UltraCMOS® SPDT RF Switch, $100 \mathrm{MHz}-8.5$ GHz

Features

- $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax}$, Wi-Fi 6E and ultra-wideband (UWB) support
- Exceptional isolation
- 48 dB @ 2.4 GHz
- 35 dB @ 5.8 GHz
- Fast switching
- 145 ns switching time
- 125 kHz switching rate
- High power handling
- 39 dBm pulsed
- 30 dBm CW
- High linearity across supply range
- IIP3 of 61 dBm

Figure 1 - PE42424 Functional Diagram

- 1.8 V control logic compatible
- $105^{\circ} \mathrm{C}$ operating temperature
- ESD performance
- 2500V HBM on RF pins to GND
- Packaging - 6-lead $1.5 \times 1.5 \mathrm{~mm}$ DFN

Product Description

The PE42424 is a HaRP ${ }^{\text {TM }}$ technology-enhanced reflective 50Ω SPDT RF switch designed for use in high power and high performance WLAN $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax}$ and Wi-Fi 6E applications such as carrier and enterprise WiFi products and UWB applications supporting bandwidths up to 8.5 GHz .
This switch features exceptional port-to-port isolation, fast switching speed, and high power handling, all in a compact $1.5 \times 1.5 \mathrm{~mm}$ package. PE42424 also features high linearity that remains invariant over the full power supply range. In addition, this device has robust ESD and temperature performance and does not require blocking capacitors or any external matching components.
The PE42424 is manufactured on pSemi's UltraCMOS® process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate.
pSemi's HaRP technology enhancements deliver high linearity and excellent harmonics performance. It is an innovative feature of the UltraCMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in Table 1 may cause permanent damage. Operation should be restricted to the limits in Table 2. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 1.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.
Table 1 - Absolute Maximum Ratings for PE42424

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-0.3	5.5	V
Digital input (V1)	$\mathrm{V}_{\text {CTRL }}$	-0.3	3.6	V
RF input power, 100-6000 MHz	$\mathrm{P}_{\text {MAX,ABS }}$		41	dBm
RF input power, $6000-8500 \mathrm{MHz}$	$\mathrm{P}_{\text {MAX,ABS }}$		40	dBm
Storage temperature range	$\mathrm{T}_{\text {ST }}$	-65	150	${ }^{\circ} \mathrm{C}$
ESD voltage HBM $^{(1)}$ All pins RF pins to GND	$\mathrm{V}_{\text {ESD,HBM }}$		1000	V
ESD voltage CDM, all pins ${ }^{(2)}$	$\mathrm{V}_{\text {ESD,MM }}$		2500	V
Notes: 1) Human body model (MIL-STD 883 Method 3015) 2) Charged device model (JEDEC JESD22-C101)			1000	V

Recommended Operating Conditions

Table 2 lists the recommending operating conditions for the PE42424. Devices should not be operated outside the operating conditions listed below.

Table 2 - Recommended Operating Conditions for PE42424

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{DD}	2.3	3.3	5.5	V
Supply current	I_{DD}		$\begin{aligned} & 130^{(1)} \\ & 200^{(2)} \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Digital input high (V1)	V_{IH}	1.4		3.6	V
Digital input low(V1)	$\mathrm{V}_{\text {IL }}$	-0.3		0.6	V
$\begin{aligned} & \text { RF input power, CW, } \\ & 100-6000 \mathrm{MHz} \end{aligned}$	$\mathrm{P}_{\text {MAX,CW }}$			30	dBm
RF input power, CW, 6000-8500 MHz	$\mathrm{P}_{\text {MAX,CW }}$			29	dBm
RF input power, pulsed, $100-6000 \mathrm{MHz}^{(3)}$	$\mathrm{P}_{\text {MAX,PULSED }}$			39	dBm
RF input power, pulsed, $6000-8500 \mathrm{MHz}^{(3)}$	$\mathrm{P}_{\text {MAX,PULSED }}$			38	dBm
Operating temperature range	T_{OP}	-40	25	105	${ }^{\circ} \mathrm{C}$
Notes: 1) $V_{I H}>1.7 \mathrm{~V}$ 2) $1.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IH}}<1.7 \mathrm{~V}$ 3) Pulsed, 5% duty cycle of 4620μ s period, 50Ω					

A Murata Company

Electrical Specifications

Table 3 provides the PE42424 key electrical specifications @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V},\left(\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{S}}=50 \Omega\right)$ unless otherwise specified, unless otherwise specified.

Table 3 - PE42424 Electrical Specifications

Parameter	Symb ol	Path	Condition	Min	Typ	Max	Unit
Operating frequency				0.1		8.5	GHz
Insertion loss	IL	RFC-RFX	$\begin{aligned} & 0.1-2.5 \mathrm{GHz} \\ & 2.5-5.825 \mathrm{GHz} \\ & 5.825-6.0 \mathrm{GHz} \\ & 6.0-8.5 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 0.8 \\ 0.9 \\ 0.95 \\ 1.08 \end{gathered}$	$\begin{gathered} 0.95 \\ 1.15 \\ 1.2 \\ 1.6 \end{gathered}$	dB dB dB dB
Isolation	ISO	RFC-RFX	$\begin{aligned} & 0.1-2.5 \mathrm{GHz} \\ & 2.5-5.825 \mathrm{GHz} \\ & 5.825-6.0 \mathrm{GHz} \\ & 6.0-8.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 45 \\ & 33 \\ & 33 \\ & 27 \end{aligned}$	$\begin{aligned} & 47 \\ & 35 \\ & 34 \\ & 29 \end{aligned}$		dB dB dB dB
		RFX-RFX	$\begin{aligned} & 0.1-2.5 \mathrm{GHz} \\ & 2.5-5.825 \mathrm{GHz} \\ & 5.825-6.0 \mathrm{GHz} \\ & 6.0-8.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 37 \\ & 29 \\ & 29 \\ & 24 \end{aligned}$	$\begin{aligned} & 39 \\ & 30 \\ & 30 \\ & 26 \end{aligned}$		dB dB dB dB
Return loss (common and active port)	RL	RFX	$\begin{aligned} & 0.1-6.0 \mathrm{GHz} \\ & 6.0-8.5 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 21 \\ & 21 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input 1dB compression point ${ }^{(1)}$	P1dB	RFC-RFX	$\begin{aligned} & 6.0 \mathrm{GHz} \\ & 6.0-8.5 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 41 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
3rd Order Input Intercept Point ${ }^{(2)}$	IIP3	RFC-RFX	1900 MHz		60		dBm
3rd harmonic	3 fo	RFC-RFX	$\mathrm{P}_{\mathrm{IN}}=+30 \mathrm{dBm} @ 1900 \mathrm{MHz}$		74		dBc
2nd Order Input Intercept Point ${ }^{(2)}$	IIP2	RFC-RFX	1900 MHz		125		dBm
2nd harmonic	2 fo	RFC-RFX	$\mathrm{P}_{\mathrm{IN}}=+30 \mathrm{dBm} @ 1900 \mathrm{MHz}$		85		dBc
Switching time	$\mathrm{T}_{\text {SW }}$		50% CTRL to 90% or 10% of final value		145	230	ns
1) The input $P 0.1 \mathrm{~dB}$ compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (50Ω). 2) The input intercept point remains invariant over the full supply range as defined in Table 3.							

Switching Capability

The PE42424 has a maximum 125 kHz switching rate with the control pin input capacitance of 2 pF . Switching rate describes the time duration between switching events.
Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Spurious Performance

Typical spurious performance of the PE42424 is -126 dBm .

Control Logic Truth Table

Table 4 provides the control logic truth table for the PE42424.
Table 4 - Truth Table for PE42424

V1	RFC-RF1	RFC-RF2
0	OFF	ON
1	ON	OFF

Typical Performance Data

Figure 2-Figure 10 show the typical performance data @ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise specified.

Figure 2 - Insertion Loss (RFC-RFX)

Figure 3 - Insertion Loss vs. Temp (RFC-RFX)

Figure 4 - Insertion Loss vs. $V_{D D}$ (RFC-RFX)

Figure 5-Return Loss vs. Temp (RFC-RFX)

Figure 7 - Isolation vs. Temp (RFC-RFX)

Figure 6 - Return Loss vs. $V_{D D}$ (RFC-RFX)

Figure 8 : Isolation vs. $V_{D D}$ (RFC-RFX)

Figure 9 - Isolation vs. Temp (RFX-RFX)

Pin Information

This section provides pinout information for the PE42424. Figure 11 shows the pin map of this device for the available package. Table 5 provides a description for each pin.

Figure 11 • Pin Configuration (Top View)

Table 5 : Pin Descriptions for PE42424

Pin No.	Pin Name	Description
1	V1	Digital control logic input 1
2	RFC ${ }^{*}$)	RF common
3	VDD	Supply voltage (nominal 3.3V)
4	RF2 ${ }^{*}{ }^{*}$)	RF port 2
5	GND	Ground
6	$R F 1{ }^{*}{ }^{*}$	RF port 1
Pad	GND	Ground
Note: * RF pins 2, 4 and 6 must be at OV DC. The RF pins do not require $D C$ blocking capacitors for proper operation if the $O V D C$ requirement is met.		

Evaluation Kit

The SPDT switch evaluation board was designed to ease customer evaluation of pSemi's PE42424 RF switch. The RF common port is connected to the device through a 50Ω transmission line via SMA connector J3. RF1 and RF2 ports are connected to the device through 50Ω transmission lines via SMA connectors J1 and J2, respectively. A transmission line has been included on the reverse side of the PCB, accessible via SMA connectors J4 and J5. This transmission line provides an equivalent length to deembed PCB trace losses. DC and digital inputs are provided to the device via J6.

This PCB is constructed of a four metal layer material with total thickness of 62 mils. The top and bottom RF layers are Rogers RO4003 material with an 8 mil RF core. The middle layers provide ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 16 mils and 10 mil trace gap, with 2.1 mils of metal thickness.
For the true performance of the PE42424 to be realized, the PCB should be designed in such a way that RF transmission lines and sensitive DC I/O traces are heavily isolated from one another.

Figure 12 • Evaluation Kit Layout for PE42424

Evaluation Board Schematic

Figure 13 • Evaluation Board Schematic for the PE42424

DOC-441265

Packaging Information

This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE42424 in the 6-lead $1.5 \times 1.5 \mathrm{~mm}$ DFN package is MSL 1.

Package Drawing

Figure 14 - Package Mechanical Drawing for 6-lead 1.5×1.5 mm DFN

DOC-51810

Top-Marking Specification

Figure 15 • Package Marking Specifications for PE42424

$$
\begin{aligned}
& =\text { Pin } 1 \text { indicator } \\
\mathrm{P} & =\text { Part number code* } \\
\mathrm{ZZ} & =\text { Last two characters of the assembly lot code } \\
\mathrm{Y} & =\text { Last digit of year, starting from } 2010 \\
\mathrm{WW} & =\text { Work week }
\end{aligned}
$$

Note: * The part number marking for PE42424 is E.

Tape and Reel Specification
Figure 16 • Tape and Reel Specifications for 6-lead 1.5×1.5 mm DFN

Direction of Feed

Notes:
Not drawn to scale.
Dimensions are in millimeters.
Maximum cavity angle 5 degrees.
Bumped die are oriented active side down.

Carrier Tape Dimension Table						
Pocket	Nominal	Tolerance	Pocket	Nominal	Tolerance	
A_{0}	1.70	$+/-0.05$	D_{1}	0.5	$+0.5-0.1$	
$\mathrm{~B}_{0}$	1.70	$+/-0.05$	D_{0}	1.5	+0.1	
$\mathrm{~K}_{0}$	0.76	$+/-0.05$	E	1.75	$+/-0.1$	
P_{1}	4.00	$+/-0.1$	P_{0}	4.0	$+/-0.1$	
W	8.00	$+0.3-0.1$	P_{2}	2.0	$+/-0.05$	
F	3.50	$+/-0.5$	T	0.25	$+/-0.02$	

DOC-85004

Ordering Information

Table 6 lists the available ordering codes for the PE42424 as well as available shipping methods.
Table 6 • Order Codes for PE42424

Order Codes	Description	Packaging	Shipping Method
PE42424A-Z	PE42424 SPDT RF switch	Green 6-lead $1.5 \times 1.5 \mathrm{~mm} \mathrm{DFN}$	$3000 \mathrm{units} / T \& R$
EK42424-01	PE42424 Evaluation kit	Evaluation kit	$1 / B o x$

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Product Brief

This document contains a shortened version of the datasheet. For the full datasheet, contact sales@psemi.com.

Sales Contact

For additional information, contact Sales at sales@psemi.com.

Disclaimers

The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2015-2020, pSemi Corporation. All rights reserved. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

