Product Specification

PE42442

Product Description

The PE42442 is a HaRPTM technology-enhanced absorptive SP4T RF switch designed for use in 3G/4G wireless infrastructure and other high performance RF applications.

This switch is a pin-compatible four throw version of the PE42451 with a wider frequency and power supply range. It is comprised of four symmetric RF ports with very high isolation up to 6 GHz . An integrated CMOS decoder facilitates a two- or three-pin 1.8V CMOS control interface. In addition, no external blocking capacitors are required if 0 VDC is present on the RF ports.

The PE42442 is manufactured on pSemi's UltraCMOS ${ }^{\text {® }}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate.
pSemi's HaRP technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

Table 1. Electrical Specifications @ $+25{ }^{\circ} \mathrm{C}\left(Z_{S}=Z_{L}=50 \Omega\right)$ unless otherwise noted Normal mode ${ }^{1}$: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {Ss ExT }}=0 \mathrm{~V}$ or Bypass mode ${ }^{2}$: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} \text { ExT }}=-3.3 \mathrm{~V}$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating frequency			30		6000	MHz
Insertion loss	RFC-RFX	450 MHz 900 MHz 2100 MHz 2700 MHz 4000 MHz 6000 MHz		$\begin{aligned} & 0.85 \\ & 0.90 \\ & 1.10 \\ & 1.15 \\ & 1.25 \\ & 1.90 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.05 \\ & 1.35 \\ & 1.40 \\ & 1.50 \\ & 2.35 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	RFC-RFX	$\begin{array}{\|l} 450 \mathrm{MHz} \\ 900 \mathrm{MHz} \\ 2100 \mathrm{MHz} \\ 2700 \mathrm{MHz} \\ 4000 \mathrm{MHz} \\ 6000 \mathrm{MHz} \end{array}$	$\begin{aligned} & 62 \\ & 55 \\ & 52 \\ & 50 \\ & 42 \\ & 27 \end{aligned}$	67 61 55 52 43 32		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ dB
Isolation	RFX-RFX	$\begin{array}{\|l} 450 \mathrm{MHz} \\ 900 \mathrm{MHz} \\ 2100 \mathrm{MHz} \\ 2700 \mathrm{MHz} \\ 4000 \mathrm{MHz} \\ 6000 \mathrm{MHz} \end{array}$	$\begin{aligned} & 61 \\ & 56 \\ & 51 \\ & 50 \\ & 41 \\ & 29 \end{aligned}$	$\begin{aligned} & 65 \\ & 61 \\ & 54 \\ & 52 \\ & 44 \\ & 32 \end{aligned}$		dB dB dB dB dB
Return loss (active port)	RFX	$\begin{aligned} & 30-4000 \mathrm{MHz} \\ & 4000-6000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 17 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return loss (terminated port)	RFX	$\begin{aligned} & 30-4000 \mathrm{MHz} \\ & 4000-6000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 22 \\ & 19 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input 0.1 dB compression point ${ }^{3}$	RFC-RFX	900 MHz		35		dBm
Input IP2	RFC-RFX	1900 MHz		97		dBm
Input IP3	RFC-RFX	1900 MHz		58		dBm
Switching time		50% control to 90% or 10\% RF		255	330	ns

Notes: 1. Normal mode: single external positive supply used.
2. Bypass mode: both external positive supply and external negative supply used.
3. The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 4 for the operating RF input power (50) .

Table 2. Electrical Specifications @ $+125{ }^{\circ} \mathrm{C}\left(Z_{S}=Z_{L}=50 \Omega\right)$ unless otherwise noted Normal mode ${ }^{1}$: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {Ss_ExT }}=0 \mathrm{~V}$ or Bypass mode ${ }^{2}$: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} _E X T}=-3.3 \mathrm{~V}$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating frequency			30		6000	MHz
Insertion loss	RFC-RFX	450 MHz 900 MHz 2100 MHz 2700 MHz 4000 MHz 6000 MHz		$\begin{aligned} & 1.11 \\ & 1.18 \\ & 1.43 \\ & 1.50 \\ & 1.59 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.45 \\ & 1.79 \\ & 1.95 \\ & 2.04 \\ & 2.91 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ dB
Isolation	RFC-RFX	$\begin{array}{\|l} 450 \mathrm{MHz} \\ 900 \mathrm{MHz} \\ 2100 \mathrm{MHz} \\ 2700 \mathrm{MHz} \\ 4000 \mathrm{MHz} \\ 6000 \mathrm{MHz} \end{array}$	$\begin{aligned} & 56 \\ & 54 \\ & 49 \\ & 46 \\ & 33 \\ & 23 \end{aligned}$	66 60 55 52 43 32		dB dB dB dB dB dB
Isolation	RFX-RFX	$\begin{array}{\|l} 450 \mathrm{MHz} \\ 900 \mathrm{MHz} \\ 2100 \mathrm{MHz} \\ 2700 \mathrm{MHz} \\ 4000 \mathrm{MHz} \\ 6000 \mathrm{MHz} \end{array}$	$\begin{aligned} & 59 \\ & 54 \\ & 50 \\ & 49 \\ & 39 \\ & 26 \end{aligned}$	$\begin{aligned} & 65 \\ & 61 \\ & 53 \\ & 52 \\ & 43 \\ & 32 \end{aligned}$		
Return loss (active port)	RFX	$\begin{aligned} & 30-4000 \mathrm{MHz} \\ & 4000-6000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 16 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return loss (terminated port)	RFX	$\begin{aligned} & 30-4000 \mathrm{MHz} \\ & 4000-6000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 17 \\ & 15 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input 0.1 dB compression point ${ }^{3}$	RFC-RFX	900 MHz		35		dBm
Input IP2	RFC-RFX	1900 MHz		91		dBm
Input IP3	RFC-RFX	1900 MHz		56		dBm
Switching time		50% control to 90% or 10\% RF		355	439	ns

Notes: 1. Normal mode: single external positive supply used.
2. Bypass mode: both external positive supply and external negative supply used.
3. The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 4 for the operating RF input power (50 $)$.

Figure 3. Pin Configuration (Top View)

Table 3. Pin Descriptions

Pin \#	Name	Description
$1-3,4,6,7,9$, $10,12,13$, $15,21,23,24$	GND	Ground
5	RF4 1	RF port 4
8	RF3 1	RF port 3
11	RF2 1	RF port 2
14	RF1 1	RF port 1
16	V $_{\text {DD }}$	Supply voltage
17	V1 1	Digital control logic input 1
18	V2 2	Digital control logic input 2
19	V3 2	Digital control logic input 3
20	V Ss_ExT 3	External Vss negative voltage control/ ground
22	RFC 1	RF common
Pad	GND 2	Exposed pad: Ground for proper operation

Notes: 1. RF pins $5,8,11,14$ and 22 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.
2. Pin 19 must be grounded for 2-pin control, refer to Table 5A.
3. Use $\mathrm{V}_{\text {Ss_EXT }}$ (pin 20, refer to Table 3) to bypass and disable internal

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Table 4. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Normal mode ${ }^{1}$					
Supply voltage	$V_{\text {DD }}$	2.3		5.5	V
Supply current	I_{D}		110		$\mu \mathrm{A}$
Bypass mode ${ }^{2}$					
Supply voltage	V_{DD}	2.7		5.5	V
Supply current	I_{DD}		50		$\mu \mathrm{A}$
Negative supply voltage	$\mathrm{V}_{\text {SS_Ext }}$	-3.6		-3.2	V
Normal or Bypass mode					
Digital input high (V1, V2, V3)	V_{H}	1.17		3.6	V
Digital input low (V1, V2, V3)	VIL	-0.3		0.6	V
Digital input current ${ }^{3}$	$\mathrm{I}_{\text {ctrL }}$			1	$\mu \mathrm{A}$
RF input power, CW	$\begin{gathered} \mathrm{P}_{\text {maxcow }} \\ +105^{\circ} \mathrm{C} \end{gathered}$			33	dBm
RF input power, CW	$\begin{gathered} P_{\text {maxcow }} \\ +125^{\circ} \mathrm{C} \end{gathered}$			28	dBm
RF input power into terminated ports, CW	$\begin{aligned} & \mathrm{P}_{\text {maxx.eram }} \\ & +105^{\circ} \mathrm{C} \end{aligned}$			24	dBm
RF input power into terminated ports, CW	$\begin{gathered} \mathrm{P}_{\text {maxтеви }} \\ +125^{\circ} \mathrm{C} \end{gathered}$			20	dBm
Operating temperature range	Top	-40		+125	${ }^{\circ} \mathrm{C}$

Notes: 1. Normal mode: connect pin 20 to GND to enable internal negative voltage generator.
2. Bypass mode: apply a negative voltage to $\mathrm{V}_{\text {SS_EXT }}$ (pin 20) to bypass and disable internal negative voltage generator.
3. The pull-down resistor in the EVK schematic may increase control current.
Table 5. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	$\mathrm{V}_{\text {DD }}$	-0.3	5.5	V
Voltage on any DC input	V_{I}	-0.3	3.6	V
Maximum input power	$\mathrm{P}_{\text {MAX_ABS }}$ $+105{ }^{\circ} \mathrm{C}$		34	dBm
Maximum input power	$\mathrm{P}_{\text {MAX_ABS }}$ $+1255^{\circ} \mathrm{C}$		28	dBm
Storage temperature range	$\mathrm{T}_{\text {ST }}$	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{1} All pins RF pins to ground	$\mathrm{V}_{\text {ESD_HBM }}$		2.0	kV
kV				
ESD voltage MM^{2}, all pins	$\mathrm{V}_{\text {ESD_MM }}$		150	V
ESD voltage CDM 3, all pins	$\mathrm{V}_{\text {ESD_CDM }}$		250	V

Notes: 1. Human Body Model (MIL_STD 883 Method 3015)
2. Machine Model (JEDEC JESD22-A115)
©2013-2021 pSemi Corporation All rights reserved.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Switching Frequency

The PE42442 has a maximum 25 kHz switching rate in normal mode (pin 20 = GND). A faster switching rate is available in bypass mode (pin 20 $=\mathrm{V}_{\text {SS_ExT }}$). The rate at which the PE42442 can be switched is then limited to the switching time as specified in Table 1.

Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42442 in the 24 -lead $4 \times 4 \mathrm{~mm}$ QFN package is MSL1.

Table 6. Truth Table (3-pin control)*

Mode	V3	V2	V1
Unsupported	0	0	0
RF1 on	0	0	1
RF2 on	0	1	0
RF3 on	0	1	1
RF4 on	1	0	0
All off	1	0	1
All off	1	1	0
Unsupported	1	1	

Note: * 3-pin control intended for legacy product support to PE42450 and PE42451 or if All Off mode is required. Logic States 000 and 111 are unsupported and should not be used under any operating conditions.

Table 6A. Truth Table (2-pin control $\left.{ }^{1}\right)^{2}$

Mode	V2	V1
RF4 on	0	0
RF1 on	0	1
RF2 on	1	0
RF3 on	1	1

Notes: 1. Pin $19=$ V3 must be grounded.
2. 2-pin control is recommended for new product designs if All Off mode is not required.

Optional External $\mathbf{V}_{\text {ss }}$ Control ($\mathbf{V}_{\text {ss_ExT }}$)

For applications the require a faster switching rate or spur-free performance, this part can be operated in bypass mode. Bypass mode requires an external negative voltage in addition to an external $V_{D D}$ supply voltage.

As specified in Table 3, the external negative voltage ($\mathrm{V}_{\text {Ss_ExT }}$) when applied to pin 20 will disable and bypass the internal negative voltage

Spurious Performance

The typical low-frequency spurious performance of the PE42442 in normal mode is -120 dBm (pin $20=$ GND). If spur-free performance is desired, the internal negative voltage generator can be disabled by applying a negative voltage to $\mathrm{V}_{\text {Ss_ExT }}$ (pin 20).

Product Specification

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise noted

Figure 4. Insertion Loss (All Paths)

Figure 5. Insertion Loss vs Temp (RFC-RFX)

Figure 6. Insertion Loss vs V_{DD} (RFC-RFX)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise noted

Figure 7. Isolation vs Temp (RFC-RFX)

Figure 9. Isolation vs Temp (RFX-RFX)

Figure 8. Isolation vs V_{DD} (RFC-RFX)

Figure 10. Isolation vs V_{DD} (RFX-RFX)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise noted

Figure 11. Active Port Return Loss vs Temp

Figure 13. RFC Port Return Loss vs Temp

Figure 15. Return Loss (All Ports Terminated)

Figure 12. Active Port Return Loss vs V_{D}

Figure 14. RFC Port Return Loss vs V_{DD}

Figure 16. IIP3 vs Frequency

Evaluation Kit

The SP4T switch Evaluation Board was designed to ease customer evaluation of pSemi's PE42442. The RF common port is connected through a 50Ω transmission line via the top SMA connector. RF1, RF2, RF3, and RF4 are connected through 50Ω transmission lines via side SMA connectors. A through 50Ω transmission is available via SMA connectors RFCAL1 and RFCAL2. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The EVK board is constructed with four metal layers on dielectric materials of Rogers 4003C and 4450 with a total thickness of 32 mils. Layer 1 and layer 3 provide ground for the 50Ω transmission lines. The 50Ω transmission lines are designed in layer 2 for high isolation purpose and use a stripline waveguide design with a trace width of 9.4 mils and trace metal thickness of 1.8 mils. The board stack up for 50Ω transmission lines has 8 mil thickness of Rogers 4003C between layer 1 and layer 2, and 10 mil thickness of Rogers 4450 between layer 2 and layer 3.

Please consult manufacturer's guidelines for proper board material properties in your application. The PCB should be designed in such a way that RF transmission lines and sensitive DC I/O traces such as $\mathrm{V}_{\text {SS_ExT }}$ are heavily isolated from one another, otherwise the true performance of the PE42442 will not be yielded.

Figure 17. Evaluation Board Layout

Figure 18. Evaluation Board Schematic

Figure 19. Package Drawing
24-lead 4×4 mm QFN

$0.10(\mathrm{M}$ C A B $0.05(\mathrm{M})$ C	
ALL FEATURES	

Figure 20. Marking Specifications

$$
\begin{aligned}
\bullet & =\text { Pin } 1 \text { designator } \\
\text { YYWW } & =\text { Date code } \\
\text { ZZZZZ } & =\text { Las five digits of the lot number }
\end{aligned}
$$

Figure 21. Tape and Reel Drawing

SECIINA 1

$$
\begin{aligned}
& A_{0}=4.35 \\
& B_{0}=4.35 \\
& K_{0}=1.1
\end{aligned}
$$

NOTES:

1. 10 SRROXKE HZE PITCH CUMLATIVE TILERNCE 00.2
2. CAYER IN COPLLMCE VITH EIA 481
3. PoXKEI PDSIIIIN RELATIVE TD SproCKET hale Meadeeo

AS TRE PDSIIIIN OF POKEEI, NOT PDCKEI HDEE
Tape Feed Direction

Device Orientation in Tape

Table 7. Ordering Information

Ordering Code	Description	Package	Shipping Method
PE42442A-Z	PE42442 SP4T RF switch	Green 24-lead $4 \times 4 \mathrm{~mm}$ QFN	3000 units/T\&R
EK42442-01	PE42442 Evaluation kit	Evaluation kit	$1 / \mathrm{Box}$

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

No patent rights or licenses to any circuits described in this document are implied or granted to any third party pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.
pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

