

Uni-directional 5V High Capacitance ESD Protector

Description

The PESDHC2FD5VUHF ESD protector is designed to replace multilayer varistors (MLVs) in portable applications such as cell phones, notebook computers, and PDA's. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, lower operating voltage, lower clamping voltage and no device degradation when compared to MLVs. The PESDHC2FD5VUHF protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events.

The PESDHC2FD5VUHF is available in a DFN1006-2L package with working voltages of 5 volt. It gives designer the flexibility to protect one unidirectional line in applications where arrays are not practical. Additionally, it may be "sprinkled" around the board in applications where board space is at a premium.

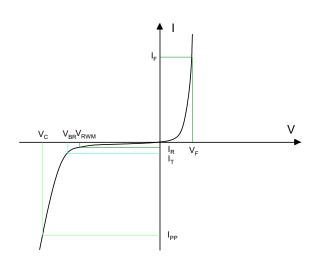
DFN1006-2L(Bottom View)

Feature

- ≥ 1000W peak pulse power per line (t_p = 8/20µs)
- ➤ DFN1006-2L package
- > Response time is typically < 1 ns
- Unidirectional configurations
- Low clamping voltage
- > RoHS compliant
- ➤ Transient protection for data lines to IEC 61000-4-2(ESD) ±30kV(air), ± 30kV(contact); IEC 61000-4-5 (Lightning) 100A (8/20us)

Marking (Top View)

Applications


- Cell phone handsets and accessories
- Personal digital assistants (PDA's)
- Notebooks, desktops, and servers
- Portable instrumentation
- Cordless phones
- Digital cameras
- > Peripherals

Mechanical Characteristics

- Mounting position: Any
- Qualified max reflow temperature:260°C
- Device meets MSL 1 requirements
- ➤ DFN1006-2L without plating

Electronics Parameter

Symbol	Parameter		
V_{RWM}	Peak Reverse Working Voltage		
I _R	Reverse Leakage Current @ V _{RWM}		
V _{BR}	Breakdown Voltage @ I _T		
I _T	Test Current		
I _{PP}	Maximum Reverse Peak Pulse Current		
V _C	Clamping Voltage @ I _{PP}		
P _{PP}	Peak Pulse Power		
CJ	Junction Capacitance		
I _F	Forward Current		
V _F	Forward Voltage @ I _F		

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Peak Reverse Working Voltage	V_{RWM}	-	-	-	5	V
Breakdown Voltage	V_{BR}	I _t = 1mA	5.2	-	6.5	V
Reverse Leakage Current	I _R	V _{RWM} = 5V	-	-	1	μA
Clamping Voltage ¹⁾	V _C	TLP = 16A, $t_p = 100 \text{ns}$	-	7	-	V
Dynamic resistance ¹⁾	R _{DYN}	-	-	0.04	-	Ω
Olemenia e Melte e e 2)	V _c	$I_{PP} = 40A, t_P = 8/20\mu s$	-	7	9	V
Clamping Voltage ²⁾		I _{PP} = 100A,t _P = 8/20μs	-	10	12	V
Junction Capacitance	CJ	$V_R = 0V, f = 1MHz$	-	230	260	pF

Notes:

Absolute maximum rating@25°C

Rating	Symbol	Value	Units
Peak Pulse Power (t _P = 8/20µs)	P _{PP}	1000	W
Peak Pulse Current (t _P = 8/20μs)	I _{PP}	100	А
Lead Soldering Temperature	T _L	260 (10 sec)	℃
Junction and Storage Temperature Range	$T_{J,}T_{STG}$	-55~+150	℃
ESD Protection-Contact Discharge	V _{ESD}	±30	kV
ESD Protection-Air Discharge	V _{ESD}	±30	kV

^{1.}TLP parameter: Z_0 =50 Ω , t_p =100ns, t_r =2ns, averaging window from 60ns to 80ns. R_{DYN} is calculated from 4A to 16A. 2.Non-repetitive current pulse, according to IEC61000-4-5.

Typical Characteristics

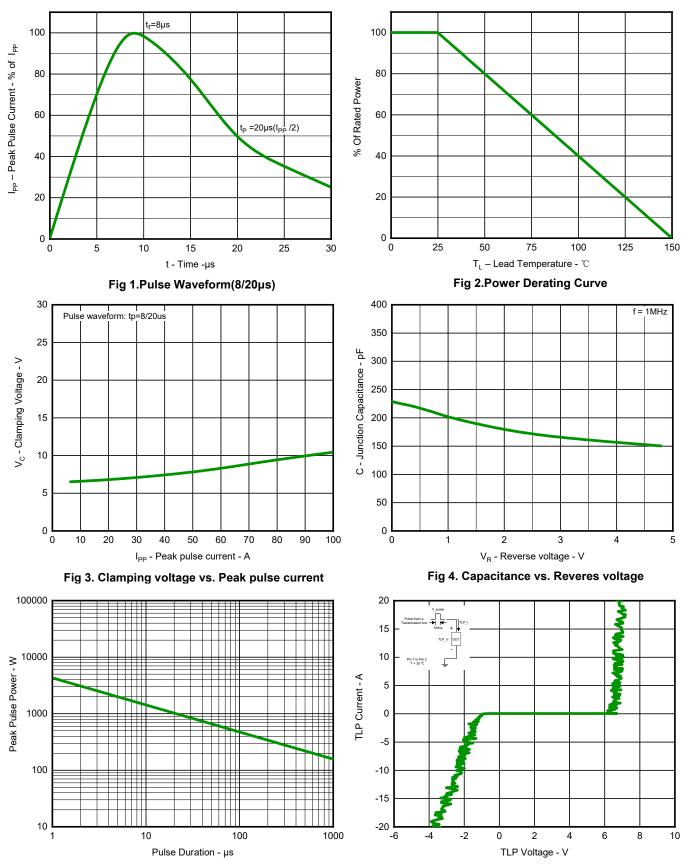


Fig 5. Non Repetitive Peak Pulse Power vs. Pulse time

Fig 6. TLP Measurement

ESD Protector

PESDHC2FD5VUHF

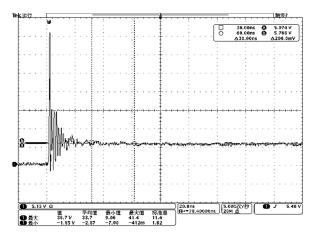


Fig 7. Clamping Voltage at IEC61000-4-2 +8kV Pulse Waveform

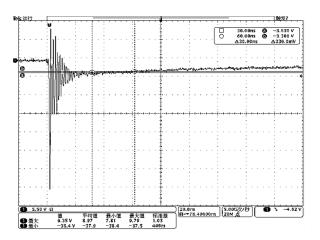
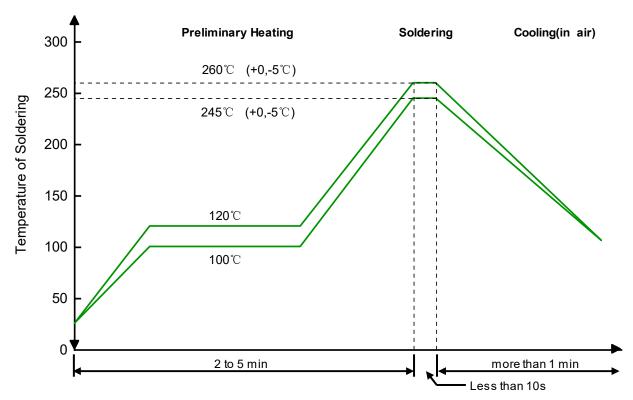
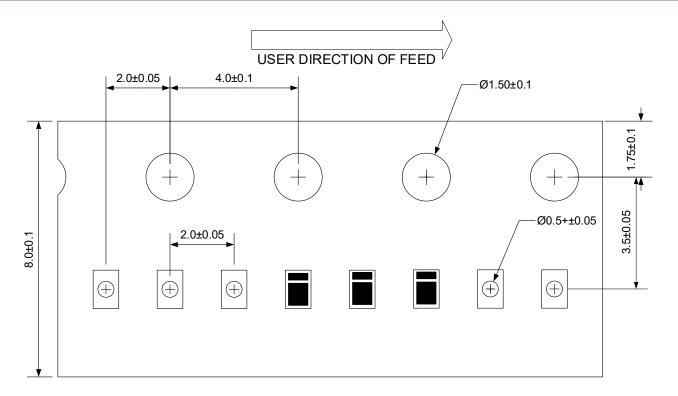



Fig 8. Clamping Voltage at IEC61000-4-2 -8kV Pulse Waveform

Solder Reflow Recommendation

Remark: Pb free for 260°C; Pb for 245°C.

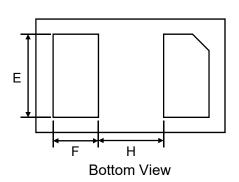
PCB Design

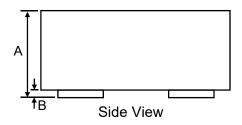

For TVS diodes a low-ohmic and low-inductive path to chassis earth is absolutely mandatory in order to achieve good ESD protection. Novices in the area of ESD protection should take following suggestions to heart:

- > Do not use stubs, but place the cathode of the TVS diode directly on the signal trace.
- > Do not make false economies and save copper for the ground connection.
- > Place via holes to ground as close as possible to the anode of the TVS diode.
- Use as many via holes as possible for the ground connection.
- > Keep the length of via holes in mind! The longer the more inductance they will have.

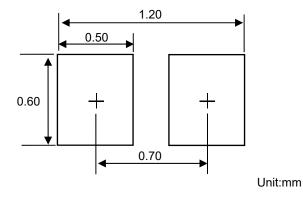
Ordering information

Device	Package	Reel	Shipping
PESDHC2FD5VUHF	DFN1006-2L (Pb-Free)	7"	10000 / Tape & Reel


Load with information



Unit:mm


Product dimension (DFN1006-2L)

Dim	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	0.340	0.498	0.013	0.020	
В	0.000	0.050	0.000	0.002	
С	0.950	1.080	0.037	0.043	
D	0.550	0.680	0.022	0.027	
E	0.400	0.600	0.016	0.024	
F	0.200	0.300	0.008	0.012	
Н	0.400 Typ.		0.015	Тур.	

Suggested PCB Layout

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by Prisemi manufacturer:

Other Similar products are found below:

60KS200C D18V0L1B2LP-7B D5V0F4U5P5-7 NTE4902 P4KE27CA P6KE11CA P6KE8.2A SA60CA SA64CA SMBJ12CATR
SMBJ33CATR SMBJ6.5A SMBJ8.0A ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP JANTX1N6126A D3V3Q1B2DLP3-7 D55V0M1B2WS-7 SCM1293A-04SO
ESD200-B1-CSP0201 E6327 SM12-7 CEN955 W/DATA VESD12A1A-HD1-GS08 CPDQC5V0-HF D1213A-01LP4-7B ESD101-B1-02EL
E6327 AOZ8808DI-03 5KP15A 5KP48A 5KP90A ESD3V3D7-TP 15KPA36A-LF P4KE56CA P4KE68A P4KE91CATR P6KE120A
P6KE13CA P6KE43CA P6KE6.8CA P6KE8.2 P6SMBJ20CA JANTX1N6072A SR2835ESKG SA90CA