

GENERAL PURPOSE TRANSISTORS PNP Silicon

FEATURES

- High DC Current Gain
- Low Collector-Emitter Saturation Voltage

MECHANICAL DATA

- Available in SOT-23Package
- Solderability: MIL-STD-202, Method 208
- PB Free Products Are Available: 98.5% SN Above Can Meet RoHS Environment Substance Directive Request

ORDERING INFORMATION

PART NUMBER	PACKAGE	SHIPPING	MARKING CODE
MMBT5401□-T3	SOT-23	Tape Reel	2L

Notes:

□: none is for Lead Free package;
 "G" is for Halogen Free package.

THERMAL DATA

PARAMETER	SYMBOL	VALUES	UNIT
Thermal Resistance, Junction-to-Ambient		417	°C/W

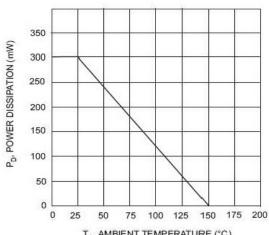
ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise specified. (Note 4)

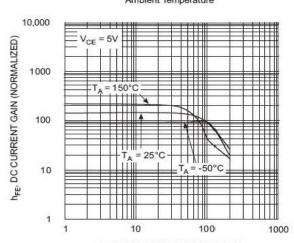
PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Emitter Voltage	V _{CEO}	-150	V
Collector-Base Voltage	V_{CBO}	-160	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current	Ic	-0.6	Α
Collector Power Dissipation	Pc	300	mW
Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{stg}	- 55 ~ +150	°C

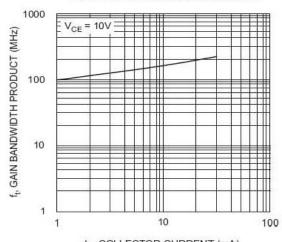
Notes:

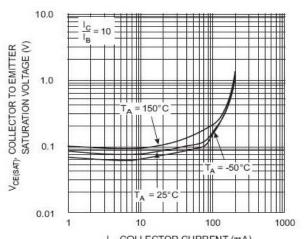
ELECTRICAL CHARACTERISTICS

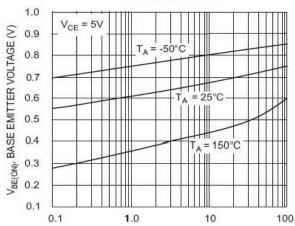

 $T_A = 25$ °C, unless otherwise noted.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	$I_{C} = -1 \text{mA}, I_{B} = 0$	-150			V
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_C = -100 \mu A, I_E = 0$	-160			V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	$I_E = -10\mu A, I_C = 0$	-5.0			V
Collector Cut-off Current	I _{CBO}	$V_{CB} = -120V, I_{E} = 0$			-0.05	μΑ
Emitter Cut-off Current	I _{EBO}	$V_{EB} = -3V, I_{C} = 0$			-0.05	μΑ
ON CHARACTERISTICS						
Dc Current Gain	h _{FE(1)}	V_{CE} = -5V, I_C = -1mA	80			
	h _{FE(2)}	$V_{CE} = -5V, I_{C} = -10mA$	100		200	-
	h _{FE(3)}	$V_{CE} = -5V, I_{C} = -50mA$	50			
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$			-0.5	V
Base-Emitter Saturation Voltage	$V_{BE(sat)}$	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$			-1.0	V
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage	f _⊤	$I_C = -10 \text{mA}, V_{CE} = -5 \text{V},$ f = 100MH _Z	100			MHz


^{2.} Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

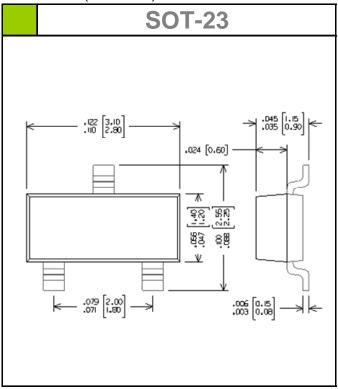

TYPICAL PERFORMANCE CHARACTERISTICS


T_A, AMBIENT TEMPERATURE (°C) Fig. 1, Max Power Dissipation vs Ambient Temperature


I_C, COLLECTOR CURRENT (mA) Fig. 3, DC Current Gain vs. Collector Current

I_C, COLLECTOR CURRENT (mA)
Fig. 5, Gain Bandwidth Product vs Collector Current

l_c, COLLECTOR CURRENT (mA) Fig. 2, Collector Emitter Saturation Voltage vs. Collector Current



 $I_{\rm C}$, COLLECTOR CURRENT (mA) Fig. 4, Base Emitter Voltage vs. Collector Current

PHYSICAL DIMENSION

Unit: Inch(Millimeter)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by PowerSilicon Inc manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MMBT-2369-TR BC546/116 BC557/116 BSW67A NJVMJD148T4G NTE123AP-10 NTE153MCP NTE16

NTE195A NTE92 2N4401-A 2N6728 2SA1419T-TD-H 2SA2126-E 2SB1204S-TL-E 2SC2712S-GR,LF SP000011176 2N2907A 2N3904
NS 2N5769 2SC2412KT146S CPH6501-TL-E MCH4021-TL-E MJE340 Jantx2N5416 US6T6TR NJL0281DG 732314D CPH3121-TL-E

CPH6021-TL-H 873787E IMZ2AT108 MMST8098T146 UMX21NTR MCH6102-TL-E NJL0302DG 30A02MH-TL-E NTE13 NTE26

NTE282 NTE323 NTE350 NTE81 STX83003-AP JANTX2N2920L JANSR2N2222AUB CMLT3946EG TR 2SA1371D-AE