
Table of contents
Table of contents 1
What is it? 3
Pinout and supported frameworks 3
Features 5

Chip features 5
Board features 6

Dimensions 7
Existing solutions comparison 8
Enclosure 8
Support Links 9
Possible applications 9
Demos 10

ESPHome demos 10
Demo 1: Connecting multiple I2C sensors to Homeassistant 10

Intro 10
What do I need to make that? 10
Result 11
How do I do that? 11

Arduino Framework demos 13
Demo 2: Ethernet Example 15

Intro 15
What do I need to make that? 15
Result 15
How do I do that? 15

Demo 3: Stemma QT I2C sensors chain example 17
Intro 17
What do I need to make that? 17
Result 17
How do I do that? 18

CircuitPython Demos 18
Building and flashing CircuitPython 18

Esp-IDF demos 19
Demo 4: BLE advertising 19

Intro 19
What do I need to make that? 19
Result 19
How do I do that? 20

Demo 5: Connecting two Esp32-C6-Bugs with Zigbee 21

Intro 21
What do I need to make that? 21
Result 21
How do I do that? 21

Demo 6: Connecting to Home Assistant via Zigbee 22
Intro 22
What do I need to make that? 23
Result 23
How do I do that? 24

Demo 7: Connecting two Esp32-C6-Bugs with Thread 25
Intro 25
What do I need to make that? 26
Result 26
How do I do that? 27

Demo 8: Esp32-C6 OpenThread Router: WiFi+OpenThread 28
What do I need to make that? 28
Result 28
How do I do that? 28

Demo 9: Esp32-C6 Zigbee sleepy device 30
What do I need to make that? 30
Result 30
How do I do that? 30

Manufacturing Plan 33
Fulfillment & Logistics 33
Risks & Challenges 33

What is it?
The ESP32-C6-Bug is a tiny development board based on the latest C6 MCU of the
ESP32 family with reduced power consumption and battery support. Supported wireless
protocols include Wi-Fi 6, BLE 5, Thread, Matter and Zigbee.

Pinout and supported frameworks

Picture 1: Pinout and pin descriptions

Programming Esp32-C6 in Arduino

Following this tutorial you can install custom Arduino Core that supports Esp32-C6:
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/installing.html
The required core: https://github.com/espressif/arduino-esp32/tree/idf-release/v5.1

Features

Picture 2: Features Diagram

Chip features
● 32-bit RISC-V 160MHz processor
● 32-bit RISC-V 20MHz low-power processor
● 512 MB SRAM, 4MB Flash
● WiFi-6, BLE 5 + IEEE 802.15.4 radio (Zigbee, Thread, Matter…)
● 2.4 GHz Wi-Fi 6 (802.11ax) radio also supports the 802.11b/g/n for backward

compatibility.
● SPI, UART, I2C, I2S, RMT, TWAI, PWM, SDIO, Motor Control PWM, 12-bit ADC and a

temperature sensor.

Board features
● Battery undercharge and reverse polarity protection.
● Battery charge circuit.
● On board battery level measurement circuit.
● External 32.768 kHz RTC oscillator and 40 MHz oscillator.
● Reset and User-controlled buttons.
● Charging indication and User-controlled leds.
● 20 uA deep sleep power consumption(with Timer wake up).
● 700 mA low-noise LDO.
● Castellated holes.
● Pin names on both sides.
● USB-C for programming and communication.
● Fits on the breadboard.
● 19 GPIOs exposed.
● Two M1 mounting holes.

20uA sleep mode wake up

Dimensions

Existing solutions comparison

Esp32-C6-Bug ESP32-C6-DevKitC-1 ESP32-C6-DevKitM-1

Manufacturer Prokyber Espressif Espressif

Chip Esp32-C6-FH4 ESP32-C6 ESP32-C6

Flash size 4MB 8MB 4MB

Battery charging Yes No No

Battery protection Yes No No

Battery measurement Yes No No

32.768 kHz RTC crystal Yes No No

Size 18x36.7mm 25.4x53.63mm 25.4x58.15mm

Mounting holes M1x2 No No

Castellated holes Yes No No

GPIO
19+1(LED only)+2(32kHz
crystal) 23 22

Price on Mouser(USD) 25 10 10

Enclosure
A simple 3d printable enclosure was made and is available on thingiverse:

Link:https://www.thingiverse.com/thing:6084609

Support Links
● Schematics, dimensions, photos.
● Programming Esp32-c6 chip with ESP-IDF:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32c6/get-started/index.html
● ESP-IDF Basic examples are provided by Espressif and can be found here

https://github.com/espressif/esp-idf/tree/release/v5.1/examples/wifi
Tested examples are:
get_stated/blink, get_stated/hello_world, wifi/scan, wifi/getting_started/softAP,
wifi/getting_started/station, zigbee/light_sample, system/deep_sleep,
peripherals/adc/continious_read.

● Instructables example projects.
● 3d printable enclosure - https://www.thingiverse.com/thing:6084609

Possible applications
Since the chip is very new, complex projects will require a significant amount of work, however
here is some inspiration for you :

● Multiprotocol USB dongle: USB-Zigbee/Thread/Matter dongle (like this
https://www.home-assistant.io/skyconnect/)

● WiFi-Openthread router
https://github.com/espressif/esp-idf/tree/master/examples/openthread

● WiFi-Zigbee gateway
https://github.com/espressif/esp-idf/tree/master/examples/zigbee/esp_zigbee_gat
eway

● Ethernet-Zigbee/Thread/Matter bridge
● Light switch and Bulb control via Zigbee:

https://github.com/espressif/esp-idf/tree/master/examples/zigbee/light_sample

Demos

ESPHome demos

Demo 1: Connecting multiple I2C sensors to Homeassistant

Intro
Programming HomeAssistants sensors and devices is done via .yaml scripts. As of Februaray
2024 the Esp32-C6 is not fully supported, however basic functionality like Wifi and peripheral
access is supported. Sensors that use I2C can be connected with ease using Stemma QT
connector of Esp32-Eth-Bug

What do I need to make that?
● Esp32-C6-BUG
● Esp32-Eth-BUG
● USB Type-C for flashing

● Some I2C sensors supported by ESPHome with Stemma QT connector. I used:
○ SH1106 128x64 based display.
○ INA219 current sensor.
○ Bmp280 temperature and pressure sensor.

Result
The device is connected to HomeAssistant, sensor data are shown on the display and can be
accessed via Home Assistant.

How do I do that?
● Go to Add-ons and open ESP Home add on, you can also click this link to open it

https://my.home-assistant.io/redirect/config_flow_start?domain=esphome
● Install ESP Home if you don't have it yet
● Open ESP Home add-on
● Click NEW DEVICE at bottom right
● Don't install the firmware on the device yet, just click skip or continue
● Enter name of the device and WIFI detail if it asks you
● Click edit on the device you just created, delete the generated configuration and replace

it by this:

esphome:

name: esp32c6bug

friendly_name: esp32c6bug

esp32:

board: esp32-c6-devkitc-1

variant: ESP32C6

framework:

platform_version:

https://github.com/stintel/platform-espressif32#esp32-c6-test

type: esp-idf

version: 5.1.0

Enable logging

logger:

Enable Home Assistant API

api:

encryption:

key: "generate api key here https://esphome.io/components/api"

ota:

password: "enter some password containing only small letters and

numbers"

wifi:

ssid: !secret wifi_ssid

password: !secret wifi_password

i2c:

sda: 21

scl: 20

scan: true

display:

- platform: ssd1306_i2c

model: "SH1106 128x64"

reset_pin: D0

address: 0x3C

lambda: |-

it.printf(0, 0, id(tnr1), "Temp: %.1f°C ", id(temp).state);

it.printf(0, 22, id(tnr1), "Pressure: %.1f ", id(pressure).state);

it.printf(0, 44, id(tnr1), "Current: %.3fA ", id(current).state);

font:

- file: "fonts/times-new-roman.ttf"

id: tnr1

size: 20

- file: "fonts/times-new-roman.ttf"

id: tnr2

size: 35

sensor:

- platform: ina219

address: 0x40

shunt_resistance: 0.1 ohm

current:

name: "INA219 Current"

id: current

power:

name: "INA219 Power"

bus_voltage:

name: "INA219 Bus Voltage"

shunt_voltage:

name: "INA219 Shunt Voltage"

max_voltage: 32.0V

max_current: 3.2A

update_interval: 2s

- platform: bmp280

temperature:

name: "Outside Temperature"

oversampling: 16x

id: temp

pressure:

name: "Outside Pressure"

id: pressure

address: 0x77

update_interval: 60s

● If you want uncomment OTA password and API encryption and enter ota and api
passwords

● Flash the device, click upload and
○ If you are using https click plug into this computer, connect the device, select

serial port and wait for the code to upload
○ If you are not using https click manual download, then go to

https://web.esphome.io/ click connect, connect the device, select serial port, then
click install and select the file you just downloaded

● After installing, the device should automatically pop up in homeassistant, go to settings,
Devices & Services. The device should be at the top, click the configure button, if you
enabled api encryption it will ask for the key.

Arduino Framework demos
Esp32-C6 is now officially supported in the latest 3.0.0 Arduino core. To install the newest core
you should insert index.json link(
Stable -
https://espressif.github.io/arduino-esp32/package_esp32_index.json
or
Development (Supports Esp32-C6 as of 5.2.2023) -
https://espressif.github.io/arduino-esp32/package_esp32_dev_index.json

)

from https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
Into the preferences tab of Arduino IDE.

After this step the 3.0.0 Arduino core will be available for installation via boards manager.

When you installed the newest core, you should see the Esp32C6 Dev Module in
Tools/Board/Esp32 Arduino tab.

Demo 2: Ethernet Example

Intro
The Esp32-Bug-Eth shield allows easy connection to Ethernet, this example shows how and
straightforward it is. After the board is programmed, you can disconnect the shield from PC and
power it via PoE!

What do I need to make that?
● Esp32-C6-BUG
● Esp32-Eth-BUG
● USB Type-C for flashing
● Ethernet cable

Result
The Esp32-C6-Bug is connected to the Internet via Ethernet cable. From here you can easily
start development of other Ethernet applications.

How do I do that?
1. Open your Arduino IDE
2. Open File/Examples/Ethernet/ETH_W5500_Arduino_SPI example

3. Change the pin definitions according to the provided screenshot

4. Set Tools/USB CDC enabled on Boot to True
5. Ensure Tools/board is set to Esp32C6 Dev Module
6. Insert Esp32-C6-Bug into Esp32-Eth-Bug
7. Connect Esp32-Eth-Bug to your PC
8. Set Tools/Port to the port of your Esp32-C6-Bug
9. Flash the code
10. Connect the Ethernet cable
11. Open port monitor
12. Observe the output(your board should connect get IP and connect to the Internet)

Demo 3: Stemma QT I2C sensors chain example

Intro
The Esp32-Bug-Eth also has a stemma QT connector, which makes it compatible with many
Adafruit peripheral sensors. Daisy chaining is a very easy and comfortable way of connecting
many of them together.
Depending on your sensors, there are different approaches to program them. However there is
one general thing you can do for all the possible sensor chains and it’s I2C Scanning.
The I2C scanning process will ‘ping’ all the connected sensors and return their respective
addresses.

What do I need to make that?
● Esp32-C6-BUG
● Esp32-Eth-BUG
● USB Type-C for flashing
● Some sensors with Stemma QT connector

Result
Multiple sensors are connected to Esp32-Bug-Eth using only one connector.
The I2C scan returns the addresses of all of them:

Three sensors connected into the i2c chain

How do I do that?
Well the approach is quite straightforward.

1. Insert Esp32-C6-Bug into Esp32-Eth-Bug
2. Connect all the sensors to Esp32-Eth-Bug
3. Connect Esp32-Eth-Bug to your PC
4. Open Wire/WireScan example
5. Add Wire.begin(21,20); after Serial.begin(115200);
6. Set Tools/USB CDC enabled on Boot to True
7. Ensure Tools/board is set to Esp32C6 Dev Module
8. Set Tools/Port to the port of your Esp32-C6
9. Flash the example
10. Observe the output in Serial Monitor, the number of found addresses should be the

same as the number of connected devices(assuming all the devices have different
addresses)

CircuitPython Demos
To use Esp32-C6-Bug Circuitpython demos are based around the Circuitpython port for
Esp32-C6 which can be found here
https://github.com/adafruit/circuitpython/tree/main/ports/espressif

Building and flashing CircuitPython
To work with CircuitPython it’s necessary to build and flash it. The whole process is quite
straightforward and is also described in the CircuitPython repo.

● Open your command line and clone the CircuitPython repo (be sure to user recursive as
CircuitPython has some external dependencies):
git clone --recursive https://github.com/adafruit/circuitpython.git

● Run cd ports/espressif from circuitpython/ to enter the espressif port directory
● Run ./esp-idf/install.sh to prepare the esp-idf framework (After this initial installation, you

must add the ESP-IDF tools to your path.)
● Run ‘source ./esp-idf/export.sh’
● Then run ‘make BOARD=espressif_esp32c6_devkitm_1_n4 PORT=/dev/ttyACM0 flash’

to flash the CircuitPython(Replace the port id)
● After the board is flashed you can access REPL via Serial terminal

When the flashing process finishes the REPL becomes available via serial port.

Esp-IDF demos
ESP-IDF demos are based on examples from official ESP-IDF
repository(https://github.com/espressif/esp-idf/tree/release/v5.1/examples)
First you need to install ESP-IDF following this
tutorial:(https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/)
Here is a quick video demonstrating how it is done:[video is in preparation]

Demo 4: BLE advertising

Intro
This example demonstrates how to connect Esp32-C6-Bug to your phone via BLE. It is largely
based on https://github.com/espressif/esp-idf/tree/master/examples/bluetooth/bluedroid/ble.
After the successful connection it is possible to read data from Esp32-C6-Bug. This example
uses ESP-IDF as a framework for programming, so be sure to install it before starting.

What do I need to make that?
● Esp32-C6-BUG
● USB Type-C for flashing

Result
Esp32-C6-BUG is advertising data, you can read it via your phone

How do I do that?

After ESP-IDF is configured you can run the following commands:
1)alias get_idf='. /home/alex/Documents/programs/espidf/esp-idf/export.sh'
Use your path to esp-idf/export.sh
2)get_idf
3)cp -r $IDF_PATH/examples/bluetooth/bluedroid/ble/gatt_server .
To copy example for ble
4)update line 37 and line 53 in gatt_server/main/gatts_demo.c to set device name:

5)idf.py flash
6)Open program for BLE monitoring(for example NRFConnect) and connect to your newly
flashed board
7)The whole process is demonstrated in this short video[video is ready]

Demo 5: Connecting two Esp32-C6-Bugs with Zigbee

Intro
Zigbee is a low-power standard targeted at battery-powered devices in wireless control and
monitoring applications[wikipedia]. Esp32-C6-Bug supports both Zigbee coordinator and
end-device roles.
This example demonstrates how to connect two Esp32-C6-Bugs via Zigbee. One of them is
End-Device, the second one is Zigbee Coordinator. It is based on
https://github.com/espressif/esp-idf/tree/master/examples/zigbee/light_sample .

What do I need to make that?
● 2xEsp32-C6-BUG
● 2xUSB Type-C for flashing

Result
Esp32-C6-BUG Coordinator acts as a switch, Esp32-C6-BUG End device acts as light-bulb.
After you press the button on Esp32-C6-BUG Coordinator the light changes state on the
Esp32-C6-BUG End device.

How do I do that?

After ESP-IDF is configured you can run the following commands:
1)alias get_idf='. /home/alex/Documents/programs/espidf/esp-idf/export.sh'
Use your path to esp-idf/export.sh
2)get_idf
3)cp -r $IDF_PATH/examples/zigbee/light_sample .

4)cd light_sample/HA_on_off_switch
5)idf.py set-target esp32c6
6)Connect the first Esp32-C6-Bug to your PC
7)idf.py flash
After this command the code will be uploaded to Esp32-C6-Bug coordinator
8)Disconnect the first Esp32-C6-Bug to your PC, connect the second Esp32-C6-Bug to your PC
9) cd ..
10)cd ..
11)idf.py set-target esp32c6
12)idf.py flash(After this command the code will be uploaded to Esp32-C6-Bug End device)
13)repeat steps 4-12 for for light_sample/HA_on_off_light directory for the second
Esp32-C6-Bug.
14)Connect both boards to usb and open the serial monitor,
15) Reset the ‘switch’-board then the ‘bulb’-board
16)observe the pairing process(The switch board should be enabled first, so it can for the
network)
17)when you press the user button on the ‘switch’-board, the ‘led’ button should output that the
LED stage is changed

Demo 6: Connecting to Home Assistant via Zigbee

Intro
Esp32-C6-Bug integration into Home Assistant can be done using multiple approaches, one of
them is via Zigbee using Home Assistant SkyConnect. Of course the functionality is limited,
however you can make a simple Zigbee controlled LED(or bulb) by slightly modifying the
previous example.

What do I need to make that?
● Esp32-C6-BUG
● Home Assistant SkyConnect
● USB Type-C for flashing

Result
The Esp32-C6-Bug is connected to Home Assistant via Zigbee. When the button is pressed in
Home Assistant the Esp32-C6-Bug Led changes state.

How do I do that?
● The first step is to modify examples/zigbee/light_sample/HA_on_off_light from previous

demo, so the LED actually changes it’s state when the button is pressed(Of course you
can later add some relay or MOSFET to this pin to control something else rather than a
simple LED)

● Open light_sample/HA_on_off_light/esp_zb_light.c file
● Let’s add some blinking functionality. To do that, it’s necessary to initialize the led pin

using:
#define BLINK_GPIO 8

static void configure_led(void)

{

gpio_reset_pin(BLINK_GPIO);

gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);

}

● Then toggle pin based on the current switch position using(The s_led_state must
be changed based on switch position):

uint8_t s_led_state = 0;

static void blink_led(void)

{

/* Set the GPIO level according to the state (LOW or HIGH)*/

gpio_set_level(BLINK_GPIO, s_led_state);

}

● Go to esp_zb_light.c and add the blink_led and configure_led functions(don’t forget to
add s_led_state variable and BLINK_GPIO define) to the top of the code, before attr_cb
function

● First add configure_led() call to your main:

void app_main(void)

{

esp_zb_platform_config_t config = {

.radio_config = ESP_ZB_DEFAULT_RADIO_CONFIG(),

.host_config = ESP_ZB_DEFAULT_HOST_CONFIG(),

};

ESP_ERROR_CHECK(nvs_flash_init());

/* load Zigbee light_bulb platform config to initialization */

ESP_ERROR_CHECK(esp_zb_platform_config(&config));

/* hardware related and device init */

light_driver_init(LIGHT_DEFAULT_OFF);

configure_led();

xTaskCreate(esp_zb_task, "Zigbee_main", 4096, NULL, 5, NULL);

}

● Then add blink_led() and s_led_state = !value to attr_cb() function:
void attr_cb(uint8_t status, uint8_t endpoint, uint16_t cluster_id,

uint16_t attr_id, void *new_value)

{

if (cluster_id == ESP_ZB_ZCL_CLUSTER_ID_ON_OFF) {

uint8_t value = *(uint8_t *)new_value;

if (attr_id == ESP_ZB_ZCL_ATTR_ON_OFF_ON_OFF_ID) {

/* implemented light on/off control */

ESP_LOGI(TAG, "on/off light set to %hd", value);

s_led_state = !value;

blink_led();

light_driver_set_power((bool)value);

}

} else {

/* Implement some actions if needed when other cluster

changed */

ESP_LOGI(TAG, "cluster:0x%x, attribute:0x%x changed ",

cluster_id, attr_id);

}

}

● At this point the code should be ready.
● Flash the Esp32-C6-Bug with the modified code(the flashing sequence is the same as in

previous example(enter the directory, get_idf, set-target, flash…)). After the code is
flashed the device will enter pairing mode.

● Integrate the SkyConnect into your Home Assistant using this guide:
https://skyconnect.home-assistant.io/new-zigbee/

● From now on the device should be available in Home Assistant as a simple bulb.

Demo 7: Connecting two Esp32-C6-Bugs with Thread

Intro
Thread is a low-power and low-latency wireless mesh networking protocol. OpenThread is its
open source version from google. The OpenThread CLI exposes configuration and
management APIs via a command line interface.
This example demonstrates OpenThread CLI functionality by allowing the user to run
OpenThread cli commands on Esp32-C6-BUG directly. The example is based on
https://github.com/espressif/esp-idf/tree/master/examples/openthread/ot_cli

What do I need to make that?
● 2xEsp32-C6-BUG
● 2xUSB Type-C for flashing
● 2xUSB Uart converters for sending commands(1 is enough if you can switch it between

chips)

Result
You will have two Esp32-C6-Bugs connected to the same network, one as network leader,
second as network child. You can also freely run other commands from OpenThread CLI Api to
explore OpenThread yourself.
Some OpenThread commands:

Serial Outputs from two interconnected Esp32-C6-Bugs

How do I do that?

After ESP-IDF is configured you can run the following commands:
1)alias get_idf='. /home/alex/Documents/programs/espidf/esp-idf/export.sh'
Use your path to esp-idf/export.sh
2)get_idf
3)cp -r $IDF_PATH/examples/openthread/ot_cli .
4)cd ot_cli
5)idf.py set-target esp32c6

6)connect the first board
7)idf.py flash
8)disconnect the first board, connect the second board
9)idf.py flash
10)go to you favorite Serial port terminal(I used gtkterm), Connect USB-Serial converter to the
second board(SERIAL_CONVERTER_TX->BUG_RX,SERIAL_CONVERTER_ RX->BUG_TX)
11)send the commands from the picture above:

1. > dataset init new
2. > dataset commit active
3. > ifconfig up
4. > thread start
5. # After some seconds
6. > state

The output should be :

‘leader
Done’
Then get active dataset using:
> dataset active -x
Save the output
12)Connect the second boad to power and to USB-Serial converter
13)Send the following commands from the picture above:

1. >dataset set active [insert saved dataset from step 11]
2. >ifconfig up
3. >thread start
4. # After some time
5. >state

The output should be:
‘child
Done’

You can also run other commands from the OpenThread API and check their functionality:
https://github.com/openthread/openthread/blob/main/src/cli/README.md

Demo 8: Esp32-C6 OpenThread Router: WiFi+OpenThread
This example demonstrates how to enable both WiFi and Thread on one Esp32-C6 MCU and
use it as Wifi to Thread bridge. The example is largely based on
https://github.com/espressif/esp-idf/tree/release/v5.1/examples/openthread/ot_br

What do I need to make that?
● 2xEsp32-C6-BUG
● 2xUSB Type-C for flashing
● 2xUSB Uart converters for sending commands(1 is enough if you can switch it between

chips)

Result
The first Esp32-C6-Bug will act as a bidirectional bridge and forward traffic Wifi<->Thread.
The second Esp32-C6-Bug will act as an end device connected to the first Esp32-C6-Bug via
Thread.
You will be able to ping the second(Thread-connected) Esp32-C6-Bug from your local Wifi.

How do I do that?

After ESP-IDF is configured you can run the following commands:
1)alias get_idf='. /home/alex/Documents/programs/espidf/esp-idf/export.sh'
Use your path to esp-idf/export.sh

2)get_idf
3)cp -r $IDF_PATH/examples/openthread/ot_br .
4)cd ot_br
5)idf.py set-target esp32c6

6)connect the first board(bridge)

7)idf.py flash

8)go to you favorite serial port terminal(I used gtkterm), Connect USB-Serial converter to the
second board(SERIAL_CONVERTER_TX->BUG_RX,SERIAL_CONVERTER_ RX->BUG_TX)

9)write ‘wifi connect -s SSID -p password’ command to the serial port terminal to connect to
WiFi

10)to check the state run ‘wifi state’

11)go to Demo 3 section and create Thread network

12)run the following commands on your PC:

sudo sysctl -w net/ipv6/conf/wlan0/accept_ra=2

sudo sysctl -w net/ipv6/conf/wlan0/accept_ra_rt_info_max_plen=128

Please replace wlan0 with the real name of your Wi-Fi network interface.

At this point the Bridge should be ready

13)Connect the second Esp32-C6-Bug, flash it with Demo 3 firmware and connect it to the
Thread network using guidelines from Demo 3.

14) After the Second board is connected check the Thread ip using ipaddr command and ping it
from your pc using

ping ‘IP YOU GOT FROM ipaddr’

The end result is shown in the picture:

Demo 9: Esp32-C6 Zigbee sleepy device
This example demonstrates how to create a zigbee sleepy end device. Most of the time the end
device sleeps. After the command is issued from zigbee coordinator node(another
Esp32-C6-Big), the device wakes up and handles the command. Zigbee sleepy end device
consumption is around 60uA, while it sleeps. The code for this demo can be found here:
https://github.com/espressif/esp-zigbee-sdk/tree/main/examples/esp_zigbee_sleep/sleepy_end_
device

What do I need to make that?
● 2xEsp32-C6-BUG
● 2xUSB Type-C for flashing
● 1x li-ion battery for the sleepy end node

Result
The Esp32-C6-Bug sleepy end device connects to the Zigbee network created by
Esp32-C6-Bug acting as coordinator. After you press the button on coordinator device and the
sleepy device wakes up, the data are sent to the sleepy end device. The sleepy device receives
the data and handles the command.

How do I do that?
1) Configure Zigbee coordinator using demo 2

2) Download the Zigbee SDK:
git clone
https://github.com/espressif/esp-zigbee-sdk/tree/main/examples/esp_zigbee_sleep/sleep
y_end_device

3) Go to examples/esp_zigbee_sleep/sleepy_end_device
4) Run:

alias get_idf='. /home/alex/Documents/programs/espidf/esp-idf/export.sh'
(Use your path to esp-idf/export.sh)
get_idf
idf.py set-target esp32c6
Idf.py flash

5) After the Zigbee coordinator created the network(Check it’s serial output) reset the
sleepy device, it should connect to it.

6)
7) When you push the button on your Zigbee coordinator you should see output like this on

sleepy device

8)
After the device wakes up you should see the current spike from 60uA to 60mA

Manufacturing Plan
The manufacturing will be handled by JLCPCB,

Fulfillment & Logistics
After the manufacturing is complete, the boards will be placed to ESD bugs together with pin
headers and sent to Crowdsupply. After this, the boards will be distributed worldwide.

Risks & Challenges
● Arduino support - unknown release date

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiprotocol Development Tools category:

Click to view products by Prokyber manufacturer:

Other Similar products are found below :

CYW94343WWCD1_EVB ABX00083 ABX00092 ABX00087 XKC-M5T-W ATWINC3400-XPRO 2636 STEVAL-FKI001V1 TEL0111

ATWINC3400-XSTK RE-WFKIT-9260NVP 2542 irpi01-868 BCM94343WWCD1_EVB DFR0505 XK3-C-A2-UT-U XKC-V1T-U

ESP32-S3-EYE INP3010 ISM43340-L77-EVB ISP4520-AS-DK 453-00010-K1 453-00011-K1 XPC270300EK MIKROE-2440 MIKROE-

4493 MTDOT-BOX-G-868-B MTDOT-BOX-G-915-B LBEH5DU1BW-TEMP-DS-SD NRF5340-DK ESP32-C6-BUG 113990254

SIMSA868C-Cloud-DKL SIMSA868-Cloud-DKL SIMSA915-Cloud-DKL SIMSA-DKL SKY66420-11EK1 SKY66420-11EK3

https://www.xonelec.com/category/embedded-solutions/engineering-tools/communication-development-tools/rf-wireless-development-tools/multiprotocol-development-tools
https://www.xonelec.com/manufacturer/prokyber
https://www.xonelec.com/mpn/infineon/cyw94343wwcd1evb
https://www.xonelec.com/mpn/arduino/abx00083
https://www.xonelec.com/mpn/arduino/abx00092
https://www.xonelec.com/mpn/arduino/abx00087
https://www.xonelec.com/mpn/digiinternational/xkcm5tw
https://www.xonelec.com/mpn/microchip/atwinc3400xpro
https://www.xonelec.com/mpn/adafruit/2636
https://www.xonelec.com/mpn/stmicroelectronics/stevalfki001v1
https://www.xonelec.com/mpn/dfrobot/tel0111
https://www.xonelec.com/mpn/microchip/atwinc3400xstk
https://www.xonelec.com/mpn/aaeon/rewfkit9260nvp
https://www.xonelec.com/mpn/adafruit/2542
https://www.xonelec.com/mpn/altitudetech/irpi01868
https://www.xonelec.com/mpn/infineon/bcm94343wwcd1evb
https://www.xonelec.com/mpn/dfrobot/dfr0505
https://www.xonelec.com/mpn/digiinternational/xk3ca2utu
https://www.xonelec.com/mpn/digiinternational/xkcv1tu
https://www.xonelec.com/mpn/espressif/esp32s3eye
https://www.xonelec.com/mpn/innophase/inp3010
https://www.xonelec.com/mpn/inventek/ism43340l77evb
https://www.xonelec.com/mpn/insightsip/isp4520asdk
https://www.xonelec.com/mpn/lairdconnectivity/45300010k1
https://www.xonelec.com/mpn/lairdconnectivity/45300011k1
https://www.xonelec.com/mpn/lantronix/xpc270300ek
https://www.xonelec.com/mpn/mikroelektronika/mikroe2440
https://www.xonelec.com/mpn/mikroelektronika/mikroe4493
https://www.xonelec.com/mpn/mikroelektronika/mikroe4493
https://www.xonelec.com/mpn/multitech/mtdotboxg868b
https://www.xonelec.com/mpn/multitech/mtdotboxg915b
https://www.xonelec.com/mpn/murata/lbeh5du1bwtempdssd
https://www.xonelec.com/mpn/nordic/nrf5340dk
https://www.xonelec.com/mpn/prokyber/esp32c6bug
https://www.xonelec.com/mpn/seeedstudio/113990254
https://www.xonelec.com/mpn/sensiedge/simsa868cclouddkl
https://www.xonelec.com/mpn/sensiedge/simsa868clouddkl
https://www.xonelec.com/mpn/sensiedge/simsa915clouddkl
https://www.xonelec.com/mpn/sensiedge/simsadkl
https://www.xonelec.com/mpn/skyworks/sky6642011ek1
https://www.xonelec.com/mpn/skyworks/sky6642011ek3

