Product Specification

PE42821

UltraCMOS ${ }^{\circledR}$ SPDT RF Switch 100-2700 MHz

Features

- High power handling
- $45 \mathrm{dBm} @ 850 \mathrm{MHz}, 32 \mathrm{~W}$
- 44 dBm @ 2 GHz, 25W
- High linearity
- 82 dBm IIP3 @ 850 MHz
- 76 dBm IIP3 @ 2.7 GHz
- Low insertion loss
- 0.35 dB @ 850 MHz
- 0.60 dB @ 2 GHz
- Fast switching time of $4 \mu \mathrm{~s}$ (bypass mode)
- Wide supply range of $2.3-5.5 \mathrm{~V}$
- +1.8 V control logic compatible
- ESD performance
- 1.5 kV HBM on all pins
- External negative supply option

Figure 2. Package Type
32-lead $5 \times 5 \mathrm{~mm}$ QFN

Table 1. Electrical Specifications $@+25^{\circ} \mathrm{C}\left(Z_{S}=Z_{L}=50 \Omega\right)$, unless otherwise noted Normal mode ${ }^{1}$: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS_EXT }}=0 \mathrm{~V}$ or Bypass mode ${ }^{2}$: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} \text { _EXT }}=-3.3 \mathrm{~V}$

Parameter	Path	Condition	Min	Typ	Max	Unit
Insertion loss ${ }^{3}$	RFC-RFX	$\begin{aligned} & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.60 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.80 \\ & 1.05 \end{aligned}$	dB dB dB
Isolation	RFX-RFX	$\begin{aligned} & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-2.7 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 33 \\ & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 35 \\ & 28 \\ & 24 \end{aligned}$		dB dB dB
Unbiased isolation	RFC-RFX	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 1=0 \mathrm{~V},+27 \mathrm{dBm}$		6		dB
Return loss ${ }^{3}$	RFX	$\begin{aligned} & 100 \mathrm{MHz}-1 \mathrm{GHz} \\ & 1-2 \mathrm{GHz} \\ & 2-2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 20 \\ & 13 \\ & 14 \end{aligned}$		dB dB dB
Harmonics	RFC-RFX	2fo: +45 dBm pulsed @ 1GHz, 50 3fo: +45 dBm pulsed @ 1GHz, 50Ω		$\begin{aligned} & \hline-82 \\ & -85 \end{aligned}$	$\begin{aligned} & \hline-78 \\ & -81 \end{aligned}$	dBc dBc
Input IP3	RFC-RFX	$\begin{aligned} & 850 \mathrm{MHz} \\ & 2700 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 82 \\ & 76 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Input 0.1 dB compression point ${ }^{4}$	RFC-RFX	$\begin{aligned} & 100 \mathrm{MHz}-2 \mathrm{GHz} \\ & 2-2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 45.5 \\ & 44.5 \end{aligned}$		dBm dBm
Switching time in normal mode ${ }^{1}$		50% CTRL to 90% or 10% RF		7	11	$\mu \mathrm{s}$
Switching time in bypass mode ${ }^{2}$		50% CTRL to 90% or 10\% RF		4		$\mu \mathrm{s}$
Settling time		50% CTRL to harmonics within specifications ${ }^{5}$		15	25	$\mu \mathrm{s}$

Notes: 1. Normal mode: single external positive supply used.
2. Bypass mode: both external positive supply and external negative supply used.
3. Performance specified with external matching. Refer to Evaluation Kit section for additional information.
4. The input 0.1 dB compression point is a linearity figure of merit. Refer to Table 3 for the operating RF input power (50Ω).
5. See harmonics specs above.

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
$1,3-11$, $14,15,17-$ $22,24-27$, $29-32$	GND	Ground
2	RF1 1	RF port
12	V $_{\text {DD }}$	Supply voltage (nominal 3.3V)
13	V1 1	Digital control logic input 1
16	V $_{\text {Ss_Ex }}{ }^{2}$	External $\mathrm{V}_{\text {SS }}$ negative voltage control
23	RF2 1	RF port
28	RFC 1	RF common
Pad	GND	Exposed pad: ground for proper operation

Notes: 1. RF pins 2,23 and 28 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.
2. Use $\mathrm{V}_{\text {SS_EXT }}\left(\operatorname{pin} 16, \mathrm{~V}_{\text {SS_EXT }}=-\mathrm{V}_{\mathrm{DD}}\right.$) to bypass and disable internal negative voltage generator. Connect $\mathrm{V}_{\text {SS_EXT }}$ (pin 16, $\mathrm{V}_{\text {SS_EXT }}=\mathrm{GND}$) to enable internal negative voltage generator.

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Normal mode ${ }^{1}$					
Supply voltage	$V_{D D}$	2.3		5.5	V
Supply current	$I_{\text {DD }}$		130	200	$\mu \mathrm{A}$
Bypass mode ${ }^{2}$					
Supply voltage	$V_{\text {DD }}$		3.3	5.5	V
Supply current	IDD		50	80	$\mu \mathrm{A}$
Negative supply voltage	$\mathrm{V}_{\text {SS_EXT }}$	-3.6		-3.2	V
Negative supply current	$I_{\text {ss }}$	-40	-16		$\mu \mathrm{A}$
Normal or Bypass mode					
Digital input high (V1)	V_{IH}	1.17		$3.6{ }^{3}$	V
Digital input low (V1)	$\mathrm{V}_{\text {IL }}$	-0.3		0.6	V
$\begin{gathered} \text { RF input power, CW } \\ 100 \mathrm{MHz}-2 \mathrm{GHz} \\ >2-2.7 \mathrm{GHz} \end{gathered}$	$\mathrm{P}_{\text {MAX,CW }}$			$\begin{aligned} & 43 \\ & 42 \end{aligned}$	dBm dBm
$\begin{aligned} & \text { RF input power, } \\ & \text { pulsed } \\ & \quad 100 \mathrm{MHz}-2 \mathrm{GHz} \\ & >2-2.7 \mathrm{GHz} \end{aligned}$	$\mathrm{P}_{\text {MAX, PULSEd }}$			$\begin{aligned} & 45 \\ & 44 \end{aligned}$	dBm dBm
RF input power, unbiased	$\mathrm{P}_{\text {max, unb }}$			27	dBm
Operating temperature range (Case)	Top	-40		+85	${ }^{\circ} \mathrm{C}$
Operating junction temperature	TJ			+140	${ }^{\circ} \mathrm{C}$

Notes: 1. Normal mode: connect pin 16 to GND to enable internal negative voltage generator.
2. Bypass mode: apply a negative voltage to $\mathrm{V}_{\text {Ss_Ext }}$ (pin 16) to bypass and disable internal negative voltage generator.
3. Maximum $\mathrm{V}_{\mathbb{H}}$ voltage is limited to V_{DD} and cannot exceed 3.6 V .
4. Pulsed, 10% duty cycle of $4620 \mu \mathrm{~s}$ period, 50Ω.

Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
Supply voltage	V_{DD}	-0.3	5.5	V
Digital input voltage (V1)	$\mathrm{V}_{\mathrm{CTRL}}$	-0.3	3.6	V
Maximum input power $100 \mathrm{MHz-2} \mathrm{GHz}$ $>2-2.7 \mathrm{GHz}$	$\mathrm{P}_{\mathrm{MAX}, \mathrm{ABS}}$		45.5	dBm
dBm				
Storage temperature range	T_{ST}	-65	+150	${ }^{\circ} \mathrm{C}$
Maximum case temperature	$\mathrm{T}_{\mathrm{CASE}}$		+85	${ }^{\circ} \mathrm{C}$
Peak maximum junction temperature (10 seconds max)	T_{J}		+200	${ }^{\circ} \mathrm{C}$
ESD voltage HBM^{1}, all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{HBM}}$		1500	V
ESD voltage MM^{2}, all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{MM}}$		200	V
ESD voltage CDM^{3}, all pins	$\mathrm{V}_{\mathrm{ESD}, \mathrm{CDM}}$		250	V

Notes: 1. Human Body Model (MIL-STD 883 Method 3015)
2. Machine Model (JEDEC JESD22-A115)
3. Charged Device Model (JEDEC JESD22-C101)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the 32lead $5 \times 5 \mathrm{~mm}$ QFN package is MSL3.

Table 5. Control Logic Truth Table

Path	CTRL
RFC-RF1	H
RFC-RF2	L

Optional External $\mathbf{V}_{\text {SS }}$ Control ($\mathbf{V}_{\text {SS_ExT }}$)

For applications that require a faster switching rate or spur-free performance, this part can be operated in bypass mode. Bypass mode requires an external negative voltage in addition to an external V_{DD} supply voltage.

As specified in Table 3, the external negative voltage ($\mathrm{V}_{\text {SS_ExT }}$) when applied to pin 16 will disable and bypass the internal negative voltage generator.

Switching Frequency

The PE42821 has a maximum 25 kHz switching rate in normal mode (pin 16 = GND). A faster switching rate is available in bypass mode (pin 16 $=\mathrm{V}_{\text {SS_EXT }}$). The rate at which the PE42821 can be switched is then limited to the switching time as specified in Table 1.

Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Spurious Performance

The typical low-frequency spurious performance of the PE42821 in normal mode is -137 dBm (pin $16=$ GND). If spur-free performance is desired, the internal negative voltage generator can be disabled by applying a negative voltage to $\mathrm{V}_{\text {SS_EXT }}$ (pin 16).

Hot Switching Capability

The typical hot switching capability of the PE42821 is +30 dBm . Hot switching occurs when RF power is applied while switching between RF ports.

Typical Performance Data $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS_ExT }}=0 \mathrm{~V}$, unless otherwise noted

Figure 4. Insertion Loss vs. Temp (RFC-RFX)

Figure 6. RFC Port Return Loss vs. Temp (RF1 Active)

Figure 5. Insertion Loss vs. VDD (RFC-RFX)

Figure 7. RFC Port Return Loss vs. V_{DD} (RF1 Active)

Typical Performance Data @ +25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {Ss Ext }}=0 \mathrm{~V}$, unless otherwise noted

Figure 8. Active Port Return Loss vs. Temp (RF1 Active)

Figure 10. Isolation vs. Temp
(RFC-RFX, RFX Active)

Figure 9. Active Port Return Loss vs. V_{DD} (RF1 Active)

Figure 11. Isolation vs. V_{DD}
(RFC-RFX, RFX Active)

Typical Performance Data $@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS_ExT }}=0 \mathrm{~V}$, unless otherwise noted

Figure 12. Isolation vs. Temp (RFX-RFX, RFX Active)

Figure 13. Isolation vs. $V_{D D}$
(RFX-RFX, RFX Active)

Thermal Data

Though the insertion loss for this part is very low, when handling high power RF signals, the junction temperature rises significantly.

VSWR conditions that present short circuit loads to the part can cause significantly more power dissipation than with proper matching.

Special consideration needs to be made in the design of the PCB to properly dissipate the heat away from the part and maintain the $85^{\circ} \mathrm{C}$ maximum case temperature. It is recommended to use best design practices for high power QFN packages: multi-layer PCBs with thermal vias in a thermal pad soldered to the slug of the package. Special care also needs to be made to alleviate solder voiding under the part.

Table 6. Theta JC

Parameter	Min	Typ	Max	Unit
Theta JC $\left(+85^{\circ} \mathrm{C}\right)$		20		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Evaluation Kit

The PE42821 Evaluation Kit board was designed to ease customer evaluation of the PE42821 RF switch.

The evaluation board in Figure 14 was designed to test the part. DC power is supplied through J10, with VDD on pin 9, and GND on the entire lower row of even numbered pins. To evaluate a switch path, add or remove jumpers on V1 (pin 3) using Table 5.

The ANT port is connected through a 50Ω transmission line via the top SMA connector, J1. RF1 and RF2 paths are also connected through 50Ω transmission lines via SMA connectors as J2 and J3. A 50Ω through transmission line is available via SMA connectors J5 and J6. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated. An open-ended 50Ω transmission line is also provided at J 4 for calibration if needed.

Narrow trace widths are used near each part to improve impedance matching. The shunt C1 on RFC port is to provide for high frequency impedance matching.

Figure 14. Evaluation Board Layout

PE42821

Figure 15. Evaluation Board Schematic

Figure 16. Package Drawing 32-lead 5x5 mm QFN

Figure 17. Top Marking Specification

17-0085

Figure 18. Tape and Reel Specs

Table 7. Ordering Information

Order Code	Description	Package	Shipping Method
PE42821MLBA-X	PE42821 SPDT RF switch	Green 32-lead $5 \times 5 \mathrm{~mm}$ QFN	500 units/T\&R
EK42821-02	PE42821 Evaluation kit	Evaluation kit	$1 / B o x$

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by pSemi manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

