Semiconductor

Features

- 90° phase splitter
- 5-bit digital phase shifter, 87.2° range, 2.8° resolution
- 4-bit digital step attenuator, 7.5 dB range, 0.5 dB resolution
- High power handling and linearity
- P0.1dB of +35 dBm
- Input IP3 of +60 dBm
- Packaging - 32 -lead $6 \times 6 \times 0.85 \mathrm{~mm}$ QFN

Applications

- Wireless infrastructure
- Macro cells
- Small cells (micro, pico)
- Distributed antenna systems (DAS)
- Precision phase shifter
- Dual polarization antenna alignment
- Analog linearization techniques

Product Description

The PE46120 is a HaRP ${ }^{\text {TM }}$ technology-enhanced monolithic phase and amplitude controller (MPAC) designed for precise phase and amplitude control of two independent RF paths. It optimizes system performance while reducing manufacturing costs of transmitters that use symmetric or asymmetric power amplifier designs to efficiently process signals with large peak-to-average ratios.
This monolithic RFIC integrates a 90° RF splitter, digital phase shifters and a digital step attenuator along with a low voltage CMOS serial interface. It can cover a phase range of 87.2° in 2.8° steps and an attenuation range of 7.5 dB in 0.5 dB steps, while providing excellent phase and amplitude accuracy from $1.8-2.2 \mathrm{GHz}$.

The PE46120 also features exceptional linearity, high output port-to-port isolation and extremely low power consumption relative to competing module solutions. It is offered in a 32 -lead $6 \times 6 \times 0.85 \mathrm{~mm}$ QFN package.
The PE46120 is manufactured on Peregrine's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS. Peregrine's HaRP ${ }^{\text {TM }}$ technology enhancements deliver high linearity and excellent harmonics performance.

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed inTable 1 may cause permanent damage. Operation should be restricted to the limits in Table 2. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 1.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.
Table 1•Absolute Maximum Ratings for PE46120

Parameter/Condition	Min	Max	Unit
Supply voltage, VDD	-0.3	5.5	V
Digital input voltage	-0.3	3.6	V
Maximum input power		35	dBm
Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage $\mathrm{HBM}^{(1)}$ All pins RF pins to GND	500	V	
ESD voltage CDM, all pins ${ }^{(2)}$		1000	V

Notes:

1) Human body model (MIL-STD 883 Method 3015.7).
2) Charged device model (JEDEC JESD22-C101).

Recommended Operating Conditions

Table 2 lists the recommending operating condition for PE46120. Devices should not be operated outside the recommended operating conditions listed below.

Table 2•Recommended Operating Condition for PE46120

Parameter	Min	Typ	Max	Unit
Supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{(1)}$	2.3		5.5	V
Supply current		350	500	$\mu \mathrm{A}$
Digital input high	1.17		3.6	V
Digital input low	0		0.6	V
Digital input leakage		10	20	$\mu \mathrm{A}$
RF input power, CW			29	dBm
RF input power, pulsed ${ }^{(2)}$			32	dBm
Operating temperature range	-40	+25	+105	${ }^{\circ} \mathrm{C}$
Notes: 1) Product performance does not vary over $V_{D D}$. 2) Pulsed, 5% duty cycle of 4620μ s period.				

Electrical Specifications

Table 3 provides the PE46120 key electrical specifications at $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3-5.5 \mathrm{~V}, 50 \Omega$, unless otherwise specified.

Table 3•PE46120 Electrical Specifications

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating frequency			1.8		2.2	GHz
Insertion loss	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUTX }}$	Reference phase and minimum attenuation state. Includes 3 dB from power divider.		6.9	7.4	dB
Input return loss	RFIN	1.8-2.2 GHz		15		dB
Output return loss	$\mathrm{RF}_{\text {OUT1 }}$ or $\mathrm{RF}_{\text {OUT2 }}$	1.8-2.2 GHz		15		dB
Isolation	$\mathrm{RF}_{\text {OUT1 }}$ to $\mathrm{RF}_{\text {OUT2 }}$	$1.8-2.2 \mathrm{GHz}$ Reference phase and minimum attenuation state.	27.5	30		dB
Input 0.1dB compression point ${ }^{(1)}$	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT1 }}$ or $\mathrm{RF}_{\text {OUT2 }}$	1.8-2.2 GHz		35		dBm
Input IP3	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT1 }}$ or RF ${ }_{\text {OUT2 }}$	1.8-2.2 GHz		60		dBm
Switching time ${ }^{(2)}$		50% LE to 90% or 10% RF final value		980	1220	ns
Phase shift range	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT1 }}$ or RF $_{\text {OUT2 }}$			87.2		deg
Phase step				2.8		deg
Relative phase shift	$\mathrm{RF}_{\text {OUT1 }}$ to RF $\mathrm{OUT2}$	Phase ($\mathrm{RF}_{\text {OUT1 }}$)-Phase ($\mathrm{RF}_{\text {OUT2 }}$) [same state]		-90		deg
Attenuation range	$R \mathrm{~F}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT2 }}$			7.5		dB
Attenuation step				0.5		dB
Notes: 1) The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (50 2). 2) Worst case state transition. All bits changing.						

Table 4 provides the PE46120 key electrical specifications at $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3-5.5 \mathrm{~V}, 50 \Omega$, unless otherwise specified.

Table $4 \cdot$ PE46120 Electrical Specifications

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating frequency			1.8		2.2	GHz
Insertion loss	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUTX }}$	Reference phase and minimum attenuation state. Includes 3 dB from power divider.		7.4	7.9	dB
Input return loss	$\mathrm{RF}_{\text {IN }}$	1.8-2.2 GHz		15		dB
Output return loss	$\mathrm{RF}_{\text {OUT1 }}$ or $\mathrm{RF}_{\text {OUT2 }}$	1.8-2.2 GHz		15		dB
Isolation	$\mathrm{RF}_{\text {OUT1 }}$ to $\mathrm{RF}_{\text {OUT2 }}$	1.8-2.2 GHz Reference phase and minimum attenuation state.	27.5	30		dB
Input 0.1 dB compression point ${ }^{(1)}$	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT1 }}$ or $\mathrm{RF}_{\text {OUT2 }}$	1.8-2.2 GHz		35		dBm
Input IP3	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT } 1}$ or RF ${ }_{\text {OUT2 }}$	1.8-2.2 GHz		60		dBm
Switching time ${ }^{(2)}$		50% LE to 90% or 10% RF final value		980	1220	ns
Phase shift range	$R F_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT1 }}$ or RF ${ }_{\text {OUT2 }}$			87.2		deg
Phase step				2.8		deg
Relative phase shift	$\mathrm{RF}_{\text {OUT1 }}$ to RF $\mathrm{OUT2}$	Phase ($\mathrm{RF}_{\text {OUT1 }}$)--Phase ($\mathrm{RF}_{\text {OUT2 }}$) [same state]		-90		deg
Attenuation range	$\mathrm{RF}_{\text {IN }}$ to $\mathrm{RF}_{\text {OUT2 }}$			7.5		dB
Attenuation step				0.5		dB
Notes: 1) The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (50Ω). 2) Worst case state transition. All bits changing.						

Switching Frequency

The PE46120 has a maximum 25 kHz switching frequency.
The switching frequency is defined to be the rate at which the PE46120 can be continuously toggled across attenuation and phase states.

Control Logic

Table 5-Table 11 provide the control logic truth tables for the PE46120.
Table 5-Bit Descriptions

C0	Channel register select
	C0 $=\mathrm{L}$, channel $\mathrm{RF}_{\text {OUT1 }}$ register select
	C0 $=\mathrm{H}$, channel $\mathrm{RF}_{\text {OUT2 }}$ register select
	Attenuation setting per channel
P0-P4	Phase shift setting per channel
SO-S3	Spare bits

Table 6•14-Bit Word

Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q 4	Q 3	Q2	Q1	Q0
C0	S3	S 2	M3	M2	M1	M0	P 4	P 3	P 2	P 1	P 0	S 1	S 0
1	-	-	-	-	-	-	45	22.5	11.2	5.6	2.8	-	-
2	-	-	4	2	1	0.5	45	22.5	11.2	5.6	2.8	-	-

Table 7•Serial Truth Table - Phase Setting

Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	
C0	S3	S2	M3	M2	M1	M0	P4	P3	P2	P1	P0	S1	S0	Phase Shift Setting
$1 / 2$	-	-	4	2	1	0.5	4.5	22.5	11.2	5.6	2.8	-	-	
X	X	X	X	X	X	X	L	L	L	L	L	X	X	Ref Phase
X	X	X	X	X	X	X	L	L	L	L	H	X	X	2.8 deg
X	X	X	X	X	X	X	L	L	L	H	L	X	X	5.6 deg
X	X	X	X	X	X	X	L	L	H	L	L	X	X	11.25 deg
X	X	X	X	X	X	X	L	H	L	L	L	X	X	22.5 deg
X	X	X	X	X	X	X	H	L	L	L	L	X	X	45 deg
X	X	X	X	X	X	X	H	H	H	H	H	X	X	87.2 deg

Table $8 \cdot$ Serial Truth Table - Attenuation Setting ($R F_{\text {OUT2 }}$)

Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Amplitude Setting
C0	S3	S2	M3	M2	M1	M0	P4	P3	P2	P1	P0	S1	So	
1	-	-	-	-	-	-	45	22.5	11.2	5.6	2.8	-	-	
2	-	-	4	2	1	0.5	45	22.5	11.2	5.6	2.8	-	-	
H	x	x	L	L	L	L	x	x	x	x	X	x	x	Ref Insertion Loss
H	x	x	L	L	L	H	x	x	x	x	x	x	x	0.5 dB
H	x	x	L	L	H	L	x	x	x	x	x	x	x	1 dB
H	x	x	L	H	L	L	x	x	x	x	x	x	x	2 dB
H	X	x	H	L	L	L	x	x	x	x	X	x	x	4 dB
H	x	x	H	H	H	H	X	X	x	x	x	X	x	7.5 dB

Table 9 - Default State Settings at Power Up ($R F_{\text {outi }}$)

DS Setting	Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q 5	Q4	Q3	Q2	Q1	Q0	Default Setting at Power Up
	CO	S3	S2	M3	M2	M1	M0	P4	P3	P2	P1.	P0	S1	So	
	1/2	-	-	4	2	1	0.5	45	22.5	11.2	5.6	2.8	-	-	
DS $=0$	-	-	-	-	-	-	-	L	L	L	L	L	-	-	0 dB 0 deg
DS $=1$	-	-	-	-	-	-	-	H	L	L	L	L	-	-	$\begin{gathered} 0 \mathrm{~dB} \\ 45 \mathrm{deg} \end{gathered}$

Table 10•Default State Settings at Power Up ($R F_{\text {out2 }}$)

DSSetting	Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Default Setting at Power Up
	C0	S3	S2	M3	M2	M1	M0	P4	P3	P2	P1	P0	S1	S0	
	1/2	-	-	4	2	1	0.5	45	22.5	11.2	5.6	2.8	-	-	
DS = 0	-	-	-	L	L	L	L	L	L	L	L	L	-	-	$\begin{gathered} 0 \mathrm{~dB} \\ 0 \mathrm{deg} \end{gathered}$
DS = 1	-	-	-	H	H	H	H	H	L	L	L	L	-	-	$\begin{aligned} & 7.5 \mathrm{~dB} \\ & 45 \mathrm{deg} \end{aligned}$

Table 11•Serial Interface Timing Characteristics ${ }^{(1)}$

Parameter/Condition	Min	Max	Unit
Serial clock frequency, $\mathrm{F}_{\text {CLK }}{ }^{(2)}$	0.032	26	MHz
Serial clock period, $\mathrm{T}_{\text {SCLK }}$	40		ns
Serial clock HIGH time, $\mathrm{T}_{\text {SCLKH }}$	20		ns
Serial clock LOW time, $\mathrm{T}_{\text {SCLKL }}$	20		ns
Serial data output propagation delay from CLK falling edge, $\mathrm{T}_{\mathrm{Ov}}(10 \mathrm{pF})$		9	ns
Latch clock pulse width high, $\mathrm{T}_{\text {LCLKH }}$	10		ns
Serial data input setup time from CLK rising edge, $\mathrm{T}_{\text {SU }}$		5	ns
Serial data input hold time from CLK rising edge, T_{H}		2	ns
Serial data output hold time from CLK rising edge, T_{OH}	1.6		ns
Serial clock rising edge setup time to latch clock rising edge, $\mathrm{T}_{\text {SETTLE }}$		27	ns
SDO drive strength ${ }^{(3)}$		15	pF

Notes:

1) $V_{D D}=2.3 \mathrm{~V}-5.5 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$, unless otherwise specified.
2) Limited by test duration not static logic design. Synchronous to clock. Minimum clock frequency tested $=32 \mathrm{kHz}$.
3) SDO maximum capacitive load drive strength for $\mathrm{F}_{\mathrm{CLK}}=26 \mathrm{MHz}$ with a 1.8 V swing

Programming Options

Serial Interface

The serial interface is a 14 -bit serial-in shift register with two parallel-out channel registers $\mathrm{RF}_{\text {OUT } 1}$ and $\mathrm{RF}_{\text {out2 } 2}$ buffered by a transparent latch. The 14 bits are comprised of four bits defining the attenuation setting and five bits for the phase shift setting. Channel register $\mathrm{RF}_{\text {out } 1}$ and $\mathrm{RF}_{\text {out2 }}$ selection is determined by the value of the CO bit contained as part of the 14-bit program word.
The serial interface is controlled using three CMOS compatible signals: serial data in (SDI), clock (CLK) and latch enable (LE). The SDI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in starting with two spare bits first and then the phase setting LSB. The shift register must be
loaded while LE is held LOW to prevent the internal channel register values from changing as data is entered. The LE input should then be toggled HIGH, latching the new data into the PE46120. SDO is a clock delayed reply of the user's input SDI command for functional confirmation.

Phase shift and attenuation setting truth tables are listed in Table 7 and Table 8. The serial timing diagram is illustrated in Figure 2 and associated AC characteristics are listed in Table 11.

Power-up Control Settings

The PE46120 will power up in one of two default states depending upon the setting of the default state (DS) pin, as defined in Table 9 and Table 10. No specific signal sequencing is required for the default state to be set and active once $V_{D D}$ is applied.

Figure 2•Latched Buffered SDO Serial Interface

Typical Performance Data

Figure 3-Figure 23 show the typical performance data at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=2.3-5.5 \mathrm{~V}, 50 \Omega$, unless otherwise specified

Figure $3 \cdot$ Relative Phase Shift $\left(\right.$ FFout $\left._{\text {out }}-R F_{\text {out }}\right)$

Figure $4 \cdot$ Insertion Loss $\left(R F_{I N}\right.$ to $\left.R F_{\text {OUT1 }}\right)$

Figure $5 \cdot$ Insertion Loss $\left(R F_{I N}\right.$ to $R F_{\text {OUT2 }}$)

Figure $6 \cdot$ Insertion Loss $R F_{I N}$ to $R F_{\text {OUT2 }}$ (All $R F_{\text {OUT2 }}$ Attenuation States)

Figure 7 • Relative Phase $R F_{I N}$ to $R F_{\text {out1 }}$ (All RF $F_{\text {out1 }}$ Phase States)

Figure $8 \cdot$ Relative Phase $R F_{I N}$ to $R F_{\text {out2 }}$ (All RF $F_{\text {out2 }}$ Phase States)

Figure 9•Input Return Loss (All States)

Figure $10 \cdot$ Output Return Loss $R F_{\text {out1 }}$ (All RF $F_{\text {out1 }}$ Phase States)

Figure $11 \cdot$ Output Return Loss $R F_{\text {out2 }}$ (All RF $F_{\text {out } 2}$ States)

Figure 12 • Isolation Output Ports (All States)

Figure $13 \cdot$ RF $_{\text {out1 } 1}$ Insertion Loss Variation Across All RF $_{\text {out } 2}$ States

Figure $14 \cdot R F_{\text {out } 1}$ Phase Variation Across All $R F_{\text {out2 }}$ Phase States

Figure $15 \cdot R F_{\text {out1 }}$ Insertion Loss Variation Across $R F_{\text {out } 1}$ Phase State

Figure $16 \cdot R F_{\text {OUT2 }}$ Insertion Loss Variation Across $R F_{\text {OUT2 }}$ Phase State

Figure $17 \cdot R F_{\text {out1 }}$ Insertion Loss Variation Across Phase State ${ }^{(*)}$

Note: * Across recommended $\mathrm{RF}_{\text {OUT1 }}$ phase states for minimum insertion loss variation.

Figure $18 \cdot$ RF $_{\text {out2 }}$ Insertion Loss Variation Across Phase State ${ }^{(*)}$

Note: * Across recommended $\mathrm{RF}_{\text {OUT2 }}$ phase states for minimum insertion loss variation.

Figure $19 \cdot$ RF $_{\text {out2 }}$ Phase Variation Across $R F_{\text {out2 }}$ Attenuation State

Figure $20 \cdot R F_{\text {out2 }}$ Insertion Loss Across $R F_{\text {out2 }}$ Attenuation State vs $V_{D D}$. Frequency $=2 \mathrm{GHz}$

Figure $21 \cdot$ RF $_{\text {out2 }}$ Insertion Loss Across $R F_{\text {out } 2}$ Attenuation State vs Temperature, Frequency $=2 \mathrm{GHz}$

Figure $22 \cdot R F_{\text {out2 }}$ Relative Phase Across $R F_{\text {out2 }}$ Phase State vs $V_{D D}$ Frequency $=2 G H z$

Figure $23 \cdot R F_{\text {out2 }}$ Relative Phase Across $R F_{\text {out2 }}$ Phase State vs Temperature, Frequency $=2 \mathrm{GHz}$

Pin Information

This section provides pinout information for the PE46120. Figure 24 shows the pin map of this device for the available package. Table 12 provides a description for each pin.

Figure 24 • Pin Configuration (Top View)

Table 12• Pin Descriptions for PE46120

Pin No.	Pin Name	Description
1, 8	CLK ${ }^{(1)}$	Clock input
2, 7	SDO ${ }^{(2)}$	Serial data output
$\begin{gathered} 3,6,12-16 \\ 22,25-29 \end{gathered}$	NC	No connect
4, 5	$\mathrm{RF}_{\text {IN }}{ }^{(3)}$	RF input
9,32	SDI ${ }^{(1)}$	Serial data input
10, 31	LE ${ }^{(1)}$	Latch enable
11, 30	$V_{D D}{ }^{(1)}$	Supply voltage
17, 18	$\mathrm{RF}_{\text {OUT1 }}{ }^{(3)}$	RF output 1
19	GND ${ }^{(4)}$	Ground
20	$\mathrm{SP}_{\mathrm{ENB}}{ }^{(5)(6)}$	Serial port enable
21	DS ${ }^{(6)}$	Default state at power up select
23, 24	RFout2 ${ }^{(3)}$	RF output 2
Pad	GND	Exposed pad: ground for proper operation
Notes: 1) Pins are internally connected, signal only needs to be applied to one of the pins. The alternate unused pin needs to be left floating 2) SDOs are independently buffered outputs of the same signal. 3) RF pins $4,5,17$ and 18 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met. 4) Pin 19 must be grounded for proper function. 5) Must be active low for normal SPI operation. Logic high programs 0 dB attenuation setting and 0° phase setting. Setting back to logic low returns to the previously programmed state. 6) Pin has an internal $100 \mathrm{k} \Omega$ pull-up resistor.		

Packaging Information

This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE46120 in the 32 -lead $6 \times 6 \times 0.85 \mathrm{~mm}$ QFN package is MSL1.

Package Drawing

Figure 25 • Package Mechanical Drawing for 32-lead $6 \times 6 \times 0.85 \mathrm{~mm}$ QFN

Top-Marking Specification

Figure 26•Package Marking Specifications for PE46120

Tape and Reel Specification

Figure 27•Tape and Reel Specifications for 32-lead $6 \times 6 \times 0.85 \mathrm{~mm}$ QFN

A0	6.30 ± 0.10
B0	6.30 ± 0.10
K0	1.10 ± 0.10
D0	$1.50+0.1 /-0.0$
D1	1.5 min
E	1.75 ± 0.10
F	7.50 ± 0.10
P0	4.00
P1	12.00 ± 0.10
P2	2.00 ± 0.10
T	0.30 ± 0.05
W0	16.00 ± 0.30

Notes:

1. 10 Sprocket hole pitch cumulative tolerance ± 0.2
2. Camber in compliance with EIA 481
3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

Dimensions are in millimeters unless otherwise specified

Device Orientation in Tape

Ordering Information

Table 13 lists the available ordering codes for the PE46120 as well as available shipping methods.
Table 13 • Order Codes for PE46120

Order Codes	Description	Packaging	Shipping Method
PE46120A-X	PE46120 Monolithic Phase and Amplitude Controller	Green 32-lead $6 \times 6 \mathrm{~mm}$ QFN	500 units / T\&R
EK46120-02	PE46120 Evaluation kit	Evaluation kit	$1 / \mathrm{box}$

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Product Brief

This document contains a shortened version of the datasheet. For the full datasheet, contact sales@psemi.com.

Not Recommended for New Designs (NRND)

This product is in production but is not recommended for new designs.

End of Life (EOL)

This product is currently going through the EOL process. It has a specific last-time buy date.

Obsolete

This product is discontinued. Orders are no longer accepted for this product.

Sales Contact

For additional information, contact Sales at sales@psemi.com.

Disclaimers

The information in this document is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

Peregrine products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2014-2016, Peregrine Semiconductor Corporation. All rights reserved. The Peregrine name, logo, UTSi and UltraCMOS are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 EV1HMC6789BLC5A MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT\# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1

