Product Specification

PE42430

Product Description

The PE42430 is a HaRP ${ }^{\text {TM }}$-enhanced reflective SP3T RF switch developed on the UltraCMOS ${ }^{\circledR}$ process technology. This tiny general purpose switch is ideal for WLAN and bluetooth applications in the 2.4-2.5 GHz bands as well as general broadband switching applications. It is comprised of three RF ports and has low insertion loss and high isolation. An on-chip CMOS decode logic facilitates a three-pin CMOS control interface. Unlike competitive solutions, there is no need for blocking capacitors when using the PE42430.

Peregrine's HaRP ${ }^{\text {TM }}$ technology enhancements deliver high linearity and exceptional harmonics performance. It is an innovative feature of the UltraCMOS ${ }^{\oplus}$ process, providing performance superior to GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

UltraCMOS ${ }^{\circledR}$ SP3T Reflective RF Switch $100-3000 \mathrm{MHz}$

Features

- HaRP $^{\text {TM }}$-enhanced UltraCMOS ${ }^{\oplus}$ device
- Low insertion loss
- Typical 0.45 dB @ 1 GHz
- Typical 0.55 dB @ 2.5 GHz
- IIP3: Typical +66 dBm
- P0.1dB Compression: Typical +30 dBm
- Excellent ESD tolerance of 4500 V HBM and 250 V MM on all ports
- No external V_{DD} required. V_{DD} is derived from switch control inputs
- Package type: 8-lead $1.5 \times 1.5 \mathrm{~mm}$ DFN

Figure 2. Package Type
8-lead $1.5 \times 1.5 \mathrm{~mm}$ DFN

Table 1. Electrical Specifications ${ }^{1}$: Nominal @ $25^{\circ} \mathrm{C}, \mathrm{V} 1$, V2 or V3 $=3 \mathrm{~V} / 5 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Electrical Parameter	Path	Condition	Min	Typ	Max	Unit
Operating Frequency			100		3000	MHz
Insertion Loss	RFC-RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz		$\begin{aligned} & 0.45 \\ & 0.65 \\ & 0.55 \end{aligned}$	$\begin{gathered} 0.56 \\ 0.9 \\ 0.8 \end{gathered}$	dB dB dB
Isolation	RFX-RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz	$\begin{aligned} & 35 \\ & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \\ & 30 \end{aligned}$		dB dB dB
Isolation	RFC-RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz	$\begin{aligned} & 34 \\ & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \\ & 30 \end{aligned}$		dB dB dB
Return Loss (Active Port)	RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz		$\begin{aligned} & 22 \\ & 16 \\ & 18 \end{aligned}$		dB dB dB
Return Loss (Common Port)	RFC	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz		$\begin{aligned} & 22 \\ & 16 \\ & 18 \end{aligned}$		dB dB dB
Input 0.1 dB compression ${ }^{2}$	RFC-RFX	100 to 3000 MHz		30		dBm
IIP3	RFC-RFX	100 to 3000 MHz		66		dBm
IIP2	RFC-RFX	100 to 3000 MHz		100		dBm
Switching Time ${ }^{3}$		50% CTRL to 90% or 10% of final value		500		nS
Turn on Time ${ }^{4}$		50% CTRL to 90% or 10% of RF		1.5	2.0	$\mu \mathrm{S}$
Video Feedthrough ${ }^{5}$				10		mV

Notes: 1. Specifications under min and max nominal conditions
2. Please refer to Maximum Input Power (50Ω) in Table 4
3. Switching time is measured while the part is powered on and one of the control pins is switching state
4. Turn on time is defined as the time it takes the part to go from an unpowered state to 90% RF voltage. Max power can only be applied after the part is turned on
5. Video feedthrough is measured by terminating all ports and measuring peak transients while switching logic state

Table 3. Electrical Specifications: Min/Max Performance @ -40 to $+85^{\circ} \mathrm{C}$, V1, V2 or V3 $=3.0 \mathrm{~V}$ to 5.5 V $\left(Z_{S}=Z_{L}=50 \Omega\right)$

Electrical Parameter	Path	Condition	Min	Typ	Max	Unit
Operating Frequency			100		3000	MHz
Insertion Loss	RFC-RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz		$\begin{aligned} & 0.45 \\ & 0.65 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.95 \\ & 0.85 \end{aligned}$	dB dB dB
Isolation	RFX-RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz	$\begin{aligned} & 35 \\ & 23 \\ & 25 \end{aligned}$	40 28 30		dB dB dB
Isolation	RFC-RFX	100 to 1000 MHz 1000 to 3000 MHz 2400 to 2500 MHz	$\begin{aligned} & 34 \\ & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \\ & 30 \end{aligned}$		dB dB dB

Figure 3. Pin Configuration (Top View)
Pin 1 Indicator

Table 3. Pin Descriptions

Pin \#	Pin Name	Description
1	RFC 1	RF Common
2	N/C	No Connect
3	V1	Switch Control Input, CMOS logic level
4	RF1 1	RF I/O
5	RF2 1	RF I/O
6	V2 2	Switch Control Input, CMOS Logic Level
7	V3 1	Switch Control Input, CMOS Logic Level
8	RF3 ${ }^{1}$	RF I/O
Paddle	GND	Exposed Ground Paddle. Ground for Proper Device Operation

Note 1: RF pins 1, 4, 5 and 8 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met

Table 4. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Units
I_{DD} Power Supply Current	I_{DD}		130	230	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {CTRL }}$ Control Voltage High	V_{IH}	3		5.5	V
$\mathrm{~V}_{\text {CTRL }}$ Control Voltage Low	V_{IL}	0		0.6	V
Operating temperature range	T_{OP}	-40		+85	${ }^{\circ} \mathrm{C}$
Maximum Input Power (50 $\Omega)$ CW @ $+85^{\circ} \mathrm{C}$ $\mathrm{CW} @+25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {in }}$			+27 +30	dBm dBm

Table 5. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
$\mathrm{T}_{\text {ST }}$	Storage temperature range	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {IN }}$	Maximum Input Power (50Ω)		30	dBm
$\mathrm{V}_{\text {ESD }}$	ESD Voltage HBM^{1} All Pins		4500	V
$\mathrm{~V}_{\text {ESD }}$	ESD Voltage MM ${ }^{2}$, All Pins		250	V

Notes: 1. HBM ESD Voltage (MIL_STD 883 Method 3015.7)
2. MM ESD Voltage (MM, JEDEC JESD22-A115-A)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42430 in the 8-lead $1.5 \times 1.5 \mathrm{~mm}$ DFN package is MSL1.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Table 6. Truth Table

Path	V1	V2	V3
RFC - RF1	1	0	0
RFC - RF2	0	1	0
RFC - RF3	0	0	1

Note: Any state other than shown in Table 6 are undefined states

Switching Frequency

The PE42430 has a maximum 25 kHz switching rate.

Figure 4. Insertion Loss vs Temperature (RFX-RFC)

Figure 5. Insertion Loss vs V_{DD} (RFX-RFC)

Figure 6. Insertion Loss RFX

Figure 7. RFX-RFX Isolation vs Temperature

Figure 9. RFC-RFX Isolation vs Temperature

Figure 8. RFX-RFX Isolation vs V_{DD}

Figure 10. RFC-RFX Isolation vs V_{DD}

Figure 11. RFC Port Return Loss vs Temperature

Figure 13. Active Port Return Loss vs Temperature (RFX)

Figure 12. RFC Port Return Loss vs $V_{D D}$

Figure 14. Active Port Return Loss vs V_{DD} (RFX)

Evaluation Kit Information

The SP3T Switch Evaluation Kit facilitates customer evaluation of the PE42430 SP3T switch. The RF common port is connected through a 50Ω transmission line to J2. Ports 1, 2 and 3 are connected through 50Ω transmission lines to J 3 , J5 and J 4 respectively. J 1 provides digital inputs V 1 , V2 and V3 to the device.

On the back of the board, a through line connects SMA connectors J6 and J7. This transmission line can be used to estimate the PCB loss over the environmental conditions.

This four layer board is composed of Rogers 4350 on the top and bottom and FR4 on the inner layers with a total thickness of 0.062 ". All transmission lines have 21.5 mil width and 7.25 mil gap.

Use jumpers on header J1 to short the control pins to ground for logic low. $V_{D D}$ is supplied to the part through at least one of the control pins via Pins 1, 3 or 5 (V3, V2, V1) on header J1.

Figure 16. Evaluation Kit Schematics

Figure 17. Mechanical Specifications

Figure 18. Marking Specifications

PZZ YWW	Marking Spec Symbol	Package Marking	Definition
	P	A-Z	Part\# code
	ZZ	00-99	Last two digits of lot code
	Y	0-9	Last digit of year, starting from 2011 (1 for 2011,2 for 2012 etc)
	WW	01-53	Work week

Figure 19. Tape and Reel Drawing

Drawing not drawn to scale
Pocket hole diameter $0.6 \pm 0.05 \mathrm{~mm}$
Bumped die are oriented active side down
Maximum cavity angle 5°

Device Orientation in Tape

Table 7. Ordering Information

Order Code	Description	Package	Shipping Method
PE42430MLAB-Z	PE42430 SP3T RF Switch	Green 8LD 1.5×1.5 DFN	3000 units T/R
EK42430-01	PE42430 Evaluation board	Evaluation Kit	$1 /$ Box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

Abstract

Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form). The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC849ALP4C EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A EVAL01-HMC190BMS8 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 EV1HMC812ALC4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL

