Thyristor Modules
 Thyristor/Diode Modules

PSKT 161
PSKH 161

$I_{\text {TRMs }}$	$=2 \times 300 \mathrm{~A}$
$I_{\text {TAVM }}$	$=2 \times 165 \mathrm{~A}$
$V_{\text {RRM }}$	$=2000-2200 \mathrm{~V}$

Preliminary Data Sheet

$\mathrm{V}_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}$	Type	
$\mathrm{V}_{\text {DSM }}$	$\mathrm{V}_{\text {DRM }}$		
V	V	Version 1	Version 1
2100	$\mathbf{2 0 0 0}$	PSKT 161/20io1	PSKH 161/20io1
$\mathbf{2 3 0 0}$	$\mathbf{2 2 0 0}$	PSKT 161/22io1	PSKH 161/22io1

PSKT

Features

- International standard package
- Direct copper bonded $\mathrm{Al}_{2} \mathrm{O}_{3}$-ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V ~
- UL registered, E 148688
- Keyed gate/cathode twin pins

Applications

- Motor control
- Power converter
- Heat and temperature control for industrial furnaces and chemical processes
- Lighting control
- Contactless switches

Advantages

- Space and weight savings
- Simple mounting with two screws
- Improved temperature and power cycling capability
- Reduced protection circuits

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated.

Symbol
Test Conditions

$\mathrm{I}_{\text {RRM }}, \mathrm{I}_{\text {DRM }}$	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	40	mA
V_{T}	$\mathrm{I}_{\mathrm{T}}=300 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	1.36	V
$\begin{aligned} & \overline{\mathbf{V}_{\mathrm{T} 0}} \\ & \mathbf{r}_{\mathrm{T}} \end{aligned}$	For power-loss calculations only ($\mathrm{T}_{\mathrm{v},}=\mathrm{T}_{\mathrm{vJM}}$)	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} \Omega \end{gathered}$
$\mathrm{V}_{\text {GT }}$	$\begin{array}{ll} V_{D}=6 \mathrm{~V} ; & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{V},}=-40^{\circ} \mathrm{C} \end{array}$	2 2.6	V
I_{GT}	$\begin{array}{ll} V_{\mathrm{D}}=6 \mathrm{~V} ; & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{V},}=-40^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	mA
$\begin{aligned} & \overline{\mathbf{V}_{G D}} \\ & \mathbf{I}_{\mathrm{GD}} \end{aligned}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJMM}} ; \quad \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ \mathrm{~T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; \quad \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \end{array}$	$\begin{array}{r} 0.25 \\ 10 \end{array}$	V $m A$
I_{L}	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; \mathrm{t}_{\mathrm{P}}=30 \mu \mathrm{~s} \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.45 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{I}_{\mathrm{G}}=0.45 \mathrm{~A} \end{aligned}$	200	mA
I_{H}	$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{GK}}=\infty$	150	mA
$\mathrm{tg}_{\mathrm{gd}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=1 / 2 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.5 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{I}_{\mathrm{G}}=0.5 \mathrm{~A} \end{aligned}$	2	$\mu \mathrm{s}$

$\mathbf{t}_{\mathrm{q}} \quad \mathrm{T}_{\mathrm{Vv}}=\mathrm{T}_{\mathrm{VJM}} ; \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DR}} ; \mathrm{t}_{\mathrm{p}}=200 \mu \mathrm{~s}$ typ. $150 \quad \mu \mathrm{~s}$
$\mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{I}_{\mathrm{T}}=160 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=10 \mathrm{~A} / \mu \mathrm{s}$

$\begin{aligned} & \mathbf{Q}_{\mathrm{s}} \\ & \mathrm{I}_{\mathrm{RM}} \end{aligned}$	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {vJM }}$ -di/dt $=50 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{I}_{\mathrm{T}}=300 \mathrm{~A}$	$\begin{aligned} & 550 \\ & 235 \end{aligned}$	$\begin{gathered} \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\mathrm{R}_{\text {thJc }}$	per thyristor; DC current	0.155	K/W
	per module	0.078	K/W
$\mathrm{R}_{\text {thJk }}$	per thyristor; DC current	0.225	KW
	per module	0.113	K/W
$\mathrm{d}_{\text {s }}$	Creeping distance on surface	12.7	mm
$\mathrm{d}_{\text {A }}$	Creepage distance in air	9.6	mm
a	Maximum allowable acceleration	50	$\mathrm{m} / \mathrm{s}^{2}$

Optional accessories for modules
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ yellow, cathode $=$ red
Type ZY 180L ($L=$ Left for pin pair 4/5) UL 758, style 1385,
Type ZY 180R (R = right for pin pair 6/7)
CSA class 5851, guide 460-1-1

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time
$\mathrm{R}_{\text {thJKK }}$ for various conduction angles d :

d	$\mathrm{R}_{\mathrm{thJK}}(\mathrm{K} / \mathrm{W})$
DC	0.225
180°	0.237
120°	0.245
60°	0.262
30°	0.296

Constants for $Z_{\mathrm{t} \mathrm{JJ} \mathrm{K}}$ calculation:

i	$\mathrm{R}_{\mathrm{tri}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.0072	0.001
2	0.0188	0.08
3	0.129	0.2
4	0.07	1.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by Powersem manufacturer:

Other Similar products are found below :

