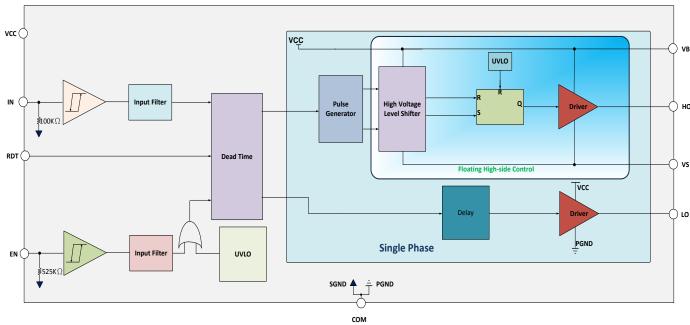


DESCRIPTION

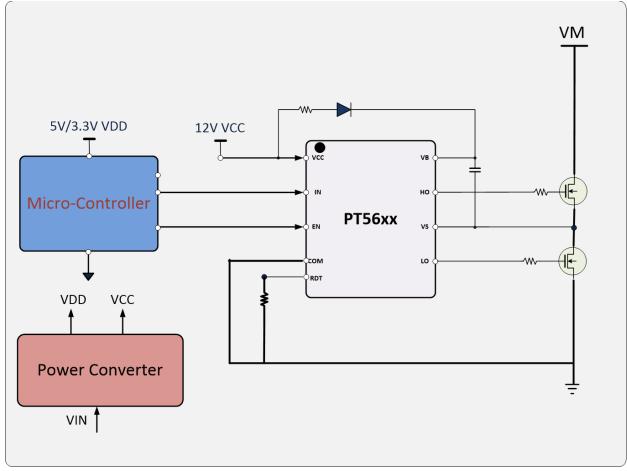

The PT5620 is a high-speed 100V single-phase gate driver for power MOSFET and IGBT devices with independent high and low side referenced output channels. Built-in dead time protection prevent damage to the half-bridge. The UVLO circuits prevent malfunction when VCC and VBS are lower than the specified threshold voltage. A novel high-voltage BCD process and common-mode noise canceling technique provide stable operation of high-side drivers under high dV/dt noise conditions while achieving excellent negative transient voltage tolerance. An enable pin (EN) is included so that standby mode may be used to set the chip into a low quiescent current state to realize long battery lifetime.

FEATURES

- Integrated 100V half-bridge high side driver
- Built-in dead time protection
- Under voltage lockout for VCC and VBS
- Low operation voltage 5.5V for VCC and VBS
- 3.3V and 5V input logic compatible
- Enable pin (EN) for low standby current
- IO+/IO-: +1.5A/-2.5A at VCC=15V, VBS=15V
- Dead time adjustment by RDT pin
- Common-mode dV/dt noise cancellation circuit
- Tolerant of negative transient voltage
- -40°C to 125°C operating range
- Small footprint package: MSOP10L \DFN8(3X3) \ DFN10(3X3)

APPLICATIONS

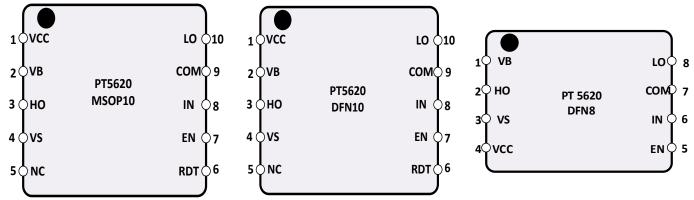
- Wireless charging
- Half bridge/full bridge converters



BLOCK DIAGRAM

PT5620

TYPICAL APPLICATION CIRCUIT



ORDER INFORMATION

Valid Part No.	Package Type	Top Code
PT5620	10 Pins, MSOP	PT5620
PT5620	10 Pins, DFN	5620
PT5620	8 Pins, DFN	PT5620

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	Description	Pin No.			
Pin Name	Description	MSOP-10	DFN-10	DFN-8	
VCC	Logic and low-side gate drivers power supply voltage	1	1	4	
VB	High-side driver floating supply	2	2	1	
HO	High-side driver output	3	3	2	
VS	High-side driver floating supply offset voltage	4	4	3	
NC	Not connected	5	5	-	
RDT	Connect the resistor to adjust dead time	6	6	-	
EN	Logic input for enable mode control	7	7	5	
IN	Logic input for gate driver input	8	8	6	
COM	Logic ground and low-side gate drivers ground	9	9	7	
LO	Low-side gate driver output	10	10	8	

FUNCTION DESCRIPTION

LOW SIDE POWER SUPPLY: VCC

VCC is the low side supply which provides power to both input logic and low side output power stage. The built-in undervoltage lockout circuit enables the device to operate at sufficient power when a typical VCC supply voltage higher than V_{CCUV+} =3.88V is present, as shown in FIG. 1. The PT5620 shuts down all gate driver outputs when the VCC supply voltage is below V_{CCUV-} =3.66 V, shown as FIG. 1. This prevents the external power devices from extremely low gate voltage levels during on-state which may result in excessive power dissipation.

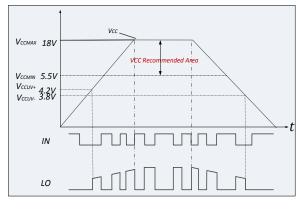


FIG. 1 VCC supply UVLO operating area

HIGH SIDE POWER SUPPLY: VBS

VBS is the high side supply voltage. The total high side circuitry may float with respect to COM following the external high side power device emitter/source voltage. Due to the internal low power consumption, the entire high side circuitry may be supplied by a bootstrap topology connected to VCC and may be powered with small bootstrap capacitors. The device operating region as a function of the supply voltage is given in FIG. 2.

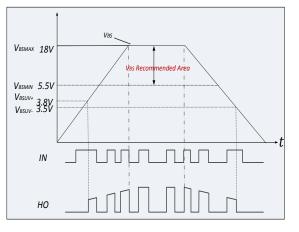


FIG. 2 VBS supply UVLO operating area

CONTROL INPUT LOGIC: VIN

The Schmitt trigger threshold of each input is designed low enough to guarantee LSTTL and CMOS compatibility with 3.3V controller outputs. Input Schmitt triggers and advanced noise filtering provide noise rejection of short input pulses. An internal pull-down resistor of about 100k (positive logic) pre-biases each input during the VCC supply start-up state.

DEAD TIME PROTECTION

STANDBY MODE

The PT5620 includes an adjustable dead time protection circuit. The amount of dead time delay is set by the resistance on the RDT pin. The dead time feature inserts a time delay (a minimum dead time) during which both the high- and low-side power switches are turned off. This is done to ensure that one power switch has fully turned off before the other power switch is turned on. FIG. 3 illustrates the dead time period and the relationship between the power switch control signals.

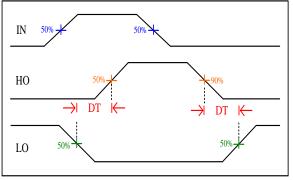
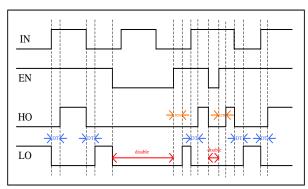
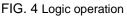




FIG. 3 Dead time protection

The PT5620 packaged in MSOP10/DFN10 provides an enable pin (EN) to allow the device to work in a low current dissipation state. The EN pin is compatible with 3.3/5V logic levels. If EN is set to logic LOW, the device is forced into standby mode and all gate driver outputs are locked into a logic LOW state and only $5\mu A$ (typ.) is dissipated, as shown in FIG. 4. If EN goes from logic LOW to logic HIGH and incorporates a delay of $4.6\mu s$ (typ.), the device may be released from standby mode and all outputs are enabled. In order to lower the bias current, a sufficiently large resistor (525K Ω) is tied between EN and COM.

GATE DRIVER (HO, LO)

High side and low side driver outputs are specifically designed for pulse operation and dedicated to driving power devices such as IGBTs and power MOSFETs. High and low side outputs are state triggered by the rising and falling edges of the IN pin, as shown in FIG. 4. After releasing from an under-voltage condition of the VBS supply, a new turn-on signal (edge) is necessary to activate the respective high side output. In contrast, after releasing from an under-voltage condition of the VCC supply, the low side outputs may directly switch to the state determined by their respective inputs without the additional constraints required by the high side driver.

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device or cause abnormal function. All the voltage parameters are absolute voltages referenced to IC COM unless otherwise stated in the table.

Parameter	Symbol	Min.	Max.	Unit
High-side floating supply voltage	VB	-0.3	100	
High-side offset voltage	Vs	V _B -20	V _B +0.3	
High-side gate driver output voltage	Vно	Vs-0.3	V _B +0.3	
Low-side gate driver output voltage	V _{LO}	COM-0.3	V _{CC} +0.3	V
Logic input voltage	V _{IN} EN	-0.3	20	
Low-side supply voltage	Vcc	-0.3	20	
Thermal resistance, junction to ambient ${\rm (I)}$	Rth _{JA}	_	MSOP10:120 DFN8(3X3):43 DFN10(3X3):43	°C /W
Allowable offset voltage slew rate	dV/dt		50	V/ns
Junction temperature	TJ	-40	+150	°C
Storage temperature	Ts	-40	+150	°C
Soldering lead temperature (duration 10s)	TL	_	260	°C

Note: P_D and Rth_{JA} are only guaranteed by design.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit
Low-side supply voltage	Vcc	5.5	—	18	
High-side floating supply offset voltage2	Vs	COM-6	—	60	
High-side floating supply voltage	VB	Vs+5.5	—	V _B +18	
High-side gate driver output voltage	VHO	Vs	—	Vв	V
Low-side gate driver output voltage	Vlo	COM	—	Vcc	
Logic input voltage	V _{IN} EN	0	_	5	
IC operating junction temperature	TJ	-40	—	+125	°C

Note: For VBS=15V, normal logic operation for Vs is between COM–6V to 100V. High-side circuitry will sustain current state if VS is between COM–6V to COM–VBS. The parameter is only guaranteed by design.

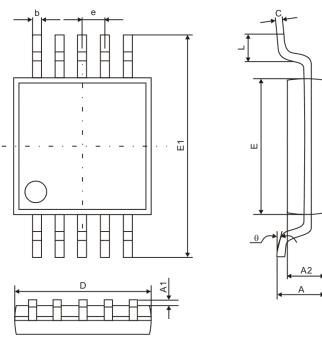
STATIC ELECTRIC CHARACTERISTIC

 $(V_{CC}-COM)=(V_B-V_S)=15V, V_{EN}=5V, RDT=100K\Omega$. Ambient temperature TA=25°C unless otherwise specified. The V_{IN,TH}, V_I, and I_{IN} parameters are referenced to COM and are applicable to all channels. The V₀ and I₀ parameters are referenced to COM and are applicable to the respective output leads. The V_{CCUV} parameters are referenced to COM.

The V_{BSUV} parameters are referenced to Vs.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Low Side Power Supply Characteristics						
Quiescent VCC supply current	QVCC1	V _{IN} =0 or 5V,	210	425	680	
Quiescent VCC supply current in standby mode	IQVCC2	V _{IN} =0 or 5V,		7	60	μA
operating VCC supply current	IVCCOP	f ⊪=20KHz	_	650	—	
VCC supply under-voltage positive going threshold	V _{CCUV+}	_	2.9	3.88	5.5	
VCC supply under-voltage negative going threshold	Vccuv-	—	2.5	3.66	5.1	V
VCC supply under-voltage lockout hysteresis	V _{CCHYS}	-	_	0.22	—	
High Side Floating Power Supply Characteristics	5					
High side VBS supply under-voltage positive going threshold	V _{BSUV+}	_	2.5	3.6	5.5	
High side VBS supply under-voltage negative going threshold	V _{BSUV-}	_	2.2	3.4	4.8	V
High side VBS supply under-voltage lockout hysteresis	VBSUVHYS	—	—	0.2		
High side quiescent VBS supply current	I _{QBS}	V _{BS} =15V	25	50	75	
Offset supply leakage current	Ilk	V _B =V _S =100V V _{CC} =0V	—	—	10	μA
Logic Input Section						
Logic HIGH input voltage IN and EN	VIH	_	2.5	_	_	
Logic LOW input voltage IN and EN	VIL	-	_		0.8	V
Input positive going threshold	V _{IN,TH+}	—	—	1.9	—	V
Input negative going threshold	VIN,TH-	-	_	1.4	—	
Logic HIGH input bias current	I _{IN+}	V _{IN} =5V	—	50	—	μA
Logic LOW input bias current	I _{IN-}	V _{IN} =0	_	0	—	μΑ
Gate Driver Output Section						
High side output HIGH short-circuit pulse current	I _{HO+}	V _{HO} =V _S =0	_	1.5	_	
High side output LOW short-circuit pulse current	I _{HO-}	V _{HO} =V _B =15V	_	2.5	—	
Low side output HIGH short-circuit pulse current	ILO+	V _{LO} =0	—	1.5	—	A
Low side output LOW short-circuit pulse current	I _{LO-}	V _{LO} =V _{CC} =15V	—	2.5	—	1
Allowable negative VS voltage for IN signal propagation to HO	V _{SN}	V _{BS} =15V		-10	_	V

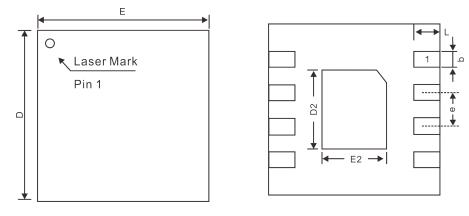
DYNAMIC ELECTRICAL CHARACTERISTICS

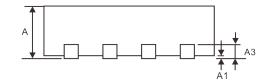

 $(V_{CC}-COM)=(V_B-V_S)=15V, V_{EN}=5V, RDT=0\Omega, V_S=COM, and C_{load}=1nF$ unless otherwise specified, ambient temperature TA=25°C.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Turn-on propagation delay	t _{on}	V _{IN} =5V, V _S =0	_	180	-	
Turn-off propagation delay	t _{off}	V _{IN} =0, V _S =0	_	130	—	
Turn-on rise time	tr	V _{IN} =5V, V _S =0	-	35	—	
Turn-off fall time	t _f	V _{IN} =0, V _S =0		25	—	
		RDT=0Ω, V _{IN} =0V and 5V		32	_	ns
		RDT=10K Ω , V _{IN} =0V and 5V	-	55	_	
	DT [*]	RDT=30K Ω , V _{IN} =0V and 5V		135	—	
Dead time		RDT=50K Ω , V _{IN} =0V and 5V	—	180	—	
		RDT=100KΩ, V _{IN} =0V and 5V	-	295	—	
		RDT=150K Ω , V _{IN} =0V and 5V	-	410	—	
		RDT=open	-	7700	—	
max current of RDT Pin	IRDT_max	RDT=0Ω	0.75	1	1.25	mA
EN input filter time	t _{FLT,EN}	V _{EN} =0 and 5V	_	400	_	ns
EN input logic HIGH to HO/LO turn- off delay time	t _{off,EN}	V _{EN} =0V	_	0.5	_	
EN input logic LOW to HO/LO turn- on delay time	t _{on,EN}	V _{EN} =5V	_	5.2	—	μs

* The RDT is connected to GND, when package of IC is DFN-8.

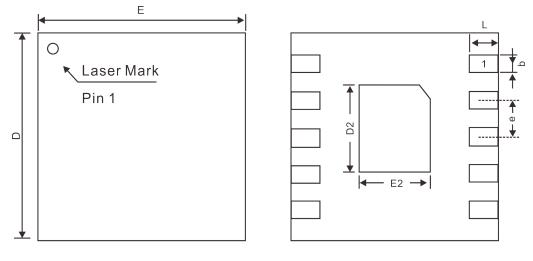
10 PINS, MSOP, 118MIL

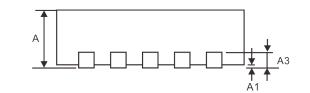



Symbol	Min.	Nom.	Max.			
A	-	-	1.10			
A1	0.00	-	0.15			
A2	0.75	0.85	0.95			
b	0.22	-	0.38			
С	0.08	-	0.23			
D		3.00 BSC.				
E		4.90 BSC.				
E1		3.00 BSC.				
е	0.65 BSC.					
L	0.40	0.60	0.80			
θ	0°	-	8°			

Note: Unit: mm

8-PIN, DFN




Symbol	Dimensions(mm)				
Symbol	Min.	Nom.	Max.		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3		0.203 REF			
b	0.20	0.25	0.30		
D	3.00 BSC				
E	3.00 BSC				
е		0.50 BSC			
D2	2.35	2.40	2.45		
E2	1.65	1.70	1.75		
L	0.35	0.40	0.45		

Note: Refer to JEDEC MO-229

10-PIN, DFN

Symbol		Dimensions(mm)			
Symbol	Min.	Nom.	Max.		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3	0.20 REF				
b	0.18	0.25	0.30		
D	3.00 BSC				
E	3.00 BSC				
е		0.50 BSC			
D2	2.20	-	2.70		
E2	1.40	-	1.75		
L	0.30	0.40	0.50		

Note: Refer to JEDEC MO-229 WEED-5

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian Dist., New Taipei City 23145, Taiwan Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Princeton manufacturer:

Other Similar products are found below :

 00028
 00053P0231
 8967380000
 56956
 CR7E-30DB-3.96E(72)
 57.404.7355.5
 LT4936
 57.904.0755.0
 5801-0903
 5803-0901
 5811-0902

 5813-0901
 58410
 00576P0030
 00581P0070
 5882900001
 00103P0020
 00600P0005
 00-9050-LRPP
 00-9090-RDPP
 5951900000
 01

 1003W-10/32-15
 LTILA6E-1S-WH-RC-FN12VXCR1
 0131700000
 00-2240
 LTP70N06
 LVP640
 0158-624-00
 5J0-1000LG-SIL
 020017-13

 LY1D-2-5S-AC120
 LY2-0-US-AC120
 LY2-US-AC240
 LY3-UA-DC24
 00-5150
 00576P0020
 00600P0010
 LZNQ2M-US-DC5
 LZNQ2

 US-DC12
 LZP40N10
 00-8196-RDPP
 00-8274-RDPP
 00-8275-RDNP
 00-8609-RDPP
 00-8722-RDPP
 00-8869-RDPP
 00

 9051-RDPP
 00-9091-LRPP
 00-9291-RDPP
 00-8275-RDNP
 00-8609-RDPP
 00-8722-RDPP
 00-8869-RDPP
 00