Product Specification

PE42520

UltraCMOS ${ }^{\oplus}$ SPDT RF Switch

 9 kHz-13 GHz
Product Description

The PE42520 SPDT absorptive RF switch is designed for use in Test/ATE and other high performance wireless applications. This broadband general purpose switch maintains excellent RF performance and linearity from 9 kHz through 13 GHz . This switch is a pin-compatible upgraded version of PE42552 with higher power handling of 36 dBm continuous wave (CW) and 38 dBm instantaneous power in 50Ω @ 8 GHz . The PE42520 exhibits high isolation, fast settling time, and is offered in a $3 \times 3 \mathrm{~mm}$ QFN package.

The PE42520 is manufactured on pSemi's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration

Figure 1. Functional Diagram

Features

- HaRPTTT technology enhanced
- Fast settling time
- No gate and phase lag
- No drift in insertion loss and phase
- High power handling @ 8 GHz in 50Ω
- 36 dBm CW
- 38 dBm instantaneous power
- 26 dBm terminated port
- High linearity
- 66 dBm IIP3
- Low insertion loss
- 0.8 dB @ 3 GHz
- 0.9 dB @ 10 GHz
- 2.0 dB @ 13 GHz
- High isolation
- 45 dB @ 3 GHz
- 31 dB @ 10 GHz
- 18 dB @ 13 GHz
- ESD performance
- 4 kV HBM on RF pins to GND
- 2.5 kV HBM on all pins
- 1 kV CDM on all pins

Figure 2. Package Type
16-lead $3 \times 3 \mathrm{~mm}$ QFN

Table 1. Electrical Specifications @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ss} _\mathrm{ExT}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} _E x T}=-3.4 \mathrm{~V}$, ($Z_{S}=Z_{L}=50 \Omega$), unless otherwise noted

Parameter	Path	Condition	Min	Typ	Max	Unit
Operation frequency			9 kHz		13 GHz	As shown
Insertion loss	RFC-RFX	$\begin{aligned} & 9 \mathrm{kHz}-10 \mathrm{MHz} \\ & 10 \mathrm{MHz}-3 \mathrm{GHz} \\ & 3 \mathrm{GHz}-7.5 \mathrm{GHz} \\ & 7.5 \mathrm{GHz}-10 \mathrm{GHz} \\ & 10 \mathrm{GHz}-12 \mathrm{GHz} \\ & 12 \mathrm{GHz}-13 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.60 \\ & 0.80 \\ & 0.85 \\ & 0.90 \\ & 1.20 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.00 \\ & 1.05 \\ & 1.10 \\ & 1.65 \\ & 2.70 \end{aligned}$	dB dB dB dB dB dB
Isolation	RFX-RFX	$\begin{aligned} & 9 \mathrm{kHz}-10 \mathrm{MHz} \\ & 10 \mathrm{MHz}-3 \mathrm{GHz} \\ & 3 \mathrm{GHz}-7.5 \mathrm{GHz} \\ & 7.5 \mathrm{GHz}-10 \mathrm{GHz} \\ & 10 \mathrm{GHz}-12 \mathrm{GHz} \\ & 12 \mathrm{GHz}-13 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 70 \\ & 46 \\ & 35 \\ & 24 \\ & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 54 \\ & 38 \\ & 27 \\ & 19 \\ & 17 \end{aligned}$		dB dB dB dB dB dB
Isolation	RFC-RFX	$\begin{aligned} & 9 \mathrm{kHz}-10 \mathrm{MHz} \\ & 10 \mathrm{MHz}-3 \mathrm{GHz} \\ & 3 \mathrm{GHz}-7.5 \mathrm{GHz} \\ & 7.5 \mathrm{GHz}-10 \mathrm{GHz} \\ & 10 \mathrm{GHz}-12 \mathrm{GHz} \\ & 12 \mathrm{GHz}-13 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 80 \\ & 42 \\ & 41 \\ & 26 \\ & 16 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 45 \\ & 44 \\ & 31 \\ & 20 \\ & 18 \end{aligned}$		dB dB dB dB dB dB
Return loss (active port)	RFC-RFX	$9 \mathrm{kHz}-10 \mathrm{MHz}$ $10 \mathrm{MHz}-3 \mathrm{GHz}$ $3 \mathrm{GHz}-7.5 \mathrm{GHz}$ 7.5 GHz-10 GHz $10 \mathrm{GHz}-12 \mathrm{GHz}$ $12 \mathrm{GHz}-13 \mathrm{GHz}$		$\begin{aligned} & 23 \\ & 17 \\ & 15 \\ & 18 \\ & 20 \\ & 10 \end{aligned}$		dB dB dB dB dB dB
Return loss (common port)	RFC-RFX	$\begin{aligned} & 9 \mathrm{kHz}-10 \mathrm{MHz} \\ & 10 \mathrm{MHz}-3 \mathrm{GHz} \\ & 3 \mathrm{GHz}-7.5 \mathrm{GHz} \\ & 7.5 \mathrm{GHz}-10 \mathrm{GHz} \\ & 10 \mathrm{GHz}-12 \mathrm{GHz} \\ & 12 \mathrm{GHz}-13 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 23 \\ & 17 \\ & 15 \\ & 18 \\ & 18 \\ & 10 \end{aligned}$		dB dB dB dB dB dB
Return loss (terminated port)	RFX	$\begin{aligned} & 9 \mathrm{kHz}-10 \mathrm{MHz} \\ & 10 \mathrm{MHz}-3 \mathrm{GHz} \\ & 3 \mathrm{GHz}-7.5 \mathrm{GHz} \\ & 7.5 \mathrm{GHz}-10 \mathrm{GHz} \\ & 10 \mathrm{GHz}-12 \mathrm{GHz} \\ & 12 \mathrm{GHz}-13 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 32 \\ & 24 \\ & 21 \\ & 13 \\ & 8 \\ & 5 \end{aligned}$		dB dB dB dB dB dB
Input 0.1 dB compression point ${ }^{1}$	RFC-RFX	$10 \mathrm{MHz}-13 \mathrm{GHz}$		Fig. 5		dBm
Input IP2	RFC-RFX	834 MHz , 1950 MHz		120		dBm
Input IP3	RFC-RFX	834 MHz , 1950 MHz , and 2700 MHz		66		dBm
Settling time		50% CTRL to 0.05 dB final value		15	20	$\mu \mathrm{S}$
Switching time Note 1. The input 0 -1dB compressio	is a linearity	50% CTRL to 90% or 10% of final value ire of merit Befer to Table. 3 for the BF innut nower P $\mathrm{P}_{\mathbf{w}}$ (50)		5.5	9.5	$\mu \mathrm{S}$

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
2	RF1 1	RF port 1
$1,3,4,5$, $6,8,9,10$, 12	GND	Ground
7	RFC 1	RF common
11	RF2 1	RF port 2
13	V Ss_ExT 2	External V ${ }_{\text {Ss }}$ negative voltage control
14	CTRL 15	Digital control logic input
16	LS	Logic Select - used to determine the definition for the CTRL pin (see Table 5)
Pad	GND	Supply voltage
Exposed pad: ground for proper operation		

Notes: 1. RF pins 2, 7 and 11 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.
2. Use $\mathrm{V}_{\text {Ss_ExT }}$ (pin 13) to bypass and disable internal negative voltage generator. Connect $\mathrm{V}_{\text {SS_ExT }}\left(\right.$ pin 13) to $\mathrm{GND}\left(\mathrm{V}_{\text {SS_ExT }}=0 \mathrm{~V}\right)$ to enable internal negative voltage generator.

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage (normal mode, $\left.\mathrm{V}_{\text {SS_EXT }}=0 \mathrm{~V}\right)^{1}$	$V_{\text {DD }}$	2.3		5.5	V
Supply voltage (bypass mode, $\mathrm{V}_{\text {ss_Ext }}=-3.4 \mathrm{~V}$, $V_{D D} \geq 3.4 \mathrm{~V}$ for full spec. compliance) ${ }^{2}$	$V_{\text {DD }}$	2.7	3.4	5.5	V
Negative supply voltage (bypass mode) ${ }^{2}$	$\mathrm{V}_{\text {SS_EXT }}$	-3.6		-3.2	V
Supply current (normal mode, $\left.\mathrm{V}_{\text {ss_Ext }}=0 \mathrm{~V}\right)^{1}$	$I_{\text {DD }}$		120	200	$\mu \mathrm{A}$
Supply current (bypass mode, $\left.\mathrm{V}_{\text {ss_ExT }}=-3.4 \mathrm{~V}\right)^{2}$	$I_{\text {DD }}$		50	80	$\mu \mathrm{A}$
Negative supply current (bypass mode, $\mathrm{V}_{\text {SS_ExT }}=$ $-3.4 \mathrm{~V})^{2}$	$I_{\text {ss }}$	-40	-16		$\mu \mathrm{A}$
Digital input high (CTRL)	V_{IH}	1.17		3.6	V
Digital input low (CTRL)	$\mathrm{V}_{\text {IL }}$	-0.3		0.6	V
Digital input current	$\mathrm{I}_{\text {ctrL }}$			10	$\mu \mathrm{A}$
RF input power, CW (RFC-RFX) ${ }^{3}$ $\begin{array}{r} 9 \mathrm{kHz} \leq \quad 10 \mathrm{MHz} \\ 10 \mathrm{MHz} \leq 8 \mathrm{GHz} \\ 8 \mathrm{GHz} \leq 13 \mathrm{GHz} \end{array}$	$\mathrm{P}_{\text {In_cw }}$			$\begin{gathered} \text { Fig. } 4 \\ 36 \\ \text { Fig. } 5 \end{gathered}$	dBm dBm dBm
RF input power, pulsed $\begin{array}{r} (\mathrm{RFC}-\mathrm{RFX})^{4} \\ 9 \mathrm{kHz} \leq 10 \mathrm{MHz} \\ 10 \mathrm{MHz} \leq 13 \mathrm{GHz} \end{array}$	$\mathrm{P}_{\text {in_pulsed }}$			Fig. 4 Fig. 5	dBm dBm
RF input power, hot switch, CW ${ }^{3}$ $\begin{array}{r} 9 \mathrm{kHz} \leq 300 \mathrm{kHz} \\ 300 \mathrm{kHz} \leq 13 \mathrm{GHz} \end{array}$	$\mathrm{Pin}_{\text {in_hot }}$			$\begin{gathered} \text { Fig. } 4 \\ 20 \end{gathered}$	dBm dBm
RF input power into terminated ports, CW $\begin{array}{r} (\mathrm{RFX})^{3} \\ 9 \mathrm{kHz} \leq 600 \mathrm{kHz} \\ 600 \mathrm{kHz} \leq 13 \mathrm{GHz} \end{array}$	$\mathrm{P}_{\text {in_term }}$			$\begin{gathered} \text { Fig. } 4 \\ 26 \end{gathered}$	dBm dBm
Operating temperature range Notes: 1. Normal mode: con	T_{OP} V^{2}	-40	$+25$ GND-(V	$\begin{aligned} & +85 \\ & +\quad 0 \end{aligned}$	${ }^{\circ} \mathrm{C}$

enable internal negative voltage generator.
2. Bypass mode: use $\mathrm{V}_{\text {ss_Ext }}$ (pin 13) to bypass and disable internal negative voltage generator.
3. 100% duty cycle, all bands, 50Ω.
4. Pulsed, 5% duty cycle of 4620μ s period, 50Ω.

Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	$V_{\text {D }}$	-0.3	5.5	V
Digital input voltage (CTRL)	$\mathrm{V}_{\text {ctRL }}$	-0.3	3.6	V
LS input voltage	$\mathrm{V}_{\text {LS }}$	-0.3	3.6	V
$\begin{aligned} & \begin{array}{l} \text { RF input power, } \mathrm{CW} \\ (\text { (RFC-RFX) } \end{array} \\ & \quad 9 \mathrm{kHz} \leq \quad 10 \mathrm{MHz} \\ & 10 \mathrm{MHz} \leq 8 \mathrm{GHz} \\ & \\ & 8 \mathrm{GHz} \leq 13 \mathrm{GHz} \end{aligned}$	Pin_cw		$\begin{gathered} \text { Fig. } 4 \\ 36 \\ \text { Fig. } 5 \end{gathered}$	dBm dBm dBm
$\begin{aligned} & \begin{array}{l} \text { RF input power, pulsed } \\ (\text { (RFC-RFX) } \end{array} \\ & 9 \mathrm{kHz} \leq 10 \mathrm{MHz} \\ & 10 \mathrm{MHz} \leq 13 \mathrm{GHz} \end{aligned}$	Pin_pulsed		$\begin{aligned} & \text { Fig. } 4 \\ & \text { Fig. } 5 \end{aligned}$	dBm dBm
RF input power into terminated ports, CW (RFX) ${ }^{1}$ $\begin{array}{r} 9 \mathrm{kHz} \leq 10 \mathrm{MHz} \\ 10 \mathrm{MHz} \leq 13 \mathrm{GHz} \end{array}$	$\mathrm{Pin}_{\text {I_term }}$		$\begin{gathered} \text { Fig. } 4 \\ 26 \end{gathered}$	dBm dBm
Maximum junction temperature	$\mathrm{T}_{\text {J_MAX }}$		+150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {st }}$	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{3} RF pins to GND All pins	$\mathrm{V}_{\text {ESD_HBM }}$		$\begin{aligned} & 4000 \\ & 2500 \end{aligned}$	V
ESD voltage MM^{4}, all pins	$\mathrm{V}_{\text {ESD_M }}$		200	V
ESD voltage CDM ${ }^{5}$, all pins	$\mathrm{V}_{\text {ESD_CDM }}$		1000	V

Notes: 1. 100% duty cycle, all bands, 50Ω.
2. Pulsed, 5% duty cycle of 4620μ s period, 50Ω.
3. Human Body Model (MIL-STD 883 Method 3015).
4. Machine Model (JEDEC JESD22-A115).
5. Charged Device Model (JEDEC JESD22-C101).

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Switching Frequency

The PE42520 has a maximum 25 kHz switching rate when the internal negative voltage generator is used (pin $13=$ GND). The rate at which the PE42520 can be switched is only limited to the switching time (Table 1) if an external negative supply is provided (pin $13=\mathrm{V}_{\text {Ss_ExT }}$).

Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its

Optional External Vss Control (Vss_xxt $)$

For proper operation, the $\mathrm{V}_{\text {SS_ExT }}$ control pin must be grounded or tied to the V_{SS} voltage specified in Table 3. When the $\mathrm{V}_{\text {Ss_Ext }}$ control pin is grounded, FETs in the switch are biased with an internal negative voltage generator. For applications that require the lowest possible spur performance, $\mathrm{V}_{\text {Ss_ExT }}$ can be applied externally to bypass the

Spurious Performance

The typical spurious performance of the PE42520 is -152 dBm when $\mathrm{V}_{\text {SS_Ext }}=0 \mathrm{~V}$ (pin $13=G N D$). If further improvement is desired, the internal negative voltage generator can be disabled by setting $\mathrm{V}_{\text {SS_ExT }}=-3.4 \mathrm{~V}$.

Table 5. Control Logic Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	off	on
0	1	on	off
1	0	on	off
1	1	off	on

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42520 in the 16 -lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL3.

Logic Select (LS)

The Logic Select feature is used to determine the definition for the CTRL pin.

Thermal Data

Psi-JT ($\Psi_{J T}$), junction top-of-package, is a thermal metric to estimate junction temperature of a device on the customer application PCB (JEDEC JESD51-2).
$\Psi_{J T}=\left(T_{J}-T_{T}\right) / P$
where
$\Psi_{J T}=$ junction-to-top of package characterization parameter, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{J}}=$ die junction temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{T}}=$ package temperature (top surface, in the center), ${ }^{\circ} \mathrm{C}$
$\mathrm{P}=$ power dissipated by device, Watts

Table 6. Thermal Data for PE42520

Parameter	Typ	Unit
$\Psi_{\text {JT }}$	51	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Theta_{\text {JA, junction-to-ambient thermal resistance }}$	79	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 4. Power De-rating Curve for $9 \mathrm{kHz}-10 \mathrm{MHz}(50 \Omega)$

Figure 5a. Power De-rating Curve for $10 \mathrm{MHz} \mathbf{- 1 3 ~ G H z} @+25{ }^{\circ} \mathrm{C}$ Ambient (50』)

Figure 5b. Power De-rating Curve for $10 \mathrm{MHz}-13 \mathrm{GHz} @+85{ }^{\circ} \mathrm{C}$ Ambient (50 $)$

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$, unless otherwise specified

Figure 6. Insertion Loss vs. Temp (RFC-RF1)

Figure 8. Insertion Loss vs. Temp (RFC-RF2)

Figure 7. Insertion Loss vs. $V_{\text {DD }}$ (RFC-RF1)

Figure 9. Insertion Loss vs. V_{DD} (RFC-RF2)

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$, unless otherwise specified (Cont.)

Figure 10. RFC Port Return Loss vs. Temp (RF1 Active)

Figure 12. RFC Port Return Loss vs. Temp (RF2 Active)

Figure 11. RFC Port Return Loss vs. V_{DD} (RF1 Active)

Figure 13. RFC Port Return Loss vs. V_{DD} (RF2 Active)

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$, unless otherwise specified (Cont.)

Figure 14. Active Port Return Loss vs. Temp (RF1 Active)

Figure 16. Active Port Return Loss vs. Temp (RF2 Active)

Figure 15. Active Port Return Loss vs. V_{DD} (RF1 Active)

Figure 17. Active Port Return Loss vs. V_{DD} (RF2 Active)

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$, unless otherwise specified (Cont.)

Figure 18. Terminated Port Return Loss vs. Temp (RF1 Active)

Figure 20. Terminated Port Return Loss vs. Temp (RF2 Active)

Figure 19. Terminated Port Return Loss vs. V_{DD} (RF1 Active)

Figure 21. Terminated Port Return Loss vs. V_{DD} (RF2 Active)

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$, unless otherwise specified (Cont.)

Figure 22. Isolation vs. Temp
(RF1-RF2, RF1 Active)

Figure 24. Isolation vs. Temp (RF2-RF1, RF2 Active)

Figure 23. Isolation vs. V_{DD}
(RF1-RF2, RF1 Active)

Figure 25. Isolation vs. V_{DD} (RF2-RF1, RF2 Active)

Typical Performance Data @ $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.4 \mathrm{~V}$, unless otherwise specified (Cont.)

Figure 26. Isolation vs. Temp (RFC-RF2, RF1 Active)

Figure 28. Isolation vs. Temp (RFC-RF1, RF2 Active)

Figure 27. Isolation vs. V_{DD}
(RFC-RF2, RF1 Active)

Figure 29. Isolation vs. V_{DD} (RFC-RF1, RF2 Active)

Evaluation Kit

The SPDT switch evaluation board was designed to ease customer evaluation of pSemi's PE42520. The RF common port is connected through a 50Ω transmission line via the SMA connector, J1. RF1 and RF2 ports are connected through 50Ω transmission lines via SMA connectors J2 and J3, respectively. A 50Ω through transmission line is available via SMA connectors J5 and J6, which can be used to de-embed the loss of the PCB. J4 provides DC and digital inputs to the device.

For the true performance of the PE42520 to be realized, the PCB should be designed in such a way that RF transmission lines and sensitive DC I/O traces are heavily isolated from one another.

Figure 30. Evaluation Kit Layout

Figure 31. Evaluation Board Schematic

Notes: 1. Use PRT-30186-02 PCB.
2. CAUTION: Contains parts and assemblies susceptible to damage by electrostatic discharge (ESD).

Figure 32. Package Drawing

Figure 33. Top Marking Specifications

DOC-66052

- = Pin 1 designator

YY = Last two digits of assembly year
WW = Assembly work week
ZZZZZ = Assembly lot code (maximum six characters)

Figure 34. Tape and Reel Specifications
Notes:

1. Measured from centerline of sprocket hole to centerline of pocket.
2. Cumulative tolerance of 10 sprocket holes ± 0.20.
3. Measured from centerline of sprocket hole to centerline of sprocket.
Dimensions are in millimeters unless otherwise specified.

Device Orientation in Tape
Table 7. Ordering Information

Order Code	Description	Package	Shipping Method
PE42520C-Z	PE42520 SPDT RF switch	Green 16-lead $3 \times 3 \mathrm{~mm}$ QFN	3000 units / T\&R
EK42520-03	PE42520 Evaluation kit	Evaluation kit	$1 /$ Box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).
 The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

 No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. psemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
 The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.
 pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com.

