Product Specification

PE42721

UltraCMOS ${ }^{\circledR}$ SPDT RF Switch 5-2200 MHz

Product Description

The PE42721 is a HaRPTM technology-enhanced absorptive 75Ω SPDT RF switch developed on the UltraCMOS ${ }^{\circledR}$ process technology.

PE42721 is a highly linear device delivering high isolation and very low insertion loss performance. It is designed for broadband applications such as TV tuner modules, CATV signal switching and distribution, DTV, multi-tuner digital video recorders (DVRs) and set-top boxes.

PE42721 supports +1.8 V control logic and offers high ESD protection. PE42721 is pin compatible to PE42750. In addition, no blocking capacitors are required if DC voltage is not present on the RF ports.

Peregrine's HaRP™ technology enhancement is an innovative feature of the UltraCMOS ${ }^{\circledR}$ process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

Features

- HaRP ${ }^{\text {™ }}$ technology enhanced
- High linearity
- CTB of -99 dBc
- CSO better than -105 dBc
- Supports +1.8 V control logic
- Low insertion loss
- 0.40 dB @ 220 MHz
- 0.50 dB @ 870 MHz
- 0.65 dB @ 2200 MHz
- High isolation
- 85 dB @ 220 MHz
- 68 dB @ 870 MHz
- 53 dB @ 2200 MHz
- ESD performance
- $3 k V$ HBM on RF pins to GND
- 2 kV HBM on all other pins
- 1 kV CDM on all pins

Figure 2. Package Type 12-lead 3x3 mm QFN

Table 1. Electrical Specifications Temp $=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega\right)$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operational frequency			5		2200	MHz
Insertion loss	RFC-RFX	$5-220 \mathrm{MHz}$		0.40	0.55	dB
		221-870 MHz		0.50	0.70	dB
		871-2200 MHz		0.65	0.85	dB
Isolation	RFX-RFX	$5-220 \mathrm{MHz}$	81	85		dB
		$221-870 \mathrm{MHz}$	65	68		dB
		$871-2200 \mathrm{MHz}$	52	53		dB
Isolation	RFC-RFX	$5-220 \mathrm{MHz}$	68	70		dB
		$221-870 \mathrm{MHz}$	57	59		dB
		871-2200 MHz	53	55		dB
Return loss	All ports	870 MHz		18		dB
		2200 MHz		15		dB
Input 0.1 dB compression ${ }^{1,2}$	RFC-RFX	$45-1000 \mathrm{MHz}$		27		dBm
IIP2 ${ }^{3}$	RFX	$45-2200 \mathrm{MHz}$		110		dBm
IIP3	RFX	5-2200 MHz		60		dBm
СТВ		159 channels; 42 dBmV per channel output power		-99		dBc
CSO		159 channels; 42 dBmV per channel output power		<-105		dBc
Cross modulation distortion		159 channels; 42 dBmV per channel output power		-89.5		dBc
Video feedthrough		DC measurement		4		mV PP
Switching time		50% CTRL to 90% or 10% RF		1	1.5	$\mu \mathrm{s}$

Notes: 1. The input 0.1 dB compression point $(\mathrm{P} 0.1 \mathrm{~dB})$ is a linearity figure of merit. Refer to Table 3 for the RF input power P_{IN} 2. $\mathrm{P} 0.1 \mathrm{~dB}=25 \mathrm{dBm} @ 2.2 \mathrm{GHz}$
3. IIP2 = 83 dBm @ 5 MHz

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
1	GND	RF Ground
2	RF1 1	RF Port 1
3	GND	RF Ground
4	GND	RF Ground
5	RFC 1	RF Common
6	GND	RF Ground
7	GND	RF Ground
8	RF2	
9	GND	RF Ground
10	CTRL2	Digital control logic input 2
11	CTRL1	Digital control logic input 1
12	VDD	Supply Voltage
Pad	GND	Exposed pad: Ground for proper operation

Note 1: RF pins 2, 5, and 8 must be at OV DC. The RF pins do not require DC blocking capacitors for proper operation if the OV DC requirement is met

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	2.3	3.3	5.5	V
Supply current	IDD		110	200	$\mu \mathrm{A}$
Digital input high (CTRL1, CTRL2)	$\mathrm{V}_{\text {IH }}$	1.17		3.6	V
Digital input low (CTRL1, CTRL2)	VIL	-0.3		0.6	V
Digital input current	$\mathrm{I}_{\text {ctri }}$			1	$\mu \mathrm{A}$
$\begin{array}{\|l} \begin{array}{l} \text { RF input power } \\ (\text { RFC-RFX })^{1} \\ 5 \end{array} \\ 5 \leq 45 \mathrm{MHz} \\ 45 \end{array}$	Pin			$\begin{aligned} & 18 \\ & 22 \end{aligned}$	dBm dBm
RF input power into terminated ports (RFX) ${ }^{1}$ $\begin{array}{r} 5 \leq 45 \mathrm{MHz} \\ 45 \leq 2200 \mathrm{MHz} \end{array}$	$\mathrm{P}_{\text {in,term }}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$	dBm dBm
Operating temperature range	Top	-40	+25	+85	${ }^{\circ} \mathrm{C}$

Note 1: 100% duty cycle, all bands, 75Ω
Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	$V_{D D}$	-0.3	5.5	V
Digital input voltage	$\mathrm{V}_{\text {ctRL }}$	-0.3	3.6	V
$\begin{array}{\|lr} \begin{array}{l} \text { RF input power } \\ \text { (RFC-RFX) } \end{array} \\ & 5 \leq 45 \mathrm{MHz} \\ & 45 \leq 2200 \mathrm{MHz} \end{array}$	Pin		$\begin{aligned} & 18 \\ & 22 \end{aligned}$	dBm dBm
RF input power into terminated ports (RFX) ${ }^{1}$ $\begin{array}{r} 5 \leq 45 \mathrm{MHz} \\ 45 \leq 2200 \mathrm{MHz} \end{array}$	$\mathrm{P}_{\text {in,term }}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	dBm dBm
Storage temperature range	$\mathrm{T}_{\text {st }}$	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{2} RF pins to GND All other pins	$\mathrm{V}_{\text {ESD,Hbм }}$		$\begin{aligned} & 3000 \\ & 2000 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
ESD voltage MM^{3}, all pins	$\mathrm{V}_{\text {ESD,MM }}$		100	V
ESD Voltage CDM ${ }^{4}$, all pins	$\mathrm{V}_{\text {ESD,CDM }}$		1000	V

Notes: 1.100\% duty cycle, all bands, 75Ω
2. Human Body Model (MIL-STD-883 Method 3015)
3. Machine Model (JEDEC JESD22-A115)
4. Charged Device Model (JEDEC JESD22-C101)

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\text {® }}$ devices are immune to latch-up.

Switching Frequency

The PE42721 has a maximum 25 kHz switching rate.

Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value. Switching time is provided in Table 1.

Table 5. Truth Table ${ }^{1}$

C1	C2	RFC - RF1	RFC - RF2
Low	Low	ON	OFF
Low	High	OFF	ON
High	Low	OFF	ON
High	High	ON	OFF

Note 1: A versatile logic table has been established to allow either C1 or C2 to act as a single pin control and in either polarity

Spurious Performance

The typical spurious performance of the PE42721 is -124 dBm .

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42721 in the 12-lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL1.

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 4. Insertion Loss (RFC-RFX)

Figure 5. Insertion Loss vs. Temp (RFC-RFX)

Figure 6. Insertion Loss vs. VDD (RFC-RFX)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 7. RFC Port Return Loss vs. Temp (RF1 Active)

Figure 9. RFC Port Return Loss vs. Temp (RF2 Active)

Figure 8. RFC Port Return Loss vs. V_{DD} (RF1 Active)

Figure 10. RFC Port Return Loss vs. V_{DD} (RF2 Active)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 11. Active Port Return Loss vs. Temp (RF1 Active)

Figure 13. Active Port Return Loss vs. Temp (RF2 Active)

Figure 12. Active Port Return Loss vs. V_{DD} (RF1 Active)

Figure 14. Active Port Return Loss vs. V_{DD} (RF2 Active)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 15. Isolation vs. Temp (RFX-RFX)

Figure 17. Isolation vs. Temp (RFC-RFX)

Figure 16. Isolation vs. $V_{\text {DD }}$ (RFX-RFX)

Figure 18. Isolation vs. V_{DD} (RFC-RFX)

Evaluation Board

The SPDT switch evaluation board was designed to ease customer evaluation of Peregrine's PE42721. The RF common port is connected through a 75Ω transmission line via the F-Type connector, J2. RF1 and RF2 ports are connected through 75Ω transmission lines via F-Type connectors J 1 and J 3 , respectively. A 75Ω through transmission line is available via F-Type connectors J 4 and J 5 , which can be used to de-embed the loss of the PCB. J6 provides DC and digital inputs to the device.

Figure 19. Evaluation Board Layout

Figure 20. Evaluation Board Schematic

NOTES:

1. USE 101-0491-01
2. CAUTION

CONTANS PARTS AND ASSEMBLES SUSCEPTIBLE
TO DAMAGE BYELECTROSTABC DSCCHARGE (ESD)
3. ALI TRANSMISKN LINES ARE:

12MI WDTH, 12MIL GAPS, 28MI CORE DIELECTRIC
4.3 ETAND 2.1MIL CU THCKNESS.

Figure 21. Package Drawing
12-lead 3×3 mm QFN

Figure 22. Top Marking Specifications

$$
\begin{aligned}
& =\text { Pin } 1 \text { designator } \\
\mathrm{YY} & =\text { Last two digits of assembly year } \\
\mathrm{WW} & =\text { Assembly work week } \\
\text { ZZZZZZ } & =\text { Assembly lot code (maximum six characters) }
\end{aligned}
$$

DOC-64916

Figure 23. Tape and Reel Drawing

NDTES:

1. 10 SPRACKET HOLE PITCH CUMMLATIVE TILERACE 00.2
2. LAMBR IN CLMPLIAME MITH EIA 481
3. PDCKE PISITITN 田ATIVE TD SPRCCKET HILE MEESLIRED

AS TAE PISIITIN GF PCCKET, NUI PCLKET HEE
Ao $=3.30 \pm 0.1 \mathrm{~mm}$
$\mathrm{Bo}=3.30 \pm 0.1 \mathrm{~mm}$
$\mathrm{Ko}=1.10 \pm 0.1 \mathrm{~mm}$

Device Orientation in Tape

Table 6. Ordering Information

Order Code	Description	Package	Shipping Method
PE42721MLBA-Z	PE42721 SPDT RF switch	Green 12-lead 3x3 mm QFN	3000 units/T\&R
EK42721-02	PE42721 Evaluation kit	Evaluation kit	$1 / B o x$

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. specifications for product development. Specifications and features may change in any manner without notice.
 Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

