Product Specification

PE423422

Product Description

The PE423422 is a HaRPTM technology-enhanced reflective SPDT RF switch. It has received AEC-Q100 Grade 2 certification and meets the quality and performance standards that makes it suitable for use in harsh automotive environments. It is designed to cover a wide range of wireless applications from 100 MHz through 6 GHz such as automotive infotainment and traffic safety applications. No blocking capacitors are required if DC voltage is not present on the RF ports.

Peregrine's HaRP ${ }^{\text {TM }}$ technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS ${ }^{\circledR}$ process, offering the performance of GaAs with the economy and integration of conventional CMOS.

The PE423422 is manufactured on Peregrine's UltraCMOS ${ }^{\circledR}$ process, a patented variation of silicon-oninsulator (SOI) technology on a sapphire substrate, offering excellent RF performance.

Figure 1. Functional Diagram

Figure 2. Package Type 12-lead 2x2 mm QFN

Table 1. Electrical Specifications @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operational frequency			100		6000	MHz
Insertion loss	RFC-RFX	$100-1000 \mathrm{MHz}$		0.25	0.35	dB
		$1000-2000 \mathrm{MHz}$		0.30	0.40	dB
		2000-3000 MHz		0.40	0.50	dB
		$3000-4000 \mathrm{MHz}$		0.50	0.70	dB
		4000-5000 MHz		0.65	$0.90{ }^{1}$	dB
		$5000-6000 \mathrm{MHz}$		0.90	$1.25{ }^{1}$	dB
Isolation	RFX-RFX	$100-1000 \mathrm{MHz}$	39	41		dB
		$1000-2000 \mathrm{MHz}$	32	33		dB
		2000-3000 MHz	26	28		dB
		$3000-4000 \mathrm{MHz}$	22	24		dB
		$4000-5000 \mathrm{MHz}$	18	20		dB
		$5000-6000 \mathrm{MHz}$	15	16		dB
Isolation	RFC-RFX	$100-1000 \mathrm{MHz}$	41	44		dB
		$1000-2000 \mathrm{MHz}$	33	35		dB
		2000-3000 MHz	27	29		dB
		$3000-4000 \mathrm{MHz}$	22	24		dB
		$4000-5000 \mathrm{MHz}$	18	20		dB
		$5000-6000 \mathrm{MHz}$	15	17		dB
Return loss	RFC-RFX	$100-1000 \mathrm{MHz}$		28		dB
		$1000-2000 \mathrm{MHz}$		21		dB
		2000-3000 MHz		20		dB
		3000-4000 MHz		18		dB
		4000-5000 MHz		16^{1}		dB
		$5000-6000 \mathrm{MHz}$		13^{1}		dB
2nd Harmonic, 2fo	RFC-RFX	+32 dBm output power, $850 / 900 \mathrm{MHz}$		-99		dBc
		+32 dBm output power, 1800 / 1900 MHz		-101		dBc
3rd Harmonic, 3fo	RFC-RFX	+32 dBm output power, $850 / 900 \mathrm{MHz}$		-93		dBc
		+32 dBm output power, $1800 / 1900 \mathrm{MHz}$		-87		dBc
IMD3		Bands I, II, V, VIII +20 dBm CW @ TX freq at RFC, -15 dBm CW @ 2Tx-Rx at RFC, 50Ω		-122		dBm
Input IP2	RFC-RFX	$100-6000 \mathrm{MHz}$		115		dBm
Input IP3	RFC-RFX	$100-6000 \mathrm{MHz}$		73.5		dBm
Input 0.1 dB compression point ${ }^{2}$	RFC-RFX	$100-6000 \mathrm{MHz}$		34		dBm
Switching time		50% CTRL to 90% or 10% RF		2	4	$\mu \mathrm{s}$

Notes: 1. High frequency performance can be improved by external matching
2. The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 4 for the RF input power $\mathrm{P}_{\mathrm{MAX}, \mathrm{CW}}(50 \Omega)$

Table 1A. Electrical Specifications @ $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Path	Condition	Min	Typ	Max	Unit
Operational frequency			100		6000	MHz
Insertion loss	RFC-RFX	$100-1000 \mathrm{MHz}$		0.25	0.55	dB
		$1000-2000 \mathrm{MHz}$		0.30	0.65	dB
		2000-3000 MHz		0.40	0.75	dB
		$3000-4000 \mathrm{MHz}$		0.50	0.85	dB
		4000-5000 MHz		0.65	$1.05{ }^{1}$	dB
		$5000-6000 \mathrm{MHz}$		0.90	$1.45{ }^{1}$	dB
Isolation	RFX-RFX	$100-1000 \mathrm{MHz}$	38	41		dB
		$1000-2000 \mathrm{MHz}$	31	33		dB
		2000-3000 MHz	25	28		dB
		$3000-4000 \mathrm{MHz}$	21	24		dB
		$4000-5000 \mathrm{MHz}$	17	20		dB
		$5000-6000 \mathrm{MHz}$	14	16		dB
Isolation	RFC-RFX	$100-1000 \mathrm{MHz}$	40	44		dB
		$1000-2000 \mathrm{MHz}$	32	35		dB
		2000-3000 MHz	26	29		dB
		$3000-4000 \mathrm{MHz}$	21	24		dB
		$4000-5000 \mathrm{MHz}$	17	20		dB
		$5000-6000 \mathrm{MHz}$	14	17		dB
Return loss	RFC-RFX	$100-1000 \mathrm{MHz}$		28		dB
		$1000-2000 \mathrm{MHz}$		21		dB
		2000-3000 MHz		20		dB
		$3000-4000 \mathrm{MHz}$		18		dB
		$4000-5000 \mathrm{MHz}$		16^{1}		dB
		$5000-6000 \mathrm{MHz}$		13^{1}		dB
2nd Harmonic, 2fo	RFC-RFX	+32 dBm output power, $850 / 900 \mathrm{MHz}$		-99		dBc
		+32 dBm output power, $1800 / 1900 \mathrm{MHz}$		-101		dBC
3rd Harmonic, 3fo	RFC-RFX	+32 dBm output power, $850 / 900 \mathrm{MHz}$		-93		dBC
		+32 dBm output power, $1800 / 1900 \mathrm{MHz}$		-87		dBc
IMD3		Bands I, II, V, VIII +20 dBm CW @ TX freq at RFC, -15 dBm CW @ 2Tx-Rx at RFC, 50Ω		-122		dBm
Input IP2	RFC-RFX	$100-6000 \mathrm{MHz}$		115		dBm
Input IP3	RFC-RFX	$100-6000 \mathrm{MHz}$		73.5		dBm
Input 0.1 dB compression point ${ }^{2}$	RFC-RFX	$100-6000 \mathrm{MHz}$		34		dBm
Switching time		50% CTRL to 90% or 10% RF		2	5	$\mu \mathrm{s}$

Notes: 1. High frequency performance can be improved by external matching
2. The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 4 for the RF input power $P_{\text {max }, \mathrm{Cw}}(50 \Omega)$

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
$1,3,4$, 6,7	GND	Ground
2	RF2 1	RF port 2
5	RFC 1	RF common
8	RF1 1	RF port 1
9	DGND 2	Digital ground
10	V1	Digital control logic input 1
11	LS	Logic Select
12	VDD	Supply voltage
Pad	GND	Exposed pad: Ground for proper operation

Note 1: RF pins 2, 5 and 8 must be at OV DC. The RF pins do not require DC blocking capacitors for proper operation if the OV DC requirement is met

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	2.3	3.3	5.5	V
Supply current	I_{DD}		120	200	$\mu \mathrm{~A}$
Digital input high (V1, LS)	V_{IH}	1.2	1.5	3.3	V
Digital input low (V1,LS)	V_{IL}	0	0	0.5	V
RF input power, CW $(\mathrm{RFC}-\mathrm{RFX})^{1}$	$\mathrm{P}_{\mathrm{MAX}, \mathrm{CW}}$			Fig. 4	dBm
Operating temperature range	T_{OP}	-40	+25	+105	${ }^{\circ} \mathrm{C}$

Note 1: 100% duty cycle, all bands, 50Ω
Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-0.3	5.5	V
Digital input voltage (V1, LS)	V_{I}	-0.3	3.3	V
RF input power, Max	$\mathrm{P}_{\text {MAX,ABS }}$		Fig. 4	dBm
Storage temperature range	T_{ST}	-65	+150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM, all pins ${ }^{1}$	$\mathrm{~V}_{\text {ESD,HBM }}$		1000	V
ESD voltage MM, all pins ${ }^{2}$	$\mathrm{~V}_{\text {ESD,MM }}$		200	V
ESD voltage CDM, all pins ${ }^{3}$	$\mathrm{~V}_{\text {ESD,CDM }}$		1000	V

Notes: 1. Human Body Model (MIL_STD-883 Method 3015)
2. Machine Model (JEDEC JESD22-A115)
3. Charged Device Model (JEDEC JESD22-C101)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Table 5. Truth Table

Path	V1	LS
RFC-RF2	1	1
RFC-RF1	0	1
RFC-RF1	1	0
RFC-RF2	0	0

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE423422 in the 12 -lead $2 \times 2 \mathrm{~mm}$ QFN package is MSL1.

Figure 4. Power De-rating Curve for $100-6000 \mathrm{MHz}$ vs Ambient Temperature (50)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 5. Insertion Loss RFX

Figure 6. Insertion Loss vs Temp (RFC-RF1)

Figure 8. Insertion Loss vs Temp (RFC-RF2)

Figure 7. Insertion Loss vs V_{DD} (RFC-RF1)

Figure 9. Insertion Loss vs V_{DD} (RFC-RF2)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 10. RFC Port Return Loss vs Temp (RF1 Active)

Figure 12. RFC Port Return Loss vs Temp (RF2 Active)

Figure 11. RFC Port Return Loss vs V_{DD} (RF1 Active)

Figure 13. RFC Port Return Loss vs V_{DD} (RF2 Active)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 14. Active Port Return Loss vs Temp (RF1 Active)

Figure 16. Active Port Return Loss vs Temp (RF2 Active)

Figure 15. Active Port Return Loss vs V_{DD} (RF1 Active)

Figure 17. Active Port Return Loss vs V_{DD} (RF2 Active)

Typical Performance Data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ unless otherwise specified

Figure 18. Isolation vs Temp (RF1-RF2, RF1 Active)

Figure 20. Isolation vs Temp (RFC-RF2, RF1 Active)

Figure 19. Isolation vs V_{DD} (RF1-RF2, RF1 Active)

Figure 21. Isolation vs V_{DD} (RFC-RF2, RF1 Active)

Evaluation Board

The SPDT switch evaluation board was designed to ease customer evaluation of Peregrine's PE423422. The RF common port is connected through a 50Ω transmission line via the top SMA connector, J2. RF1 and RF2 ports are connected through 50Ω transmission lines via SMA connectors J 1 and J3, respectively. A through 50Ω transmission is available via SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated. J8 provides DC and digital inputs to the device.

The board is constructed of a four metal layer material with a total thickness of 62 mils. The top and bottom RF layers are Rogers RO4350 material with a 10 mil RF core. The middle layers provide ground for the transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 22 mils, trace gaps of 7 mils, and metal thickness of 2.1 mils.

Figure 22. Evaluation Board Layout

Figure 23. Evaluation Board Schematic

DOC-30527

Figure 24. Package Drawing

Figure 25. Top Marking Specifications

Marking Spec Symbol	Package Marking	Definition
PP	DU	Part number marking for PE423422
ZZ	$00-99$	Last two digits of lot code
Y	$0-9$	Last digit of year, starting from 2009 (0 for 2010, 1 for 2011, etc)
WW	$01-53$	Work week

DOC-51207

Figure 26. Tape and Reel Specifications

	Nominal	Tolerance
Ao	2.20	± 0.10
Bo	2.20	± 0.10
Ko	0.75	± 0.10
F	3.50	± 0.05
P1	4.00	± 0.10
W	8.00	± 0.30

(1) Measured from centreline of sprocket hole
(II) centreline of pocket.

Cumulative tolerance of 10 sprocket
holes is ± 0.10.

(III) | Measured from centreline of sprocket |
| :--- |
| hole to centreline of pocket. |

(IV) Other material available

This part shall not contain any banned
substance as Sony standard SS-00259

Device Orientation in Tape

Note: All dimensions in millimeters unless otherwise specified

Table 6. Ordering Information

Order Code	Description	Package	Shipping Method
PE423422A-Z	PE423422 SPDT RF switch	Green 12-lead $2 \times 2 \mathrm{~mm}$ QFN	3000 units T/R
EK423422-01	PE423422 Evaluation kit	Evaluation kit	$1 / B o x$

Sales Contact and Information

For Sales and contact information please visit www.psemi.com.

[^0]No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a decides to change the specificatio
 CNF (Customer Notification Form).
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use The information in this datasheet is believed to be reliable. Ho
 of this information. Use shall be entirely at the user's own risk.

