Description

Surface Mount General Purpose Silicon Rectifiers
Reverse Voltage 50 to 1000 V
Forward Current 1 A
1

2
SOD123-FL

Maximum Ratings and Electrical characteristics per line@ $25^{\circ} \mathrm{C}$ (unless otherwise specified)
Single phase half-wave 60 Hz , resistive or inductive load, for capacitive load current derate by 20 \%

Parameter	Symbols	P1N4001W	P1N4002W	P1N4003W	P1N4004W	P1N4005W	P1N4006W	P1N4007W	Units
Maximum Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	800	1000	V
Maximum RMS voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	$V_{D C}$	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current at $\mathrm{Ta}=65{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	1							A
Peak Forward Surge Current 8.3 ms Single Half Sine Wave Superimposed on Rated Load (JEDEC Method)	$I_{\text {fSM }}$	25							A
Maximum Instantaneous Forward Voltage at 1 A	V_{F}	1.1							V
Maximum DC Reverse Current $\mathrm{Ta}=25{ }^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{Ta}=125{ }^{\circ} \mathrm{C}$	$I_{\text {R }}$	$\begin{gathered} 5 \\ 100 \end{gathered}$							$\mu \mathrm{A}$
Typical Junction Capacitance ${ }^{1)}$	C_{j}	4							pF
Typical Thermal Resistance ${ }^{2)}$	$\mathrm{R}_{\text {өJA }}$	180							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55~+150							${ }^{\circ} \mathrm{C}$

1) Measured at 1 MHz and applied reverse voltage of 4 V D.C
2) Thermal resistance from junction to ambient at 0.375 " (9.5 mm) lead length, P.C.B. mounted

Fig. 1 Forward Current Derating Curve

Fig. 3 Typical Forward Characteristic

Fig. 2 Typical Instaneous Reverse Characteristics

Fig. 4 Typical Junction Capacitance

Switching Diode

Product dimension(SOD-123FL)

Plastic surface mounted package; 2 leads

UNIT		A	C	D	E	e	g	H_{E}	$<$
mm	max	1.1	0.20	2.9	1.9	1.1	0.9	3.8	
	min	0.9	0.12	2.6	1.7	0.8	0.7	3.5	7°
	max	43	7.9	114	75	43	35	150	
	\min	35	4.7	102	67	31	28	138	

The recommended mounting pad size

Switching Diode

- Recommended condition of flow soldering

- Recommended condition of reflow soldering

Recommended peak temperature is over $245^{\circ} \mathrm{C}$. If peak temperature is below $245^{\circ} \mathrm{C}$, you may adjust the following parameters; time length of peak temperature (longer), time length of soldering (longer), thickness of solder paste (thicker)

- Condition of hand soldering

Temperature: $370^{\circ} \mathrm{C}$
Time: 3s max.
Times: one time

- Remark:

Lead free solder paste (96.5Sn/3.0Ag/0.5Cu)

Abstract

(P and Prisemi ${ }^{\circledR}$ are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi) ,Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics
(P) Prisemi ${ }^{\circ}$ is a registered trademark of Prisemi Electronics.

All rights are reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by Prisemi manufacturer:

Other Similar products are found below :
MCL4151-TR3 MMBD3004S-13-F RD0306T-H 1N3611 NTE156A NTE574 NTE6244 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914BTR RFUH20TB3S D291S45T BAV300-TR BAW56DWQ-7-F BAW56M3T5G BAW75-TAP MM230L-CAA IDW40E65D1 JAN1N3600 JAN1N4454UR-1 LL4151-GS18 SMMSD4148T3G BYW95B/A52A NSVDAN222T1G CDSZC01100-HF LL4150-M-08 1N4454-TR BAV70HDW-7 BAS28-7 JANTX1N6640 BAW56HDW13 BAS28 TR VS-HFA04SD60STR-M3 NSVM1MA152WKT1G 1SS388-TP RGP30D-E3/73 VS-8EWF02S-M3 BAV99TQ-13-F BAV99HDW-13 MMDB30-E28X IDP20C65D2XKSA1 LS4148 IDV15E65D2 NSVM1MA152WAT1G

