Document Category: Product Specification

UltraCMOS® SPDT RF Switch, 5-1794 MHz

Features

- Supports DOCSIS 3.0/1 requirements
- Exceptional harmonics
- 2fo of -121 dBc @ 17 MHz
- 3fo of $-150 \mathrm{dBc} @ 17 \mathrm{MHz}$
- Best in class linearity across frequency band
- Low insertion loss and high isolation performance
- Insertion loss of 0.3 dB @ 1218 MHz
- Isolation of $39 \mathrm{~dB} @ 204 \mathrm{MHz}$
- Packaging -12 -lead $3 \times 3 \times 0.75 \mathrm{~mm}$ QFN

Applications

Figure 1 - PE42724 Functional Diagram

- Broadband market (DOCSIS 3.0/1)
- Cable modem
- Set-top box
- Residential gateway
- Filter bank switching
- Relay replacement between DOCSIS 3.0 and DOCSIS 3.1 configurations

Product Description

The PE42724 is a HaRP ${ }^{\text {TM }}$ technology-enhanced reflective SPDT RF switch designed for use in cable applications including DOCSIS 3.0/1 cable modem, set-top box and residential gateway. It delivers high linearity, excellent harmonics performance and high surge immunity in the $5-1794 \mathrm{MHz}$ band. It also features low insertion loss and high isolation performance making the PE42724 ideal for DOCSIS 3.1 applications.

The PE42724 is manufactured on pSemi's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in Table 1 may cause permanent damage. Operation should be restricted to the limits in Table 2. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 1.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.
Table 1 : Absolute Maximum Ratings for PE42724

Parameter/Condition	Min	Max	
Supply voltage, V_{DD}	-0.3	5.5	V
Digital input voltage, V 1	-0.3	3.6	
RF input power, 75Ω		V	
Maximum junction temperature	-65	86	dBmV
Storage temperature range		+150	${ }^{\circ} \mathrm{C}$
ESD voltage $\mathrm{HBM}^{(1)}$, all pins		2000	V
ESD voltage $\mathrm{CDM}^{(2)}$, all pins		500	V

Notes:

1) Human body model (MIL-STD 883 Method 3015).
2) Charged device model (JEDEC JESD22-C101).

Recommended Operating Conditions

Table 2 lists the recommended operating conditions for the PE42724. Devices should not be operated outside the operating conditions listed below.

Table 2 • Recommended Operating Conditions for PE42724

Parameter	Min	Tур	Max	Unit
Supply voltage, V_{DD}	2.3	3.3	5.5	V
Supply current, IDD		130	200	$\mu \mathrm{A}$
Digital input high, V1	1.17		$3.6{ }^{(1)}$	V
Digital input low, V1	-0.3		0.6	V
RF input power, $\mathrm{CW}^{(2)}$			80	dBmV
RF input power, peak ${ }^{(3)}$			85	$\mathrm{dBm} V$
Operating temperature range	-40	+25	+85	${ }^{\circ} \mathrm{C}$
Notes: 1) Maximum digital input voltage is limited to V_{DD} and cannot exceed 3.6 V . 2) 100% duty cycle, 75Ω. 3) OFDMA DOCSIS 3.1, single channel, 75Ω.				

Electrical Specifications

Table 3 provides the PE42724 key electrical specifications @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$, unless otherwise specified.

Table 3 - PE42724 Electrical Specifications

Parameter	Path	Condition	Min	Tур	Max	Unit
Operating frequency			5		1794	MHz
Insertion loss ${ }^{(1)}$	RFC-RFX	$\begin{array}{\|l} 5-204 \mathrm{MHz} \\ 204-1218 \mathrm{MHz} \\ 1218-1794 \mathrm{MHz} \end{array}$		$\begin{aligned} & 0.10 \\ & 0.30 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.55 \end{aligned}$	dB dB dB
Isolation	All paths	$\begin{aligned} & 5-204 \mathrm{MHz} \\ & 204-612 \mathrm{MHz} \\ & 612-1218 \mathrm{MHz} \\ & 1218-1794 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 37 \\ & 27 \\ & 21 \end{aligned}$	$\begin{aligned} & 39 \\ & 29 \\ & 23 \\ & 19 \end{aligned}$		dB dB dB dB
Return loss ${ }^{(1)}$	RFC-RFX	$\begin{aligned} & 5-204 \mathrm{MHz} \\ & 204-612 \mathrm{MHz} \\ & 612-1218 \mathrm{MHz} \\ & 1218-1794 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 14 \\ & 13 \end{aligned}$		dB dB dB dB
2nd harmonic, 2fo	RFX	$\begin{aligned} & \mathrm{fo}=17 \mathrm{MHz} \\ & \text { Average } \mathrm{P}_{\mathrm{CW}}=65 \mathrm{dBmV} \\ & \mathrm{fo}=170 \mathrm{MHz} \\ & \text { Average } \mathrm{P}_{\mathrm{CW}}=65 \mathrm{dBmV} \\ & \mathrm{fo}=900 \mathrm{MHz} \\ & \text { Average } \mathrm{P}_{\mathrm{CW}}=65 \mathrm{dBmV} \end{aligned}$		$\begin{aligned} & -121 \\ & -121 \\ & -121 \end{aligned}$		dBc dBc dBc
3rd harmonic, 3fo	RFX	$\begin{aligned} & \mathrm{fo}=17 \mathrm{MHz} \\ & \text { Average } \mathrm{P}_{\mathrm{CW}}=65 \mathrm{dBmV} \\ & \mathrm{fo}=170 \mathrm{MHz} \\ & \text { Average } \mathrm{P}_{\mathrm{CW}}=65 \mathrm{dBmV} \\ & \text { fo }=900 \mathrm{MHz} \\ & \text { Average } \mathrm{P}_{\mathrm{CW}}=65 \mathrm{dBmV} \end{aligned}$		$\begin{aligned} & -150 \\ & -135 \\ & -135 \end{aligned}$		dBc dBc dBc
Input 0.1dB compression point ${ }^{(2)}$	RFC-RFX	5-1218 MHz		87		dBmV
Switching time		50% CTRL to 90% or 10% RF		35		$\mu \mathrm{s}$
Notes: 1) High frequency performance can be improved by external matching. 2) The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (75Ω).						

Switching Frequency

The PE42724 has a maximum 10 kHz switching frequency. Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reached 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Spurious Performance

The PE42724 spur fundamental occurs around 10 MHz . Its typical performance is $-154 \mathrm{dBm} / \mathrm{Hz}(\mathrm{V} 1$ $=\mathrm{H})$ and $-165 \mathrm{dBm} / \mathrm{Hz}(\mathrm{V} 1=\mathrm{L})$, with 100 kHz bandwidth.

Thermal Data

Psi-JT ($\Psi_{J T}$), junction top-of-package, is a thermal metric to estimate junction temperature of a device on the customer application PCB (JEDEC JESD51-2).
$\Psi_{J T}=\left(T_{J}-T_{T}\right) / P$
where
$\Psi_{\mathrm{JT}}=$ junction-to-top of package characterization parameter, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{J}}=$ die junction temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{T}}=$ package temperature (top surface, in the center), ${ }^{\circ} \mathrm{C}$
P = power dissipated by device, Watts
Table 4 - Thermal Data for PE42724

Parameter	Typ	Unit
Ψ_{JT}	21	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Control Logic

Table 5 provides the control logic truth table for the PE42724.

Table 5 - Truth Table for PE42724

State	V1
RFC-RF1	H
RFC-RF2	L

Typical Performance Data

Figure 2-Figure 11 show the typical performance data $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$, unless otherwise specified.

Figure 2 : Insertion Loss vs Temperature (RFC-RFX)

Figure 3 - RFC Port Return Loss vs Temperature

Figure 4 - RFX Port Return Loss vs Temperature

Figure 5 : Insertion Loss vs $V_{D D}$ (RFC-RFX)

Figure 6 - RFC Port Return Loss vs $V_{D D}$

Figure 7 - RFX Port Return Loss vs $V_{D D}$

Figure 8 - Isolation vs Temperature (RFX-RFX)

Figure 9 • Isolation vs Temperature (RFC-RFX)

Figure 10 • Isolation vs $V_{D D}$ (RFX-RFX)

Figure 11 • Isolation vs $V_{D D}(R F C-R F X)$

Evaluation Kit

The PE42724 evaluation board was designed to ease customer evaluation of the PE42724 RF switch. The RF common port is connected through a 75Ω transmission line via the F-Type connector, J3. RF1 and RF2 ports are connected through 75Ω transmission lines via F-Type connectors J1 and J2, respectively. A 75Ω through transmission line is available via F-Type connectors J4 (THRU left) and J5 (THRU right), which can be used to deembed the loss of the PCB. J6 provides DC and digital inputs to the device.

Figure 12 • Evaluation Kit Layout for PE42724

Pin Information

This section provides pinout information for the PE42724. Figure 13 shows the pin map of this device for the available package. Table 6 provides a description for each pin.

Figure 13 • Pin Configuration (Top View)

Table 6 • Pin Descriptions for PE42724

Pin No.	Pin Name	Description

$1,3,7,9$, 10,12	GND	Ground
2	RF1 *)	RF port 1
4	NC	Do not connect
5	$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage (nominal 3.3V)
6	V 1	Digital control logic input 1
8	$\mathrm{RF}^{(*)}$	RF port 2
11	$\left.\mathrm{RFC}^{*}\right)$	RF common
Pad	GND	Exposed pad: ground for proper oper- ation

Note: * RF pins 2, 8 and 11 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.

Packaging Information

This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE42724 in the 12 -lead $3 \times 3 \times 0.75 \mathrm{~mm}$ QFN package is MSL1.

Package Drawing

Figure 14 - Package Mechanical Drawing for 12-lead $3 \times 3 \times 0.75 \mathrm{~mm}$ QFN

Top-Marking Specification

Figure 15 - Package Marking Specifications for PE42724

$$
\begin{aligned}
\bullet & =\text { Pin } 1 \text { indicator } \\
Y Y & =\text { Last two digits of assembly year } \\
W W & =\text { Assembly work week } \\
\text { ZZZZZZ } & =\text { Assembly lot code (maximum six characters) }
\end{aligned}
$$

Tape and Reel Specification

Figure 16 : Tape and Reel Specifications for 12 -lead $3 \times 3 \times 0.75 \mathrm{~mm}$ QFN

Notes:

A0	3.30
B0	3.30
K0	1.10
D0	$1.50+0.1 /-0.0$
D1	1.5 min
E	1.75 ± 0.10
F	5.50 ± 0.05
P0	4.00
P1	8.00
P2	2.00 ± 0.05
T	0.30 ± 0.05
W0	12.00 ± 0.3

1. 10 Sprocket hole pitch cumulative tolerance ± 0.2
2. Camber in compliance with EIA 481
3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

Device Orientation in Tape

Ordering Information

Table 7 lists the available ordering codes for the PE42724 as well as available shipping methods.
Table 7 • Order Codes for PE42724

Order Codes	Description	Packaging	Shipping Method
PE42724A-Z	PE42724 SPDT RF switch	12-lead $3 \times 3 \times 0.75 \mathrm{~mm}$ QFN	$3000 \mathrm{units} / T \& R$
EK42724-01	PE42724 Evaluation kit	Evaluation kit	$1 / B o x$

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Product Brief

This document contains a shortened version of the datasheet. For the full datasheet, contact sales@psemi.com.

Sales Contact

For additional information, contact Sales at sales@psemi.com.

Disclaimers

The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2016-2021, pSemi Corporation. All rights reserved. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

