

CUSTOMER 益力嘉 **CUST. PART NO. CUST. DOC. REV.** DESCRIPTION CHIP INDUCTORS (RoHS+H.F.) SAMPLE LOT NO. S201911-0195 PART NO. 0805F-4R7K-DLRH01 DOC. REV. **ORIG DATE** 2019/11/26

Once you approve this part, please sign and return this page to the following marked location.

Customer Signature:

☐This part currently development section.

Date:

Yong Zhou Plant Sales Office-Headquarter

No. 566-1, Kao-Shi Rd., Yangmei, Taoyuan 32668, Tao-Yuan Rd., Fenghuang Park, Lengshuitan District, Yongzhou, Hunan 425000, P.R.C. **Taiwan**

Production line can produce this series of products.

TEL: +86-746-8610-180 TEL: +886-3-475-3355 FAX: +886-3-485-4959 FAX: +86-746-8610-181

Sales Office-Dong Guan, China

No.638, Mei Jing West Road Xiniupo Administrative Zone Dalang Town, Dong Guan City, Guang Dong

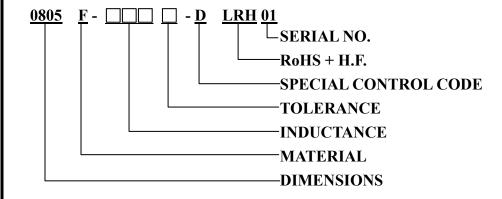
Province, China.

TEL: +86-769-8555-0979 FAX: +86-769-8555-0972

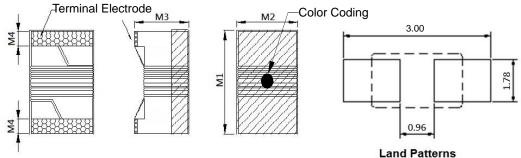
TESTED BY	CHECKED BY	APPROVED BY
Martin Wu	Adam Lee	K.C. Tseng

TABLE OF CONTENTS

INDEX	Page
■ Engineering Change Notice – Record	2
■ Scope	3
■ Part Number Identification	3
■ Mechanical Dimension	3
■ Rating Temperature	3
■ Structure	4
■ Material List ■ PSA 및 E	4
■ Test Instrument	4
■ Electrical Specification	5
■ Reliability Performance	6 ~ 7
■ Reflow Chart	8
■ Packing	9
■ Test Report	


CUSTOMER	CUSTOMER P/N	REV.	SPL. LOT NO.	
益力嘉		-	S201911-0195	
PART NAME	PART NO.	REV.	DATE OF ISSUE	Q'TY
CHIP INDUCTORS (RoHS+H.F.)	0805F-4R7K-DLRH01	ORIG	2019/11/26	5 PCS

REVISION NO.	REVISION DESCRIPTION	AUTHOR	DATE	REMARK
ORIG		Adam Lee	2019/11/26	
	形構所有 <i>侵害</i>	T.		
	PSA			
	PASSIVE SYSTEM ALLIANCE	Co. 1 to		
	DIELECTRICS CO., LT	J. ALS		

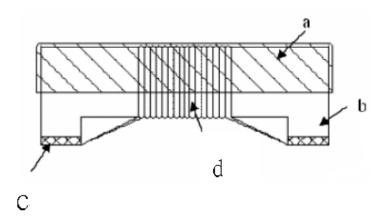

%This is a RoHS and REACH compliant product whose related documents are available on request.

%Graphic is only for dimensionally application.

- 1. SCOPE: THIS SPECIFICATION APPLIES TO WIRE WOUND CHIP INDUCTORS.
- 2. PART NUMBERING IDENTIFICATION

3. MECHANICAL DIMENSION

UNIT: mm


	DIM.	TOL.
M1	2.20	±0.2
M2	1.45	±0.2
M3	1.30	±0.1
M4	0.44	REF.

4. RATING TEMPERATURE

OPERATING TEMPERATURE RANGE: -40°C ~+125°C (Including self - temperature rise)

STORAGE TEMPERATURE RANGE: -40°C~+125°C (on board)

5. STRUCTURE

6. MATERIAL LIST

_	1/4	
ITEM	MATERIAL/ CATEGORY	MATERIAL TYPE
a	Upper Plate	DE SYSTEM UV Glue
b	Core	Ferrite Core
c	Termination	DIELECTRICS Ag/Ni/Sn
d	Wire	Enameled Copper Wire

7. TEST INSTRUMENT

- 7-1. Inductance · Q: Agilent-4291, Agilent-4287, Agilent-E4991A, Agilent-4192, Agilent-4285
- 7-2. SRF: Agilent-4291, Agilent-E4991A, Agilent-4192
- 7-3. DC Resistance: Agilent-34420A

8. ELECTRICAL SPECIFICATION

Part number	Inductance (µH)	Inductance Tolerance	Test Frequency (V/MHz)	Q TYP.	Test Frequency (MHz)	SRF (MHz) TYP.	DC Resistance (Ω) ±30%	Idc (mA) TYP.	Irms (mA) TYP.
0805F-4R7K-DLRH01	4.7	K	0.5/7.9	14	7.9	51	0.43	520	840

NOTE:

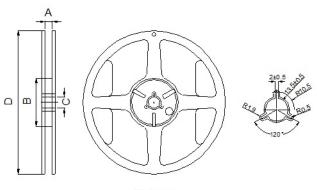
1. Tolerance: K:±10%

2. Idc: Applied the current to coils, the inductance change shall be less than 10% to initial value.

3. Heat Rated Current (Irms) will cause the coil temperature rise $\Delta T \leq 25^{\circ}$ C without core loss.

4. MSL: Level 1

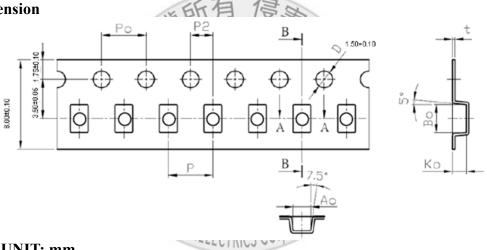
9. RELIABILITY PERFORMANCE


Item	Performance	Test Condition
Life Test		Preconditioning: Run through IR reflow for 2 times. (IPC/JEDECJ-STD-020DClassification Reflow Profiles) Temperature: 125±2°C Applied current: rated current Duration: 1000±12hrs Measured at room temperature after placing for 24±2 hrs.
Load Humidity		Preconditioning: Run through IR reflow for 2 times. (IPC/JEDECJ-STD-020DClassification Reflow Profiles) Humidity: 85±2% R.H. Temperature: 85°C±2°C Duration: 1000hrs Min. with 100% rated current Measured at room temperature after placing for 24±2 hrs.
Moisture Resistance	Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±10% of initial value Q: Shall not exceed the specification value. RDC: within ±15% of initial value and shall not exceed the specification value	Preconditioning: Run through IR reflow for 2 times. (IPC/JEDECJ-STD-020DClassification Reflow Profiles) 1. Baked at50°C for 25hrs, measured at room temperature after placing for 4 hrs. 2. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs. 3. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs, keep at 25°C for 2 hrs then keep at -10°C for 3 hrs 4. Keep at 25°C 80-100%RH for 15min and vibrate at the frequency of 10 to 55 Hz to 10 Hz, measure at room temperature after placing for 1~2 hrs.
Thermal shock	Diele Prity Diele	Preconditioning: Run through IR reflow for 2 times. (IPC/JEDECJ-STD-020DClassification Reflow Profiles) Condition for 1 cycle Step1: -40±2°C 30±5min Step2: 25±2°C ≤0.5min Step3: 125±2°C 30±5min Number of cycles: 500 Measured at room femprature after placing for 24±2 hrs.
Vibration		Preconditioning: Run through IR reflow for 2 times. (IPC/JEDECJ-STD-020DClassification Reflow Profiles) Oscillation Frequency: 10~2K~10Hz for 20 minutes Equipment: Vibration checker Total Amplitude: 1.52mm ±10% Testing Time: 12 hours (20 minutes, 12 cycles each of 3 orientations)

Performance			Test Cond	ition		
Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±10% of initial value	Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mm Bending depth: >=0805 inch(2012mm):1.00805 inch(2012mm):0.8mm duration of 10 sec.					
RDC: within ±15% of initial value and shall not exceed the specification value	Type SMD	Peak value (g's) 50	Normal duration (D) (ms)	Wave form Half-sine	Velocity change (Vi)ft/sec 11.3	
	Preheat	t: 150℃	,60sec.	<u> </u>	11.0	
More than 95% of the terminal electrode should be covered with solder	Temperature: 245±5°C Flux for lead free: Rosin. 9.5% Dip time: 4±1sec					
MI MAN	Tempe (°C 260 (solder	comple rature C) ±5 temp) ditionin	tely cover the Temp ramp/i and em 10 ±1 25mm/ g: Run throu	e terminate perature mmersion ersion rate s ±6 mm/s gh IR ref	Number of heat cycles 1 low for 2	
Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value	Reflow With th device t <=0805 This for the forc apply a	Profiles te comp to be tes to 5kg) ree shall te shall shock to	onent mounte sted, apply a f to the side of l be applied fo be applied gr to the compor	ed on a Po force (>08 a device or or 60 +1 s adually a nent being	CB with the 605: 1kg, being tested seconds. Als s not to	
	Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and	Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder Temper Flux for Dip tim Depth: Depth: Tempe (20 (solder) Tempe (20 (solder	Appearance: No damage. Impedance: within ±15% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±15% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value Shall be mount following dime inch(2012mm) <0805 inch(2010 duration of 10 Peak Type	Appearance: No damage. Impedance: within ±15% of initial value (2): Shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder Appearance: No damage. Impedance: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±15% of initial value RDC: within ±15% of initial value Q: Shall not exceed the specification value Appearance: No damage. Impedance: within ±15% of initial value Inductance: within ±15% of initial value Q: Shall not exceed the specification value Normal Type value duration (D) (g's) (ms) SMD 50 11 Lead 50 11 Preheat: 150°C,60sec. Solder: Sn96.5% Ag3% Cut Temperature: 245±5°C Flux for lead free: Rosin. 9.9 Dip time: 4±1sec Bepth: completely cover the Temperature: 10±1 25mm/ Preconditioning: Run throut times. (IPC/JEDEC J-STD-IReflow Profiles) With the component mount device to be fested, apply a fellow profiles of the side of This force shall be applied graphly a shock to the component DUT	Appearance: No damage. Impedance: within ±15% of initial value Q: Shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of initial value and shall not exceed the specification value Appearance: No damage. More than 95% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder Preheat: 150°C,60sec. Solder: Sn96.5% Ag3% Cu0.5% Temperature: 245±5°C Flux for lead free: Rosin. 9.5% Dip time: 4±1sec Depth: completely cover the terminal Depth: completely cover the terminal Popth: completely cov	

12. PACKING

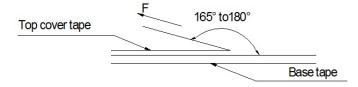
12-1 Reel Dimension



7"x8mm

UNIT: mm

A	В	C	D	
9.0±0.5	60±2	13.5±0.5	178±2	


12-2 Tape Dimension

UNIT: mm

I	P	Po	P2	Во	Ao	Ko	W	t
	4.00±0.10	4.00±0.10	2.00±0.05	2.50±0.10	1.60±0.10	1.55±0.10	8.00±0.10	0.22±0.05

12-3 Tearing Off Force

The force for tearing off cover tape is 15 to 80 grams in the arrow direction under the following conditions.

Room Temp. (°C)	Room Humidity (%)	Room atm (hPa)	Tearing Speed mm/min
5~35	45~85	860~1060	300

12-4 Packaging Quantity: 2000 Chip/Reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Prosperity manufacturer:

Other Similar products are found below:

CR43NP-680KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHQ1005P10NJ MHQ1005P1N0S MHQ1005P2N4S MHQ1005P3N6S MHQ1005P5N1S MHQ1005P8N2J PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-92100NL PG0434.801NLT PG0936.113NLT 9220-20 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HC3-R50-R HC8-1R2-R HCF1305-3R3-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M RCR110DNP-331L DH2280-4R7M DS1608C-106 ASPI-4020HI-R10M-T B10TJ B82498B3680J000 ELJ-RE27NJF2 1812CS-153XJ 1812CS-183XJ 1812CS-223XJ