Product Specification

PE42641

Product Description

The PE42641 is a HaRPTM-enhanced SP4T RF switch developed on the UltraCMOS ${ }^{\circledR}$ process technology. This switch contains 4 identical WEDGE/CDMA compliant TX paths and can be used in various GSM and WCDMA mobile applications as well as other wireless applications up to 3000 MHz . It is also suitable for antenna band switching and switchable matching networks for cellular and non-cellular mobile applications. It integrates onboard CMOS control logic with a low voltage CMOScompatible control interface and requires no DC blocking capacitors. This RoHS-compliant part is available in a standard $3 \times 3 \times 0.75 \mathrm{~mm}$ QFN package.

Peregrine's HaRPTM technology enhancements deliver high linearity and exceptional harmonics performance. It is an innovative feature of the UltraCMOS ${ }^{\circledR}$ process, providing performance superior to GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

SP4T UltraCMOS ${ }^{\circledR}$ RF Switch

 $100 \mathrm{MHz}-3.0 \mathrm{GHz}$
Features

- Symmetric, High-Power SP4T: All ports WEDGE/CDMA-Compliant
- Very Low Insertion Loss: 0.45 dB @ $1000 \mathrm{MHz}, 0.6 \mathrm{~dB}$ @ 2000 MHz
- HaRP ${ }^{\text {TM }}$ - enhanced Technology for Unparalleled Linearity
- Low harmonics of $2 \mathrm{f}_{0}=-86 \mathrm{dBc}$ and $3 f_{o}=-81 \mathrm{dBc}$ at +35 dBm
- IMD3 of -110 dBm at WCDMA Band I
- IIP3 of +68 dBm
- Very high isolation: $35 \mathrm{~dB} @ 900 \mathrm{MHz}$, 29 dB @ 1900 MHz
- Exceptionally high ESD tolerance:
- Class 3 (4.0 kV HBM) on ANT pin
- Class 2 (2.0 kV HBM) on all pins
- Integrated decoder for 2-pin control
- Accepts 1.8 V and 2.75 V levels
- Low 4.5 ohm series ON resistance
- No blocking capacitors required

Figure 2. Package Type
16-lead $3 \times 3 \mathrm{~mm}$ QFN

Table 1. Electrical Specifications Temp $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}\left(Z_{S}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Condition	Min	Typ	Max	Units
Operational Frequency		100		3000	MHz
Insertion Loss ${ }^{1}$ (Symmetric Ports)	ANT - RF ($850 / 900 \mathrm{MHz}$) ANT - RF (1800 / 1900 MHz) ANT - RF (1900 / 2200 MHz)		$\begin{gathered} 0.45 \\ 0.5 \\ 0.55 \end{gathered}$	$\begin{gathered} \hline 0.65 \\ 0.7 \\ 0.75 \end{gathered}$	dB dB dB
Return Loss (Active Ports)	$\begin{aligned} & \hline 850 / 900 \mathrm{MHz} \\ & 1800 / 1900 \mathrm{MHz} \\ & 1900 / 2100 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 25 \\ & 19 \\ & 18 \end{aligned}$		dB dB dB
Isolation	$\begin{aligned} & \text { RF - ANT (} 850 / 900 \mathrm{MHz}) \\ & \text { RF - ANT (} 1800 / 1900 \mathrm{MHz} \text {) } \\ & \text { RF - ANT (} 1900 / 2200 \mathrm{MHz} \text {) } \end{aligned}$	$\begin{gathered} \hline 31 \\ 25 \\ 23.5 \end{gathered}$	$\begin{gathered} \hline 35 \\ 29 \\ 27.5 \end{gathered}$		dB dB dB
2nd Harmonic	35 dBm output power, $850 / 900 \mathrm{MHz}$ 33 dBm output power, $1800 / 1900 \mathrm{MHz}$		$\begin{aligned} & -86 \\ & -87 \end{aligned}$	$\begin{aligned} & -80 \\ & -78 \end{aligned}$	$\begin{array}{r} \hline \mathrm{dBc} \\ \mathrm{dBc} \\ \hline \end{array}$
3rd Harmonic	35 dBm output power, 850 / 900 MHz 33 dBm output power, 1800 / 1900 MHz		$\begin{aligned} & -81 \\ & -80 \end{aligned}$	$\begin{aligned} & \hline-73.5 \\ & -72.5 \end{aligned}$	dBc dBc
IMD3 distortion at 2.14 GHz	RF Measured at 2.14 GHz at Ant port, input +20 dBm CW signal at 1.95 GHz and -15 dBm CW signal at 1.76 GHz		-110		dBm
Switching time	(10-90\%) (90-10\%) RF		2	5	$\mu \mathrm{s}$

Note: 1 . The typical ON Resistance value at DC is 4.5Ω

Table 2. Electrical Specifications, Worst Case Conditions: Temp $=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.65 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Condition	Min	Typ	Max	Units
Insertion loss (2.65V, 85C)	ANT - RF ($850 / 900 \mathrm{MHz}$) ANT - RF (1800 / 1900 MHz) ANT - RF (1900 / 2200 MHz)		$\begin{gathered} \hline 0.5 \\ 0.55 \\ 0.6 \end{gathered}$	$\begin{gathered} \hline 0.7 \\ 0.75 \\ 0.8 \end{gathered}$	dB dB dB
Return Loss (Active Ports) (2.65V, 85C)	$\begin{aligned} & 850 / 900 \mathrm{MHz} \\ & 1800 / 1900 \mathrm{MHz} \\ & 1900 / 2100 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 25 \\ & 19 \\ & 18 \end{aligned}$		dB dB dB
Isolation (2.65V, 85C)	$\begin{aligned} & \hline \text { RF - ANT (} 850 \text { / } 900 \mathrm{MHz} \text {) } \\ & \text { RF - ANT (} 1800 \text { / } 1900 \mathrm{MHz} \text {) } \\ & \text { RF - ANT (} 1900 \text { / } 2200 \mathrm{MHz} \text {) } \end{aligned}$	$\begin{gathered} \hline 30.5 \\ 24.5 \\ 23 \end{gathered}$	$\begin{gathered} \hline 34.5 \\ 28.5 \\ 27 \end{gathered}$		dB dB dB
2nd Harmonic (2.65V, 85C)	35 dBm output power, 850 / 900 MHz 33 dBm output power, $1800 / 1900 \mathrm{MHz}$		$\begin{aligned} & -84 \\ & -85 \end{aligned}$	$\begin{aligned} & -78 \\ & -76 \end{aligned}$	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$
3rd Harmonic (2.65V, 85C)	35 dBm output power, $850 / 900 \mathrm{MHz}$ 33 dBm output power, 1800 / 1900 MHz		$\begin{aligned} & -79 \\ & -78 \end{aligned}$	$\begin{aligned} & \hline-71.5 \\ & -70.5 \end{aligned}$	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$
IMD3 distortion at 2.14 GHz (2.65V, 85C)	RF Measured at 2.14 GHz at Ant port, input +20 dBm CW signal at 1.95 GHz and -15 dBm CW signal at 1.76 GHz		-108		dBm
Switching time	(10-90\%) (90-10\%) RF		2	5	$\mu \mathrm{s}$

Figure 3. Pin Configuration (Top View)

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1	GND	Ground
2	V_{DD}	Supply
3	V2	Switch control input, CMOS logic level
4	V1	Switch control input, CMOS logic level
5	GND	Ground
6	RF4 ${ }^{2}$	RF Port 4
7	GND	Ground
8	RF3 ${ }^{2}$	RF Port 3
9	GND	Ground
10	GND	Ground
11	ANT^{2}	RF Common - Antenna
12	GND	Ground
13	RF1 ${ }^{2}$	RF Port 1
14	GND	Ground
15	RF2 ${ }^{2}$	RF Port 2
16	N/C	No Connect
Paddle	GND	Ground for proper device operation

Note: 2. Blocking capacitors needed only when non-zero DC voltage present
Table 4. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Units
Temperature range	Top	-40		+85	${ }^{\circ} \mathrm{C}$
$V_{\text {DD }}$ Supply Voltage	$V_{\text {DD }}$	2.65	2.75	2.85	V
IDD Power Supply Current ($\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$)	I_{DD}		13	50	$\mu \mathrm{A}$
$\begin{array}{r} \text { RF input power }{ }^{3}(\text { VSWR } \leq 3: 1) \\ 824-915 \mathrm{MHz} \end{array}$	Pin			+35	dBm
$\begin{array}{\|r} \text { RF input power }{ }^{3}(\text { VSWR } \leq 3: 1) \\ 1710-1910 \mathrm{MHz} \end{array}$				+33	
Control Voltage High	$\mathrm{V}_{1 \mathrm{H}}$	1.4			V
Control Voltage Low	V_{IL}			0.4	V

Note: 3. Assumes RF input period of $4620 \mu \mathrm{~s}$ and duty cycle of 50%
Document No. DOC-17914-2 | www.psemi.com

Table 5. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	4.0	V
V_{1}	Voltage on any DC input	-0.3	$V_{\text {DD }}+0.3$	V
$\mathrm{T}_{\text {ST }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$
$\operatorname{Pin}(50 \Omega)$	$\begin{array}{\|l\|} \hline \text { RF input power }(50 \Omega)^{4,5} \\ 824-915 \mathrm{MHz} \end{array}$		+38	dBm
	$\begin{array}{\|l\|} \hline \text { RF input power }(50 \Omega)^{4,5} \\ 1710-1910 \mathrm{MHz} \end{array}$		+36	
PIN (${ }_{\text {a }}$: 1)	$\begin{array}{r} \text { RF input power }\left(\begin{array}{r} \text { VSWR }=(\infty: 1)^{4,5} \\ 824-915 \mathrm{MHz} \end{array}\right. \end{array}$		+35	dBm
	RF input power $\left(\right.$ VSWR $=(\infty: 1)^{4,5}$ $1710-1910 \mathrm{MHz}$		+33	
$V_{\text {ESD }}{ }^{6}$	ESD Voltage, ANT pin		4000	V
	ESD Voltage, all pins		2000	V

Notes: 4. Assumes RF input period of 4620μ s and duty cycle of 50%
5. V_{DD} within operating range specified in Table 4
6. ESD Voltage (HBM, MIL-STD-883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Table 6. Truth Table

Path	V2	V1
ANT - RF1	0	0
ANT - RF2	1	0
ANT - RF3	0	1
ANT - RF4	1	1

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESDsensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42641 in the 16 -lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL1.

Evaluation Kit

The SP4T switch EK Board was designed to ease customer evaluation of Peregrine's PE42641. The RF common port is connected through a 50Ω transmission line via the top SMA connector, J1. RF1, RF2, RF3 and RF4 are connected through 50Ω transmission lines via SMA connectors J3, J5, J2 and J4, respectively. A through 50Ω transmission is available via SMA connectors J6 and J7. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a four metal layer FR4 material with a total thickness of 62 mils. The middle layers provide ground for the transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 32 mils, trace gaps of 25 mils, and metal thickness of 2.1 mils.

Figure 4. Evaluation Board Layouts
Peregrine Specification 101/0287

Figure 5. Evaluation Board Schematic Peregrine Specification 102/0339

Figure 6. Insertion Loss: ANT-RF @ $25^{\circ} \mathrm{C}$

Figure 8. Isolation: ANT-RF @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 7. Insertion Loss: ANT-RF @ 2.75V

Figure 9. Isolation: ANT-RF @ 2.75V

Figure 10. Return Loss at active port @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 11. Return Loss at active port @ 2.75V

Figure 12. Package Drawing

		QFN 3x3 mm
$\boldsymbol{*} \boldsymbol{A}$	MAX	0.800
	NOM	0.750
	MIN	0.700

Figure 13. Tape and Reel Specifications
16 -lead $3 \times 3 \mathrm{~mm}$ QFN

NTIES:

2. [MMER IN CDPPLINIE WITH EIA 48l
 AS TAE PDSITIDN F PICKET, NII PICKET HEE

Device Orientation in Tape

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
PE42641MLBD-Z	42641	PE42641 SP4T RF switch	Green 16 -lead $3 \times 3 \mathrm{~mm}$ QFN	3000 units $/$ T\&R
EK42641-04	PE42641EK	PE42641 Evaluation kit	Evaluation Kit	$1 /$ Box

Sales Contact and Information

For Sales and contact information please visit www.psemi.com.

[^0] or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form)
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

