Product Specification

PE423641

Product Description

The PE423641 is a HaRP™ technology-enhanced reflective SP4T RF switch. It has received AEC-Q100 Grade 2 certification and meets the quality and performance standards that makes it suitable for use in harsh automotive environments. It is designed to cover a wide range of wireless applications from 50 MHz through 3 GHz such as cellular antenna band switching, automotive infotainment and traffic safety applications. No blocking capacitors are required if DC voltage is not present on the RF ports.

The PE423641 is manufactured on Peregrine's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-oninsulator (SOI) technology on a sapphire substrate, offering excellent RF performance.

Peregrine's HaRPTM technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS process, offering the performance of GaAS with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

UltraCMOS ${ }^{\circledR}$ SP4T RF Switch
 $50-3000 \mathrm{MHz}$

Features

- AEC-Q100 Grade 2 certified
- Supports operating temperature up to $+105^{\circ} \mathrm{C}$
- $\mathrm{HaRP}^{T M}$ technology enhancements provide excellent linearity
- Low harmonics of $2 \mathrm{fo}=-83 \mathrm{dBc}$ and $3 \mathrm{fo}=-77 \mathrm{dBc} @+35 \mathrm{dBm}$
- IMD3 of -111 dBm @ WCDMA band 1
- IIP3 of 68 dBm
- Low insertion loss
- 0.50 dB @ 1000 MHz
- 0.65 dB @ 2200 MHz
- High isolation
- 32 dB @ 1000 MHz
- 25 dB @ 2200 MHz
- High ESD performance
- 2 kV HBM on all pins
- 100V MM on all pins
- 1 kV CDM on all pins
- Integrated decoder for 2-pin control
- Accepts 1.8 V and 2.75 V levels

Figure 2. Package Type
16-lead 3×3 mm QFN

Table 1. Electrical Specifications $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operational frequency			50		3000	MHz
Insertion loss (symmetric ports)	RFC-RFX	$\begin{aligned} & \hline 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.50 \\ & 0.65 \\ & 0.80 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.75 \\ & 0.95 \\ & 1.15 \end{aligned}$	dB dB dB dB
Isolation	RFC-RFX	$\begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 23 \\ & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & 32 \\ & 25 \\ & 23 \\ & 22 \end{aligned}$		dB dB dB dB
Return loss (active ports)	RFC-RFX	$\left\lvert\, \begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}\right.$		$\begin{aligned} & 24 \\ & 19 \\ & 16 \\ & 14 \end{aligned}$		dB dB dB dB
Return loss (common ports)	RFC-RFX	$\begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$		23 16 14 13		dB dB dB dB
2nd harmonic	RFX	+35 dBm output power, $850 / 900 \mathrm{MHz}$ +33 dBm output power, 1800/1900 MHz		$\begin{aligned} & -83 \\ & -85 \end{aligned}$	$\begin{aligned} & -80 \\ & -78 \end{aligned}$	dBc dBc
3rd harmonic	RFX	+35 dBm output power, $850 / 900 \mathrm{MHz}$ +33 dBm output power, $1800 / 1900 \mathrm{MHz}$		$\begin{aligned} & -77 \\ & -78 \end{aligned}$	$\begin{aligned} & -73.5 \\ & -72.5 \end{aligned}$	dBc dBc
IMD3		RF Measured at 2.14 GHz at ANT port, input +20 dBm CW signal at 1.95 GHz and -15 dBm CW signal at 1.76 GHz		-111		dBm
Input IP2	RFC-RFX	$50-3000 \mathrm{MHz}$		115		dBm
Input IP3	RFC-RFX	$50-3000 \mathrm{MHz}$		68		dBm
Input 0.1 dB compression point ${ }^{1}$	RFC-RFX	$50-3000 \mathrm{MHz}$		37		dBm
Switching time		50% CTRL to 90% or 10% RF		1	2	$\mu \mathrm{s}$

Note 1: Input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for the operating RF input power (50) .

Table 1A. Electrical Specifications @ -40 to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operational frequency			50		3000	MHz
Insertion loss (symmetric ports)	RFC-RFX	$\begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.50 \\ & 0.65 \\ & 0.80 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.90 \\ & 1.10 \\ & 1.30 \end{aligned}$	dB dB dB dB
Isolation	RFC-RFX	$\begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 23 \\ & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & 32 \\ & 25 \\ & 23 \\ & 22 \end{aligned}$		dB dB dB dB
Return loss (active ports)	RFC-RFX	$\begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$		24 19 16 14		dB dB dB dB
Return loss (common ports)	RFC-RFX	$\begin{aligned} & 50-1000 \mathrm{MHz} \\ & 1000-2200 \mathrm{MHz} \\ & 2200-2700 \mathrm{MHz} \\ & 2700-3000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 23 \\ & 16 \\ & 14 \\ & 13 \end{aligned}$		dB dB dB dB
2nd harmonic	RFX	+35 dBm output power, $850 / 900 \mathrm{MHz}$ +33 dBm output power, $1800 / 1900 \mathrm{MHz}$		$\begin{aligned} & -83 \\ & -85 \end{aligned}$	$\begin{aligned} & -76 \\ & -74 \end{aligned}$	dBc dBc
3rd harmonic	RFX	+35 dBm output power, $850 / 900 \mathrm{MHz}$ +33 dBm output power, $1800 / 1900 \mathrm{MHz}$		$\begin{aligned} & -77 \\ & -78 \end{aligned}$	$\begin{aligned} & -69.5 \\ & -68.5 \end{aligned}$	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBC} \end{aligned}$
IMD3		RF Measured at 2.14 GHz at ANT port, input +20 dBm CW signal at 1.95 GHz and -15 dBm CW signal at 1.76 GHz		-111		dBm
Input IP2	RFC-RFX	$50-3000 \mathrm{MHz}$		115		dBm
Input IP3	RFC-RFX	$50-3000 \mathrm{MHz}$		68		dBm
Input 0.1 dB compression point ${ }^{1}$	RFC-RFX	$50-3000 \mathrm{MHz}$		37		dBm
Switching time		50% CTRL to 90% or 10% RF		1	2	$\mu \mathrm{s}$

Note 1: Input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for the operating RF input power (50ת).

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
$1,5,7,9$, $10,12,14$, 16	N/C	No connect
2	V $_{\text {DD }}$	Supply voltage
3	V2	Digital control logic input 2
4	$\mathrm{~V} 1^{1}$	Digital control logic input 1
6	RF4 1	RF port
8	RF3 1	RF port
11	RFC 1	RF common
13	RF1 1	RF port
15	RF2 1	RF port
Pad	GND 2	Exposed pad: Ground for proper operation

Note 1: RF pins $6,8,13$, and 15 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	2.65	2.75	3.3	V
Supply current $\left(\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V},+25^{\circ} \mathrm{C}\right.$ only $)$	I_{DD}		13	50	$\mu \mathrm{~A}$
Digital input high (V1, V2)	V_{HH}	1.4		$\mathrm{~V}_{\mathrm{DD}}$	V
Digital input low (V1, V2)	V_{IL}	0		0.4	V
RF input power, CW^{1}	$\mathrm{P}_{\mathrm{MAX}, \mathrm{CW}}$			+35	dBm
Operating temperature range	T_{OP}	-40	+25	+105	${ }^{\circ} \mathrm{C}$

Note 1: 100% duty cycle, all bands, 50Ω
Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-0.3	3.7	V
Digital input voltage (V1, V2)	V_{I}	-0.3	3.7	V
RF input power, max	$\mathrm{P}_{\mathrm{MAX}, \mathrm{ABS}}$		+37	dBm
Storage temperature range	T_{ST}	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{1}, all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{HBM}}$		2000	V
ESD voltage MM^{2}, all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{MM}}$		100	V
ESD voltage CDM^{3}, all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{CDM}}$		1000	V

Notes: 1. Human Body Model (MIL-STD-883 Method 3015)
2. Machine Model (JEDEC JESD22-A115)
3. Charged Device Model (JEDEC JESD22-C101)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE423641 in the 16 -lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL1.

Table 5. Truth Table

Path	V2	V1
RFC-RF1	0	0
RFC-RF2	1	0
RFC-RF3	0	1
RFC-RF4	1	1

Switching Frequency

The PE423641 has a maximum 25 kHz switching frequency.
Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value. Switching time is provided in Table 1 and Table 1A.

Typical Performance Data @ $+\mathbf{2 5}^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=\mathbf{2} . \mathbf{7 5} \mathrm{V}$, unless otherwise specified
Figure 4. Insertion Loss vs Temp (RFC-RFX)

Figure 6. Return Loss vs Temp (Active Port)

Figure 8. Return Loss vs Temp (Common Port)

Typical Performance Data @ $+\mathbf{2 5}^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=\mathbf{2} . \mathbf{7 5} \mathrm{V}$, unless otherwise specified

Figure 10. Isolation vs Temp (RFC-RFX)

Figure 11. Isolation vs V_{DD} (RFC-RFX)

Evaluation Kit

The SP4T switch evaluation board was designed to ease customer evaluation of Peregrine's PE423641. The RF common port is connected through a 50Ω transmission line via the top SMA connector, J1. RF1, RF2, RF3 and RF4 are connected through 50Ω transmission lines via SMA connectors $\mathrm{J} 3, \mathrm{~J} 5$, J 2 and J 4 , respectively. A through 50Ω transmission is available via SMA connectors J6 and J7. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a four metal layer FR4 material with a total thickness of 62 mils. The middle layers provide ground for the transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 32 mils, trace gaps of 25 mils, and metal thickness of 2.1 mils.

Figure 12. Evaluation Board Layouts

Figure 13. Evaluation Board Schematic

Caution: Contains parts and assemblies susceptible to damage by electrostatic discharge (ESD).

Figure 14. Package Drawing
16-lead 3x3 mm QFN

Figure 15. Top Marking Specification

$$
\begin{aligned}
\bullet & =\text { Pin } 1 \text { designator } \\
\text { YYWW } & =\text { Date code, last two digits of the year and work week } \\
\text { ZZZZZZ } & =\text { Last six characters of the assembly lot code }
\end{aligned}
$$

DOC-51207

Figure 16. Tape and Reel Specifications

NTEES:

2. [AMER IN CDFPLINIE HTTH EIA 48I

AS TAE PISITIDN F PICKET, NII PICKET HIE

Device Orientation in Tape

Table 6. Ordering Information

Order Code	Description	Package	Shipping Method
PE423641MLAA-Z	PE423641 SP4T RF switch	Green 16-lead 3 $\times 3 \mathrm{~mm}$ QFN	3000 units / T\&R
EK423641-01	PE423641 Evaluation kit	Evaluation kit	$1 /$ Box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form)
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

