE(MIN)}}$ will not be changed.

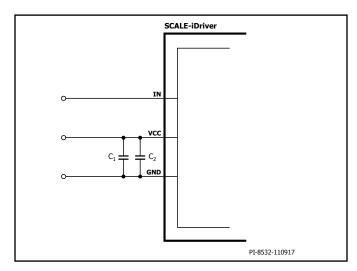


Figure 5. Recommended Circuitry for Standard 5 V IN Logic Level.

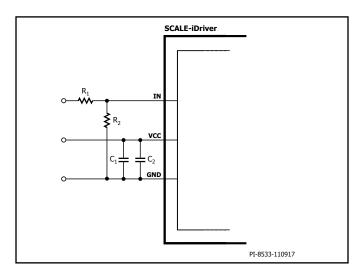


Figure 6. Recommended Circuitry for Increased IN Logic Levels. For $R_1=3.3~\mathrm{k}\Omega$ and $R_2=1~\mathrm{k}\Omega$ the IN Logic Level is 15 V.

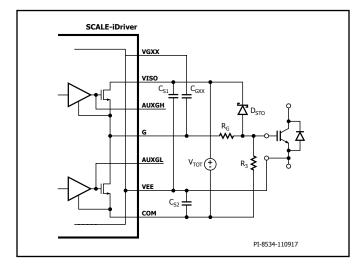


Figure 7. SID1102K without External Booster Stage.

Application Example and Components Selection Without Booster

Figure 5 and Figure 7 show the primary-side and secondary-side schematic and typical components used for SID1102K design without a booster stage, in which the primary-side supply voltage (V_{vcc}) will be connected between VCC and GND pins and supported through supply bypass ceramic capacitors C_1 (4.7 μF typically) and C_2 (470 nF typically). If the command signal voltage level is higher than the rated IN pin voltage, a resistive voltage divider should be used (Figure 6). Additional capacitor C_{F} can be used to provide input signal filtering as shown in Figure 8. The filter time τ can be calculated according to equation (1):

$$\tau = \frac{R_1 \times R_2}{R_1 + R_2} \times C_F \tag{1}$$

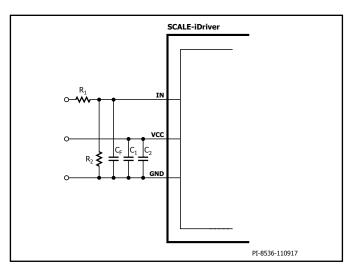


Figure 8. Optional Input Signal Filtering.

The secondary-side isolated power supply (V $_{TOT}$) is connected between VISO and COM. The positive voltage rail (V $_{VISO}$) is supported through ceramic capacitor C $_{S1}$. The negative voltage rail (V $_{VEE}$) is similarly supported through capacitor C $_{S2}$. Typically, C $_{S1}$ and C $_{S2}$ should be at least 3 μ F multiplied by the total gate charge of the power semiconductor switch (Q $_{GATE}$) divided by 1 μ C. A 10 nF capacitor C $_{GXX}$ is connected between the G and VGXX pins.

To ensure gate voltage stabilization and collector current limitation during short-circuit the gate is connected to $\rm V_{\rm VISO}$ through Schottky diode $\rm D_{\rm STO}$.

To avoid parasitic power-switch-conduction during system power-on the gate is connected to COM through 22 $k\Omega$ resistor $R_{_3}$ as shown in Figure 7.

Gate resistors are located physically close to the power semiconductor switch. As these components can get hot, it is recommended that they are placed away from the SCALE-iDriver.

Application Example and Components Selection With Booster

The primary-side can be setup identical as described in the previous section refering to Figure 5 or Figure 6 or Figure 8.

The secondary-side is slightly extended by the booster MOSFETs T_1 and T_2 (BSO220N03MD G for example) and the addition of discrete gate resistors R_{GON} and R_{GOFF} as well as diode D_2 (PMEG4010CEJ for example). All other components can be kept, values might be adapted to the relevant target power semiconductor switching device, such as gate resistors and the supply bypass capacitors C_{SJ} , C_{SJ} .

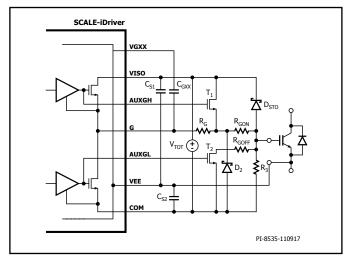


Figure 9. SID1102K with External Boosterstage.

In Off-state (VIN = 0 V) the AUXGL pin provides a positive voltage to the gate terminal of T_2 with reference to the MOSFETs source potential e.g. COM. T_2 conducts the semiconductors gate terminal to COM via R_{GOFF} providing a negative voltage with reference to VEE to the semiconductors gate (IGBT in this case). The power semiconductor device is off.

When VIN changes from 0 V to 5 V, T_2 is turned off by applying 0 V to the AUXGL pin with reference to COM. At the same time T_1 is turned on by providing a positive gate voltage via AUXGH to the gate of T_1 with reference to G. Since the G pin is connected to V_{TOT} in On-state, the potential of the AUXGH pin needs to be higher than V_{TOT} . This is achieved via SCALE-iDriver's internal charge pump / bootstrap. When T_1 conducts, it provides a positive gate voltage to the power semiconductors gate with reference to VEE. The power semiconductor device is on.

When VIN changes from 5 V to 0 V, it has to be considered, that $R_{_{GON}}$ and $R_{_{GOFF}}$ are paralleled, consequently resulting in a $R_{_{GOFF}}\!< R_{_{GON}}$ for all chosen. $R_{_{G}}$ is placed in series to $R_{_{GON}}$ to allow $R_{_{GOFF}}\!> R_{_{GON}}$.

To ensure that no parasitic turn-on of the power semiconductor switching device occurs when used on the high-side of a half-bridge topology and under worst case switching conditions, the use of the Schottky diode D_2 (PMEG4010CEJ for example) is recommended.

Since the current capability of the VGXX pin is limited, it is recommended to restrict the applicable external N-Channel Booster MOSFETs to those with a gate charge $Q_{_{\rm G}} \leq 9~$ nC for ${\rm T_1}$ and $Q_{_{\rm G}} \leq 5~$ nC for ${\rm T_2}.$

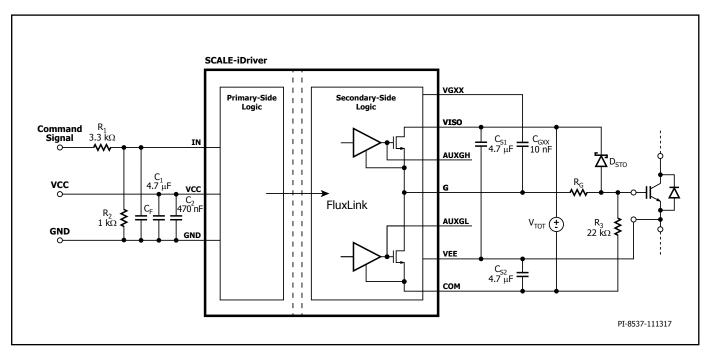


Figure 10. Exemplary Schematic without Booster.

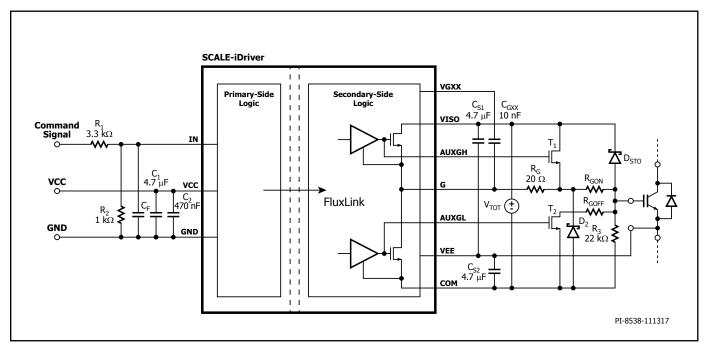


Figure 11. Exemplary Schematic with Booster.

Power Dissipation and IC Junction Temperature Estimation

The following scheme is valid for the SCALE-iDriver without external booster stage. With external booster stage, the majority of losses will be consumed by the MOSFETs of the booster.

First calculation in designing the power semiconductor switch gate driver stage is to calculate the required gate power P_{DRV} . The power is calculated based on equation (2):

$$P_{DRV} = Q_{GATE} \times f_S \times V_{TOT}$$
 (2)

where,

 $Q_{\rm GATE}$ – Controlled power semiconductor switch gate charge (derived for the particular gate potential range defined by $\rm V_{TOT}$). See semiconductor manufacturer data sheet.

 $f_{\rm S}$ – Switching frequency which is the same as applied to the IN pin of SCALE-iDriver.

V_{TOT} – SCALE-iDriver secondary-side supply voltage.

In addition to P_{DRW} P_P (primary-side IC power dissipation) and P_{SNL} (secondary-side IC power dissipation without capacitive load) must be considered. Both are ambient temperature and switching frequency dependent (see typical performance characteristics).

$$P_{P} = V_{VCC} \times I_{VCC} \tag{3}$$

$$P_{SNL} = V_{TOT} \times I_{VISO} \tag{4}$$

During operation, the P_{DRV} power is shared between the external gate resistor R_{G} , the internal gate resistor R_{GINT} , of the power switch (if available) and internal driver resistances R_{GHI} and R_{GIJ} . For junction temperature estimation purposes, the dissipated power under load (P_{OI}) inside the IC can be calculated according to equation (5):

$$P_{OL} = 0.5 \times Q_{GATE} \times f_S \times V_{TOT} \times \left(\frac{R_{GHI}}{R_{GHI} + R_{GX}} + \frac{R_{GLI}}{R_{GLI} + R_{GX}}\right)$$
(5)

 $R_{_{GX}}$ represents the sum of external ($R_{_{G}}$) and power semiconductor internal gate resistance ($R_{_{GINT}}$):

$$R_{GX} = R_G + R_{GINT} \tag{6}$$

Total power dissipation (P_{DIS}) is estimated as sum of equations (3), (4) and (5):

$$P_{DIS} = P_P + P_{SNL} + P_{OL} \tag{7}$$

The operating junction temperature (T_j) for given ambient temperature (T_a) can be estimated according to equation (8):

$$T_{J} = \theta_{JA} \times P_{DIS} + T_{A} \tag{8}$$

Table 2 describes the recommended component characteristics and layout requirements to achieve optimum performances of SCALE-iDriver without external n-channel MOSFET booster.

Pin	Return to Pin	Recommended Value	Symbol	Notes
VCC	GND	4.7 μF 470 nF	C ₁ C ₂	VCC blocking capacitors C_1 and C_2 must be placed close to the IC. Enlarged loop could result in inadequate VCC supply voltage during operation. For C_1 X7R / 25 V / 10% in a 1206 package is recommended. For C_2 X7R / 25 V / 10% in a 0608 package is recommended.
Command Signal	IN	Application specific	$R_{_1}$	Needed if command signals >5 V are used. For 15 V input logic the value of Figure 10 e.g. $3.3~\mathrm{k}\Omega$ is recommended. The use of 1% / 0.1 W / 50 V in 0603 package is recommended.
IN	GND	Application specific	R ₂	Needed if command signals >5 V are used. For 15 V input logic the value of Figure 10 e.g. 1 k Ω is recommended. The use of 1% / 0.1 W / 50 V in 0603 package is recommended.
IN	GND	Application specific	$C_{\scriptscriptstyle{F}}$	See equation 1. The use of NPO, COG / 50 V / 5% in 0603 package is recommended.
VISO	VEE	Application specific	C _{S1}	$C_{_{S1}}$ should be at least 3 μF multiplied by the total gate charge of the power semiconductor switch (Q $_{_{GATE}}$) divided by 1 μC . The use of X7R / 25 V / 10% in 1206 package is recommended. This capacitor needs to be placed close to the IC pins.
VEE	СОМ	Application specific	C _{s2}	C_{S2} should be at least 3 μF multiplied by the total gate charge of the power semiconductor switch (Q_{GATE}) divided by 1 μC . The use of X7R / 25 V / 10% in 1206 package is recommended. This capacitor needs to be placed close to the IC pins.
VGXX	G	10 nF	C _{GXX}	To avoid misoperation, this pin should not be connected to anything else. This capacitor needs to be as close to IC pins as possible. The use of X7R / 25 V / 10% in 0603 package is recommended.
VISO	Power semiconductor gate	Schottky diode	D _{sto}	To ensure gate voltage stabilization and collector current limitation during a short-circuit, the gate is connected to the VISO pin through the Schottky diode D_{STO} . D_{STO} should be connected close to capacitor C_{S1} as well as the power semiconductor gate. Enlarged loop could result in increased short-circuit current. The use of NXP PMEG4050ETP is recommended
G	Power semiconductor gate	Application specific	$R_{_{\mathrm{G}}}$	As this component gets hot, it shall be ensured that it is placed not too close to SID1102K.
СОМ	Power semiconductor gate	22 kΩ	R_3	To avoid parasitic power-switch-conduction during system power-on, the gate is connected to COM through 22 k Ω . The use of 1% / 0.1 W / 50 V in 0603 package is recommended.

Table 2. PCB Layout and Component Guidelines without External n-Channel MOSFET Booster.

SID1102K

Table 3 describes the recommended component characteristics and layout requirements to achieve optimum performances of SCALE-iDriver with external n-channel MOSFET booster.

Pin	Return to Pin	Recommended Value	Symbol	Notes
VCC	GND	4.7 μF 470 nF	C ₁ C ₂	VCC blocking capacitors $\rm C_1$ and $\rm C_2$ must be placed close to the IC. Enlarged loop could result in inadequate VCC supply voltage during operation. For $\rm C_1$ X7R / 25 V / 10% in a 1206 package is recommended. For $\rm C_2$ X7R / 25 V / 10% in a 0608 package is recommended.
Command Signal	IN	Application specific	$R_{_1}$	Needed if command signals >5 V are used. For 15 V input logic the value of Figure 11 e.g. 3.3 k Ω is recommended. The use of 1% / 0.1 W / 50 V in 0603 package is recommended.
IN	GND	Application specific	R ₂	Needed if command signals >5 V are used. For 15 V input logic the value of Figure 11 e.g. 1 $k\Omega$ is recommended. The use of 1% / 0.1 W / 50 V in 0603 package is recommended.
IN	GND	Application specific	C _F	See equation 1. The use of NP0, C0G / 50 V / 5% in 0603 package is recommended.
VISO	VEE	Application specific	C _{S1}	C_{S1} should be at least 3 μF multiplied by the total gate charge of the power semiconductor switch (Q_GATE) divided by 1 μC . The use of X7R / 25 V / 10% in 1206 package is recommended. This capacitor needs to be placed close to the IC pins.
VEE	СОМ	Application specific	C _{s2}	C_{s2} should be at least 3 μF multiplied by the total gate charge of the power semiconductor switch (Q_GATE) divided by 1 μC . The use of X7R / 25 V /10% in 1206 package is recommended. This capacitor needs to be placed close to the IC pins.
VGXX	G	10 nF	C _{GXX}	To avoid misoperation, this pin should not be connected to anything else. This capacitor needs to be as close to IC pins as possible. The use of X7R / 25 V / 10% in 0603 package is recommended.
VISO	Power semiconductor gate	Schottky diode	D _{sto}	To ensure gate voltage stabilization and collector current limitation during a short-circuit, the gate is connected to the VISO pin through the Schottky diode D_{STO} . D_{STO} should be connected close to capacitor C_{S1} as well as the power semiconductor gate. Enlarged loop could result in increased short-circuit current. The use of NXP PMEG4050ETP is recommended.
G	Source Terminal T ₁	20 Ω	$R_{_{ m G}}$	Gate Resistor needed to provide a higher gate resistance for turn-off than for turn-on 20 Ω is recommended also to avoid oscillations. The use of 1% / 0.25 W / 200 V / CRCWe3 in 1206 package is recommended.

Table 3. PCB Layout and Component Guidelines with External n-Channel MOSFET Booster.

SID1102K

VISO	R _{GON}	n-channel MOSFET	T ₁	Turn-on switch of external booster stage.
R _{GOFF}	СОМ	n-channel MOSFET	T ₂	Turn-off switch of external booster stage.
R_{GON}	СОМ	Schottky diode	D ₂	To ensure that no parasitic turn-on of the power semiconductor switching device occurs when used on the high-side of a half-bridge under worst-case switching conditions. The use of NXP PMEG4010CEJ is recommended.
Source Terminal T ₁	Power semiconductor gate	Application specific	R _{GON}	As this component gets hot, it shall be ensured that it is placed not too close to SID1102K.
Drain Terminal	Power semiconductor gate	Application specific	R _{GOFF}	As this component gets hot, it shall be ensured that it is placed not too close to SID1102K.
СОМ	Power semiconductor gate	22 kΩ	R ₃	To avoid parasitic power-switch-conduction during system power-on, the gate is connected to COM through 22 k Ω resistor. The use of 1% / 0.1 W / 50 V in 0603 package is recommended.

Table 3. PCB Layout and Component Guidelines with External n-Channel MOSFET Booster (cont.).

SID1102K

Parameter	Symbol	Conditions	Min	Max	Units
Absolute Maximum Ratings ¹					
Primary-Side Supply Voltage ²	V_{vcc}	VCC to GND	-0.5	6.5	V
Secondary-Side Total Supply Voltage	V _{TOT}	VISO to COM	-0.5	30	V
Secondary-Side Positive Supply Voltage	V_{viso}	VISO to VEE	-0.5	17.5	V
Secondary-Side Negative Supply Voltage	V _{VEE}	VEE to COM	-0.5	15	V
Logic Input Voltage (command signal)	V_{IN}	IN to GND	-0.5	V _{vcc} + 0.5	V
Switching Frequency	f _s			75	kHz
Storage Temperature	T _s		-65	150	°C
Operating Junction Temperature	T,		-40	150³	°C
Operating Ambient Temperature	T _A		-40	125	°C
Operating Case Temperature	T _c		-40	125	°C
Input Power Dissipation⁴	P _P	$V_{VCC} = 5 \text{ V, } V_{TOT} = 28 \text{ V,}$		115	ma\A/
Output Power Dissipation ⁴	P _s	$T_A = 25 ^{\circ}C$		1675	mW
Total IC Power Dissipation	P _{DJS}	$f_s = 75 \text{ kHz}$		1790	mW

NOTES:

- 1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.
- 2. Defined as peak voltage measured directly on VCC pin.
- 3. Transmission of command signals could be affected by PCB layout parasitic inductances at junction temperatures higher than recommended.
- 4. Input Power Dissipation refers to equation (3). Output Power Dissipation is secondary-side IC power dissipation without capacitive load $(P_{SNL'})$ equation (4) and dissipated power under load $(P_{OL'})$ equation (5). Total IC power dissipation is sum of P_P and P_S .

Thermal Resistance

Thermal Resistance: eSOP-R16B Package:

 Notes:

- 1. 2 oz. (610 g/m²) copper clad.
- 2. The case temperature is measured at the plastic surface at the top of the package.

Parameter	Symbol	Conditions $T_{j} = -40 \text{ °C to } 125 \text{ °C}$ See Note 1 (Unless Otherwise Specified)	Min	Тур	Max	Units
Recommended Operation	Conditions					
Primary-Side Supply Voltage	V _{vcc}	VCC - GND	4.75		5.25	V
Secondary-Side Total Supply Voltage	V _{TOT}	VISO - COM	22		28	V
Logic Low Input Voltage	V _{IL}				0.5	V
Logic High Input Voltage	V _{IH}		3.3			V
Switching Frequency	f _s		0		75	kHz
Operating IC Junction Temperature	T ₃		-40		125	°C
Gate Charge of External Turn-On N-Channel-MOSFET $\mathbf{T_1}$	$Q_{G,AUXGH}$	$0 \text{ V} \leq \text{V}_{AUXGH} \leq 10 \text{ V}$ referenced to G See Note 8			9	nC
Gate Charge of External Turn-Off N-Channel- MOSFET T ₂	$Q_{G,AUXGL}$	0 V ≤ V _{AUXGL} ≤ 6 V referenced to COM See Note 8			5	nC
Electrical Characteristics	'			`	1	
Logic Low Input Threshold Voltage (Referenced to GND)	V _{IN+LT}		0.6	1.25	1.8	V
Logic High Input Threshold Voltage (Referenced to GND)	V _{IN+HT}		1.7	2.2	3.05	V
Logic Input Voltage Hysteresis	$V_{_{\mathrm{IN+HS}}}$		0.1			V
Input Bias Current	I _{IN}	V _{IN} = 5 V	56	113	165	μΑ
		$V_{IN} = 0 V$			17	
Supply Current	т	$V_{IN} = 5 V$			23	mA
(Primary-Side)	I _{vcc}	f _s = 20 kHz			20	IIIA
		f _s = 75 kHz			23	
		$V_{IN} = 0 V$			8	
Supply Current		V _{IN} = 5 V			9]
(Secondary-Side)	I _{VISO}	f _s = 20 kHz			10	- mA
		f _s = 75 kHz			14	
Power Supply		Clear Fault		4.28	4.65	
Monitoring Threshold (Primary-Side)	UVLO _{vcc}	Set Fault	3.85	4.12		V
(Referenced to GND)		Hysteresis	0.02			
Power Supply Monitoring Threshold		Clear Fault		12.85	13.5	
(Secondary-Side,	UVLO _{VISO}	Set Fault	11.7	12.35		V
Positive Rail V _{viso}) (Referenced to VEE)		Hysteresis	0.3			

Parameter	Symbol	Conditions T _j = -40 °C to 125 °C See Note 1 (Unless Otherwise Specified)	Min	Тур	Max	Units
Electrical Characteristics	(cont.)					
Power Supply		Clear Fault, V _{TOT} = 20 V		5.15	5.5	
Monitoring Threshold (Secondary-Side,	UVLO _{VEE}	Set Fault, V _{TOT} = 20 V	4.67	4.93		v
Negative Rail V _{VEE}) (Referenced to COM)		Hysteresis	0.1			
Secondary-Side Positive Supply Voltage Regulation (Referenced to VEE)	V _{VISO(HS)}	22 V ≤ V _{TOT} ≤ 28 V, i(VEE) ≤ 1.5 mA	14.4	15.07	15.75	V
		V _{TOT} = 15 V, V _{VEE} set to 0 V	0.1			
VEE Source Capability	I _{VEE(SO)}	V _{TOT} = 25 V, V _{VEE} set to 7.5 V See Note 9	1.85	3.3	4.5	mA
VEE Sink Capability	I _{VEE(SI)}	$V_{TOT} = 25 \text{ V},$ $V_{VEE} \text{ set to } 12.5 \text{ V}$	1.74	3.1	4.5	mA
Turn-On	+	T _J = 25 °C See Note 3	190	262	350	ne
Propagation Delay	t _{P(LH)}	T _J = 125 °C See Note 3	210	285	364	ns
Turn-Off	+	T ₁ = 25 °C See Note 4	190	262	350	nc
Propagation Delay	t _{P(HL)}	T _J = 125 °C See Note 4	211	289	359	ns
Minimum Turn-On and Off Pulses	t _{GE(MIN)}	See Note 8			650	ns
		No C _G See Note 5		29	45	
Output Rise Time	t _R	C _G = 10 nF See Note 5	120	145	175	ns
		C _G = 47 nF See Note 5	600	675	790	
		No C _G See Note 6		14	45	
Output Fall Time	t _F	C _G = 10 nF See Note 6	113	138	163	ns
		C _G = 47 nF See Note 6	580	655	790	

	1	T				1
Parameter	Symbol	Conditions $T_{_{J}} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}$ See Note 1 (Unless Otherwise Specified)	Min	Тур	Max	Units
Electrical Characteristics	(cont.)					
Propagation Delay Jitter		See Note 8		±5		ns
Power-On Start-Up Time	t _{start}	See Note 7			10	ms
Gate Sourcing	ī	$V_{GH} \ge V_{TOT} - 8.8 \text{ V}$ $C_{G} = 470 \text{ nF}$ See Note 9	2.7	3.3	4	A
Peak Current	$I_{G(H)}$	$R_G = 0 \Omega$, $C_G = 47 \text{ nF}$ $T_J = 25 ^{\circ}\text{C}$ See Notes 2, 8, 9		5		A
Gate Sinking	${ m I}_{ m GL}$	$V_{GL} \le 7.5 \text{ V}$ $C_G = 470 \text{ nF}$ V_{GL} is Referenced to COM	3	3.55	4	A
Peak Current	-GL	$R_G = 0 \Omega$, $C_G = 47 \text{ nF}$ $T_J = 25 ^{\circ}\text{C}$ See Notes 2, 8		5		
Turn-On Internal Gate Resistance	R_{GHI}	$I_G = -250 \text{ mA}$ $V_{IN} = 5 \text{ V}$ See Note 9		1.05	1.7	Ω
Turn-Off Internal Gate Resistance	R _{GLI}	$I_{G} = 250 \text{ mA}$ $V_{IN} = 0 \text{ V}$ See Note 9		1	1.7	Ω
Turn-On Gate Output Voltage (Referenced to COM)	V_{GH}	$I_G = 20 \text{ mA}$ $V_{IN} = 5 \text{ V}$	V _{тот} -0.05			V
Turn-Off Gate Output Voltage (Referenced to COM)	V _{GL}	$I_G = 20 \text{ mA}$ $V_{IN} = 0 \text{ V}$			0.05	V
Auxiliary High-Side Gate High Level Output Voltage (Referenced to G)	V _{AUXGH}	IN = 5 V, V _{TOT} = 25 V	7	9.5	12.5	V
Auxiliary Low-Side Gate High Level Output Voltage (Referenced to COM)	V _{AUXGL}	IN = 0 V, V _{TOT} = 25 V	4	5.25	6.75	V

Parameter	Symbol	Conditions $T_1 = -40 \text{ °C to } 125 \text{ °C}$	Min	Тур	Max	Units
		See Note 1 (Unless Otherwise Specified)				
Package Characteristics	(See Notes 8,	10)				
Distance Through the Insulation	DTI	Minimum Internal Gap (Internal Clearance)	0.4			mm
Minimum Air Gap (Clearance)	L1 (IO1)	Shortest Terminal-to-Terminal Distance Through Air	9.5			mm
Minimum External Tracking (Creepage)	L2 (IO2)	Shortest Terminal-to-Terminal Distance Across the Package Surface	9.5			mm
Tracking Resistance (Comparative Tracking Index)	СТІ	DIN EN 60112 (VDE 0303-11): 2010-05 EN / IEC 60112:2033 + A1:2009	600			
		V _{IO} = 500 V, T _J = 25 °C	1012			
Isolation Resistance, Input to Output	R _{IO}	$V_{10} = 500 \text{ V}$ $100 \text{ °C} \leq T_{J} \leq T_{C(MAX)}$ See Note 12	1011			Ω
Isolation Capacitance, Input to Output	C _{IO}	See Note 12		1		pF
Package Insulation Chara	acteristics					_
Maximum Working Isolation Voltage	V _{IOWM}				1000	V _{RMS}
Maximum Repetitive Peak Isolation Voltage	V _{IORM}				1414	V _{PEAK}
		Method A, After Environmental Tests Subgroup 1, $V_{PR} = 1.6 \times V_{IORM}$, $t = 10$ s (qualification) Partial Discharge < 5 pC			2263	
Input to Output Test Voltage	V _{PD}	Method A, After Input/Output Safety Test Subgroup 2/3, $V_{PR} = 1.2 \times V_{IORM}$, $t = 10 \text{ s}$, (qualification) Partial Discharge < 5 pC			1697	V _{PEAK}
		Method B1, 100% Production Test, $V_{\text{PR}} = 1.875 \times V_{\text{IORM}}, t = 1 \text{ s}$ Partial Discharge $< 5 \text{ pC}$			2652	
Maximum Transient Isolation Voltage	V _{IOTM}	$V_{\text{TEST}} = V_{\text{IOTM}}$, $t = 60 \text{ s (qualification)}$, $t = 1 \text{ s (100\% production)}$			8000	V _{PEAK}
Insulation Resistance	R _s	V_{IO} = 500 V at T_{S}			>109	Ω
Maximum Case Temperature	T _s				150	°C
Safety Total Dissipated Power	P _s	T ₃ = 25 °C			1.79	W
Pollution Degree				2		
Climatic Classification				40/125/21		
Withstanding Isolation Voltage	V _{ISO}	$V_{TEST} = V_{ISO}$, $t = 60$ s (qualification), $V_{TEST} = 1.2 \times V_{ISO} = 6000 V_{RMS}$, $t = 1$ s (100% production)		5000		V _{RMS}

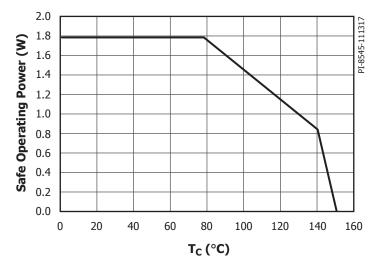


Figure 12. Thermal Derating Curve Showing Dependence of Limited Dissipated Power on Case Temperature (DIN V VDE V 0884-10).

Operation is allowed until T_1 and/or T_c of 125 °C are reached. Thermal stress beyond those values but below thermal derating curve may lead to permanent functional product damage. Operating beyond thermal SOP derating curve may affect product reliability.

NOTES:

- 1. $V_{VCC} = 5 \text{ V}$, $V_{TOT} = 25 \text{ V}$. $R_G = 5.6 \Omega$, no C_G , without external booster stage. The VGXX pin is connected to the G pin through a 10 nF capacitor. Typical values are defined at $T_A = 25 \text{ °C}$; $f_S = 20 \text{ kHz}$, Duty Cycle = 50%. Positive currents are assumed to be flowing into pins.
- 2. Pulse width \leq 10 μ s, duty cycle \leq 1%. The maximum value is controlled by the ASIC to a safe level. The internal peak power is safely controlled for R_G \geq 0 and power semiconductor module input gate capacitance C_{IES} \leq 47 nF.
- 3. V_{IN} potential changes from 0 V to 5 V within 10 ns. Delay is measured from 50% voltage increase on IN pin to 10% voltage increase on G pin.
- 4. V_{IN} potential changes from 5 V to 0 V within 10 ns. Delay is measured from 50% voltage decrease on IN pin to 10% voltage decrease on G
- 5. Measured from 10% to 90% of V_{GE} (C_{G} simulates semiconductor gate capacitance). The V_{GE} is measured across C_{G} .
- 6. Measured from 90% to 10% of V_{GF} (C_G simulates semiconductor gate capacitance). The V_{GF} is measured across C_G .
- The amount of time after primary and secondary-side supply voltages (V_{VCC} and V_{TOT}) reach minimal required level for driver proper operation.
 No signal is transferred from primary to secondary-side during that time.
- 8. Guaranteed by design.
- 9. Positive current is flowing out of the pin.
- 10. Safety distances are application dependent and the creepage and clearance requirements should follow specific equipment isolation standards of an application. Board design should ensure that the soldering pads of an IC maintain required safety relevant distances.
- 11. Measured accordingly to IEC 61000-4-8 (f_s = 50 Hz, and 60 Hz) and IEC 61000-4-9.
- 12. All pins on each side of the barrier tied together creating a two-terminal device.

Typical Performance Characteristics

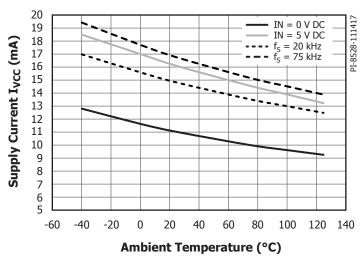


Figure 13. Supply Current Primary-Side $I_{\rm VCC}$ vs. Ambient Temperature. Conditions: $V_{\rm VCC}$ = 5 V, $V_{\rm TOT}$ = 25 V, No-Load.

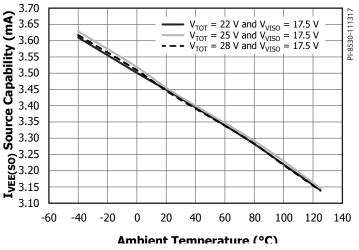


Figure 15. VEE Source Capability $I_{_{V\!E\!E(S\!O)}}$ vs. Ambient Temperature and $V_{_{T\!OT}}$ Conditions: $V_{_{V\!C\!C}}=5$ V, $f_{_S}=20$ kHz, Duty Cycle = 50%.

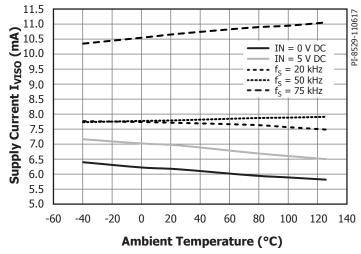


Figure 14. Supply Current Secondary-Side $I_{\rm VISO}$ vs. Ambient Temperature Conditions: $V_{\rm VCC}$ = 5 V, $V_{\rm TOT}$ = 25 V, No-Load.

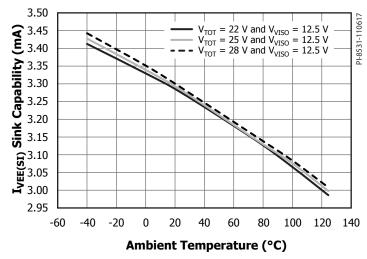
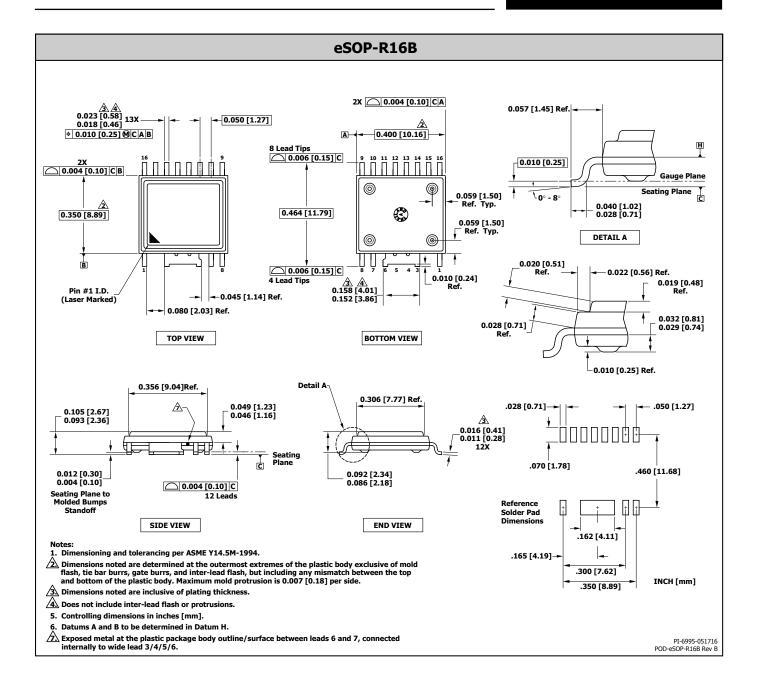
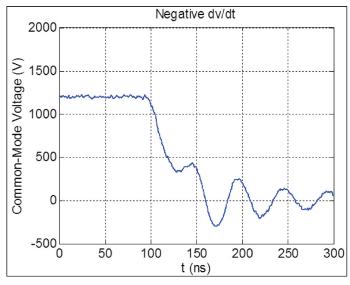



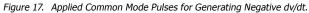
Figure 16. VEE Sink Capability $I_{_{VEE(SI)}}$ vs. Ambient Temperature and $V_{_{TOT}}$ Conditions: $V_{_{VCC}}=5$ V, $f_{_{S}}=20$ kHz, Duty Cycle = 50%.

MSL Table

Part Number	MSL Rating
SID1102K	3

ESD and Latch-Up Table


Test	Conditions	Results
Latch-up at 125 °C	JESD78D	$> \pm 100$ mA or $> 1.5 \times V_{MAX}$ on all pins
Human Body Model ESD	JESD22-A114F	> ±2000 V on all pins
Charged Device Model ESD	JESD22-C101	> ±500 V on all pins


IEC 60664-1 Rating Table

Parameter	Conditions	Specifications
Basic Isolation Group	Material Group	I
	Rated mains voltage ≤ 150 V _{RMS}	I - IV
	Rated mains voltage ≤ 300 V _{RMS}	I - IV
Installation Classification	Rated mains voltage ≤ 600 V _{RMS}	I - IV
	Rated mains voltage ≤ 1000 V _{RMS}	I - III

Electrical Characteristics (EMI) Table

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Common-Mode Transient Immunity, Logic High	CM _H	Typical values measured according to Figure 17 and Figure 18. Maximum values are design values assuming trapezoid waveforms.		-35 / 50	-100 / 100	kV/μs
Common-Mode Transient Immunity, Logic Low	CM_{\scriptscriptstyleL}	Typical values measured according to Figure 17 and Figure 18. Maximum values are design values assuming trapezoid waveforms.		-35 / 50	-100 / 100	kV/μs
Variable Magnetic Field Immunity	H _{HPEAK}	See Note 11		1000		A/m
	H _{LPEAK}	See Note 11		1000		

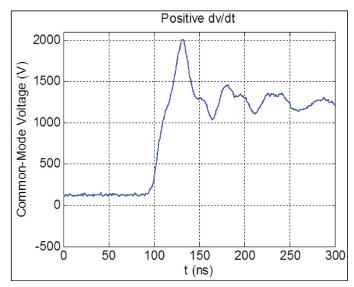
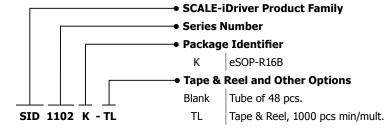



Figure 18. Applied Common Mode Pulses for Generating Positive dv/dt.

Regulatory Information Table

VDE	UL	CSA
Certified to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12	UR recognized under UL1577 Component Recognition Program	UR recognized to CSA Component Acceptance Notice 5A
Reinforced insulation for Max. Transient Isolation voltage 8 kV _{PEAK} , Max. Surge Isolation voltage 8 kV _{PEAK} , Max. Repetitive Peak Isolation voltage 1414 V _{PEAK}	Single protection, 5000 V _{RMS} dielectric voltage withstand	Single protection, 5000 $V_{\rm RMS}$ dielectric voltage withstand
File No. 40044363	File No. E358471	File No. E358471

Part Ordering Information

Revision	Notes	Date
С	Code A.	11/17
D	Updated with UL approval information on page 1 and Regulatory Information table on page 19.	05/18

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

- 1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE, SCALE-iDriver, SCALE-iFlex, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch, HiperFFS, HiperFFS, HiperLCS, DPA-Switch, CAPZero, Clampless, EcoSmart, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2018, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

World Headquarters

5245 Hellyer Avenue San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service:

Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

China (Shanghai)

Rm 2410, Charity Plaza, No. 88 North Caoxi Road Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail: chinasales@power.com

China (Shenzhen)

17/F, Hivac Building, No. 2, Keji Nan Bangalore-560052 India 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com

Germany (AC-DC/LED Sales) Lindwurmstrasse 114 D-80337 München

Germany

Phone: +49-89-5527-39100 e-mail: eurosales@power.com

Germany (Gate Driver Sales) HellwegForum 1 59469 Ense

Tel: +49-2938-64-39990

#1, 14th Main Road Vasanthanagar Phone: +91-80-4113-8020 e-mail: indiasales@power.com

Italy

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

Yusen Shin-Yokohama 1-chome Bldg. Taiwan 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi. Kanagawa 222-0033 Japan

Phone: +81-45-471-1021 e-mail: igbt-driver.sales@power.com e-mail: japansales@power.com

Korea

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610

e-mail: koreasales@power.com

Singapore

51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160

e-mail: singaporesales@power.com

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist.

Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge

CB4 1YG

Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Power Integrations manufacturer:

Other Similar products are found below:

00053P0231 56956 57.404.7355.5 LT4936 57.904.0755.0 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 011003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24
00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 0207400000 01312
0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131220-21149P 6131-260-2358P 6131-265-11149P CS1HCPU63