High Voltage Diode Module (TRACTION - PAC ${ }^{\text {TM }}$)

Preliminary Data Sheet

$\mathrm{V}_{\text {RSM }}$	$\mathbf{V}_{\text {RRM }}$	Type
V^{2}	$\mathrm{~V}^{2}$	
700	600	PSTKD 82/06
900	800	PSTKD 82/08
1100	1000	PSTKD 82/10
1300	1200	PSTKD 82/12
1500	1400	PSTKD 82/14
1700	1600	PSTKD 82/16
1900	1800	PSTKD 82/18

Symbol	Test Conditions		Maximum Ratings	
$\mathrm{I}_{\text {FRMS }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=\mathrm{T}_{\text {vjM }} \\ & \mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C} ; 180^{\circ} \text { sine } \end{aligned}$		180	A
$\mathrm{I}_{\text {favm }}$			82	A
$\mathrm{I}_{\text {TSM }}$	$\mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C}$;	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	1700	A
	$V_{R}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	1950	A
	$\mathrm{T}_{\mathrm{V},}=\mathrm{T}_{\mathrm{VJM}}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	1530	A
	$V_{R}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	1740	A
òi $^{2} \mathrm{dt}$	$\mathrm{T}_{\mathrm{V},}=45^{\circ} \mathrm{C}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	14450	$A^{2} \mathrm{~s}$
	$V_{R}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	15700	$A^{2} \mathrm{~S}$
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	11700	$A^{2} \mathrm{~s}$
	$V_{R}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	12500	$A^{2} \mathrm{~s}$
$\mathrm{T}_{\text {vv }}$			-40 ... 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{vJM}}$			125	${ }^{\circ} \mathrm{C}$
			-40 ... 125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	$50 / 60 \mathrm{~Hz}$, RMS $\mathrm{t}=1 \mathrm{~min}$		3000	V
	$\mathrm{l}_{\text {ISOL }} \leq 1 \mathrm{~mA}$	$\mathrm{t}=1 \mathrm{~s}$	3600	V~
$\overline{M_{d}}$	Mounting torque (M5)		5.0/44	Nm/lb.in.
	Terminal connection torque (ISK M5)Typical including screws		3.0/26	Nm/lb.in.
Weight			56	g

Symbol	Test Conditions	Characteristic	alues
$\mathrm{I}_{\text {RRM }}, \mathrm{I}_{\text {DRM }}$	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	15	mA
$\mathrm{V}_{\text {T }}$	$\mathrm{I}_{\mathrm{T}}=200 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	1.74	V
$\overline{V_{\text {т }}}$	For power-loss calculations only ($\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}}$) $\mathrm{T}_{\mathrm{V} J}=\mathrm{T}_{\mathrm{V} \mathrm{JM}}$	0.8 2.7	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} \Omega \end{gathered}$
$\begin{aligned} & \begin{array}{l} \mathbf{Q}_{\mathrm{s}} \\ \mathrm{I}_{\mathrm{RM}} \end{array} \end{aligned}$	$\mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=3 \mathrm{~A} / \mu \mathrm{s}$	$\begin{array}{r} 170 \\ 45 \end{array}$	$\begin{gathered} \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\mathrm{R}_{\text {thJc }}$	per diode; DC current per module	0.35 0.18	K/W K/W
$\mathbf{R}_{\text {thJk }}$	per module per diode; DC current per module	$\begin{array}{r} 0.18 \\ 0.55 \\ 0.275 \end{array}$	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$ K/W
$\mathrm{d}_{\text {s }}$	Creeping distance on surface	12.7	mm
d_{A}	Creepage distance in air	9.6	mm
a	Maximum allowable acceleration	50	$\mathrm{m} / \mathrm{s}^{2}$

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated.
$\mathrm{I}_{\text {frus }}=8180 \mathrm{~A}$
$\mathrm{I}_{\text {FAVM }}=82 \mathrm{~A}$
$\mathrm{~V}_{\text {RRM }}=600-1800 \mathrm{~V}$

Features

- International standard package, JEDEC TO-240 AA
- Direct Copper Bonded $\mathrm{Al}_{2} \mathrm{O}_{3}$-ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V ~

Applications

- Supplies for DC power equipment
- DC supply for PWM inverter
- Field supply for DC motors
- Battery DC power supplies

Advantages

- Space and weight savings
- Simple mounting with two screws
- Improved temperature and power cycling
- Reduced protection circuits

Dimensions in mm ($1 \mathrm{~mm}=0.0394$ ")

Fig. 1 Surge overload current $I_{\text {FSM }}$: Crest value, t: duration

Fig. 2 $\mathrm{ji}^{2} \mathrm{dt}$ versus time ($1-10 \mathrm{~ms}$)

Fig. 2a Maximum forward current at case temperature

Fig. 3 Power dissipation versus forward current and ambient temperature (per diode)

Fig. 4 Single phase rectifier bridge: Power dissipation versus direct output current and ambient temperature
R = resistive load
$L=$ inductive load

$4 z_{\text {two }}$

Fig. 5 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 6 Transient thermal impedance junction to case (per diode)
$R_{\text {thuc }}$ for various conduction angles d :

d	$\mathrm{R}_{\text {thJc }}(\mathrm{K} / \mathrm{W})$
DC	0.35
180°	0.37
120°	0.39
60°	0.43
30°	0.47

Constants for $\mathrm{Z}_{\mathrm{thJC}}$ calculation:

i	$\mathrm{R}_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.013	0.0014
2	0.072	0.062
3	0.265	0.375

Fig. 7 Transient thermal impedance junction to heatsink (per diode)
$\mathrm{R}_{\mathrm{thJk}}$ for various conduction angles d :

d	$\mathrm{R}_{\mathrm{thJK}}(\mathrm{K} / \mathrm{W})$
DC	0.55
180°	0.57
120°	0.59
60°	0.63
30°	0.67

Constants for $Z_{\text {thJk }}$ calculation:

i	$\mathrm{R}_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.013	0.0014
2	0.072	0.062
3	0.265	0.375
4	0.2	1.32

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by Powersem manufacturer:

Other Similar products are found below :

