Product Specification

PE64904

UltraCMOS ${ }^{\circledR}$ Digitally Tunable Capacitor (DTC) 100-3000 MHz

Product Description

The PE64904 is a DuNE ${ }^{\text {TM }}$-enhanced Digitally Tunable Capacitor (DTC) based on Peregrine's UltraCMOS ${ }^{\circledR}$ technology. DTC products provide a monolithically integrated impedance tuning solution for demanding RF applications.

The PE64904 offers high RF power handling and ruggedness, while meeting challenging harmonic and linearity requirements.

This highly versatile product can be used in series or shunt configurations to support a wide variety of tuning circuit topologies.

The device is controlled through the widely supported 3 -wire (SPI compatible) interface. All decoding and biasing is integrated on-chip and no external bypassing or filtering components are required.

Peregrine's DuNE ${ }^{\text {TM }}$ technology enables excellent linearity and exceptional harmonic performance. DuNE devices deliver performance superior to GaAs devices with the economy and integration of conventional CMOS.

Figure 1. Functional Block Diagram

71-0066-01

Table 1. Electrical Specifications @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}$

Parameter	Configuration	Condition	Min	Typ	Max	Units
Operating Frequency Range	Both		100		3000	MHz
Minimum Capacitance	Series Shunt	$\begin{aligned} & \text { State }=00000,100 \mathrm{MHz}(\mathrm{RF}+\text { to RF-) } \\ & \text { State }=00000,100 \mathrm{MHz} \text { (RF+ to Grounded RF-) } \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 1.30 \end{aligned}$	pF
Maximum Capacitance	Series Shunt	$\begin{aligned} & \text { State }=11111,100 \mathrm{MHz}(\mathrm{RF}+\text { to RF-) } \\ & \text { State }=11111,100 \mathrm{MHz} \text { (RF+ to Grounded RF-) } \end{aligned}$	$\begin{aligned} & 3.78 \\ & 4.19 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 5.45 \\ & 6.00 \end{aligned}$	pF
Parasitic Capacitance	Series	All States, 100 MHz (RF+ to GND, RF- to GND)		0.5		pF
Tuning Ratio	Series Shunt	$\begin{aligned} & 100 \mathrm{MHz} \\ & 100 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { 7.7:1 } \\ & \text { 4.6:1 } \end{aligned}$		
Step Size	Both	5 bits (32 states), constant step size (100 MHz)		0.129		pF
Equivalent Series Resistance	Series	$\begin{aligned} & \text { State }=00000 \\ & \text { State }=11111 \end{aligned}$		$\begin{aligned} & 1.40 \\ & 1.33 \end{aligned}$		Ω
Quality Factor $\left(\mathrm{C}_{\text {min }}\right)^{1}$	Shunt	100 MHz , with L_{s} removed 1 GHz , with L_{s} removed 2 GHz , with L_{s} removed 3 GHz , with L_{s} removed		$\begin{aligned} & 10 \\ & 35 \\ & 32 \\ & 25 \end{aligned}$		
Quality Factor ($\left.\mathrm{C}_{\text {max }}\right)^{1}$	Shunt	100 MHz , with L_{s} removed 1 GHz , with L_{s} removed 2 GHz , with L_{s} removed 3 GHz , with L_{s} removed		$\begin{gathered} 27 \\ 25 \\ 11 \\ 6 \end{gathered}$		
Self Resonant Frequency	Shunt	State 00000 State 11111		$\begin{aligned} & 7.5 \\ & 3.1 \end{aligned}$		GHz
Harmonics (2fo) ${ }^{2}$	Seri	$100 \mathrm{MHz}-3 \mathrm{GHz}$			-36	dBm
Harmonics (3fo) ${ }^{2}$	Series	$100 \mathrm{MHz}-3 \mathrm{GHz}$			-36	dBm
Input Intercept Point (2nd Order)	Series	$100 \mathrm{MHz}-3 \mathrm{GHz},+18 \mathrm{dBm}$ per tone, 1 MHz Spacing		105		dBm
Input Intercept Point (3rd Order)	Series	$100 \mathrm{MHz}-3 \mathrm{GHz},+18 \mathrm{dBm}$ per tone, 1 MHz Spacing		65		dBm
Switching Time ${ }^{3,4}$	Both	50% CTRL to 10/90\% delta capacitance between any two states			12	$\mu \mathrm{s}$
Start-up Time ${ }^{3}$	Both	Time from $V_{D D}$ within specification to all performances within specification			100	$\mu \mathrm{s}$
Wake-up Time ${ }^{3,4}$	Both	State change from standby mode to RF state to all performances within specification			100	$\mu \mathrm{s}$

Notes: 1. Q for a Shunt DTC based on a Series RLC equivalent circuit.
$Q=X_{C} / R=\left(X-X_{L}\right) / R$, where $X=X_{L}+X_{C}, X_{L}=2^{*} p^{*} f^{*} L, X_{C}=-1 /\left(2^{*} p^{*} f^{*} C\right)$, which is equal to removing the effect of parasitic inductance L_{s}.
2. In series or shunt between 50Ω ports. Pulsed RF input with 4620μ s period, 50% duty cycle, measured per 3GPP TS 45.005.
3. DC path to ground at RF+ and RF- must be provided to achieve specified performance.
4. State change activated on falling edge of SEN following data word.

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
1	RF-	Negative RF Port 1
2	RF-	Negative RF Port ${ }^{1}$
3	DGND	Ground
4	V $_{\text {DD }}$	Power supply pin
5	SCL	Serial interface Clock input
6	SEN	Serial Interface Latch Enable Input
7	SDA	Serial interface Data input $^{2} 8$
RF+	${\text { Positive RF Port }{ }^{1}}^{1}$	
9	RF+	Positive RF Port 1
10	GND	RF Ground

Note 1: Pins 1-2 and 8-9 must be tied together on PCB for optimal performance.

Table 3. Operating Ranges

Parameter	Min	Typ	Max	Units
$\mathrm{V}_{\text {DD }}$ Supply Voltage	2.3	2.6	3.6	V
I_{DD} Power Supply Current ($\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}$)		140	200	$\mu \mathrm{A}$
I_{DD} Standby Current ($\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}$)		25		$\mu \mathrm{A}$
V_{IH} Control Voltage High	1.2	1.8	3.6	V
$\mathrm{V}_{\text {IL }}$ Control Voltage Low	0	0	0.57	V
RF Input Power (50 $)^{1}$ $698-915 \mathrm{MHz}$ $1710-1910 \mathrm{MHz}$			$\begin{aligned} & +34 \\ & +32 \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Peak Operating RF Voltage ${ }^{2}$ V_{p} to RFGND V_{M} to RFGND			$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	Vpk Vpk Vpk
T_{OP} Operating Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {ST }}$ Storage Temperature Range	-65		+150	${ }^{\circ} \mathrm{C}$

Notes: 1. Maximum Power Available from 50Ω Source. Pulsed RF input with 4620μ s period, 50% duty cycle, measured per 3GPP TS 45.005. 2. Node voltages defined per Equivalent Circuit Model Schematic (Figure 18). When DTC is used as a part of reactive network, impedance transformation may cause the internal RF voltages $\left(\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{M}}\right)$ to exceed Peak Operating RF Voltage even with specified RF Input Power Levels. For operation above about $+20 \mathrm{dBm}(100 \mathrm{~mW})$, the complete RF circuit must be simulated using actual input power and load conditions, and internal node voltages ($\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{M}}$ in Figure 18) monitored to not exceed 30 Vpk.

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	4.0	V
$\mathrm{~V}_{1}$	Voltage on any DC input	-0.3	4.0	V
$\mathrm{~V}_{\text {ESD }}$	ESD Voltage (HBM, MIL_STD 883 Method 3015.7)		1500	V

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE64904 in the 10 -lead $2 \times 2 \times 0.45 \mathrm{~mm}$ QFN package is MSL1.

Performance Plots @ $25^{\circ} \mathrm{C}$ and 2.6 V unless otherwise specified

Figure 4. Measured Shunt C (@ 100 MHz) vs. State (temperature)

Figure 6. Measured Step Size vs State (frequency)

Figure 8. Measured Shunt C vs. Frequency (major states)

Figure 5. Measured Shunt S_{11} (major states)

freq $(880.0 \mathrm{MHz}$ to 915.0 MHz$)$
Figure 7. Measured Series $\mathbf{S}_{11} / \mathbf{S}_{22}$ (major states)

Figure 9. Measured Series S_{21} vs. Frequency (major states)

Figure 10. Measured Shunt Q vs. Frequency (major states)

Figure 11. Measured Shunt Q (state 0) vs. Frequency (temperature)

Figure 12. Measured Shunt Q (state 31) vs. Frequency (temperature)

Operation at Frequencies Below 100 MHz

The PE64904 may be operated below the 100 MHz specified minimum operating frequency. The total capacitance and peak operating RF voltage are de-rated down to 1 MHz . Figure 13 shows the total shunt capacitance from 1 MHz through 100 MHz . As seen in Figure 14, the maximum RF voltage that can be placed across the RF terminals or across either RF terminal to Ground is de-rated as a function of frequency.

Note: Table 1 performance specifications are not guaranteed below 100 MHz . Figures 13, 14, and 15 reflect performance of a typical PE64904.

Figure 13. Measured Shunt C vs. Frequency (major states, 1 MHz-100 MHz)

Figure 15. Measured Shunt Q vs. Frequency (major states, 1 MHz - 100 MHz)

Figure 14. Voltage Derating vs. Frequency (1 MHz-100 MHz)

Serial Interface Operation and Sharing

The PE64904 is controlled by a three wire SPIcompatible interface. As shown in Figure 16, the serial master initiates the start of a telegram by driving the SEN (Serial Enable) line high. Each bit of the 8 -bit telegram is clocked in on the rising edge of the SCL (Serial Clock) line. SDA bits are clocked by most significant bit (MSB) first, as shown in Table 5 and Figure 16. Transactions on SDA (Serial Data) are allowed on the falling edge of SCL. The DTC activates the data on the falling edge of SEN. The DTC does not count how many bits are clocked and only maintains the last 8 bits it received.

More than 1 DTC can be controlled by one interface by utilizing a dedicated enable (SEN) line for each DTC. SDA, SCL, and $V_{D D}$ lines may be shared as shown in Figure 17. Dedicated SEN lines act as a chip select such that each DTC will only respond to serial transactions intended for them. This makes each DTC change states sequentially as they are programmed.

Alternatively, a dedicated SDA line with common SEN can be used. This allows all DTCs to change states simultaneously, but requires all DTCs to be programmed even if the state is not changed.

Figure 16. Serial Interface Timing Diagram (oscilloscope view)

Table 5. Register Map

Table 6. Serial Interface Timing Characteristics
$\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Min	Max	Units
$\mathrm{f}_{\mathrm{CLK}}$	Serial Clock Frequency		26	MHz
t_{R}	SCL, SDA, SEN Rise Time		6.5	ns
t_{F}	SCL, SDA, SEN Fall Time		6.5	ns
$\mathrm{t}_{\mathrm{ESU}}$	SEN rising edge to SCL rising edge	19.2		ns
$\mathrm{t}_{\text {EHD }}$	SCL rising edge to SEN falling edge	19.2		ns
$\mathrm{t}_{\mathrm{DSU}}$	SDA valid to SCL rising edge	13.2		ns
$\mathrm{t}_{\text {DHD }}$	SDA valid after SCL rising edge	13.2		ns
$\mathrm{t}_{\text {EOW }}$	SEN falling edge to SEN rising edge	38.4		ns

Figure 17. Recommended Bus Sharing

Equivalent Circuit Model Description

The DTC Equivalent Circuit Model includes all parasitic elements and is accurate in both Series and Shunt configurations, reflecting physical circuit behavior accurately and providing very close correlation to measured data. It can easily be used in circuit simulation programs. Most parameters are state independent, and simple equations are provided for the state dependent parameters. The Tuning Core capacitance C_{s} represents capacitance between RF+ and RF- ports. It is linearly proportional to state (0 to 31 in decimal) in a discrete fashion. The Series Tuning Ratio is defined as $\mathrm{C}_{\text {smax }} / \mathrm{C}_{\text {smin }}$.
C_{P} represents the circuit and package parasitics from RF ports to GND. In Shunt configuration the total capacitance of the DTC is higher due to parallel combination of C_{P} and C_{s}. In Series configuration, C_{S} and C_{P} do not add in parallel and the DTC appears as an impedance transformation network.

Parasitic inductance due to circuit and package is modeled as L_{s} and causes the apparent capacitance of the DTC to increase with frequency until it reaches Self Resonant Frequency (SRF). The value of SRF depends on state and is approximately inversely proportional to the square root of capacitance.

The overall dissipative losses of the DTC are modeled by $\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{P} 1}$ and $\mathrm{R}_{\mathrm{P} 2}$ resistors. The parameter R_{S} represents the Equivalent Series Resistance (ESR) of the tuning core and is dependent on state. $\mathrm{R}_{\mathrm{P} 1}$ and $\mathrm{R}_{\mathrm{P} 2}$ represent losses due to the parasitic and biasing networks, and are state-independent.

Table 7. Maximum Operating RF Voltage

Condition	Limit
V_{P} to V_{M}	30 Vpk
V_{P} to RFGND	30 Vpk
V_{M} to RFGND	30 Vpk

Figure 18. Equivalent Circuit Model Schematic

Table 8. Equivalent Circuit Model Parameters

Variable	Equation (state $=0,1,2 \ldots 31$)	Units
C_{S}	0.129^{*} state +0.600	pF
R_{S}	$20 /($ state $+20 /($ state +0.7$))+0.7$	Ω
$\mathrm{R}_{\mathrm{P} 1}$	7	Ω
$\mathrm{R}_{\mathrm{P} 2}$	10	$\mathrm{k} \Omega$
C_{P}	0.5	pF
L_{s}	0.27	nH

Table 9. Equivalent Circuit Data

State		DTC Core	
Binary	Decimal	C_{s} [pF]	$\mathbf{R}_{\text {S }}[\Omega]$
00000	0	0.60	1.40
00001	1	0.73	2.27
00010	2	0.86	2.83
00011	3	0.99	3.08
00100	4	1.12	3.12
00101	5	1.25	3.05
00110	6	1.37	2.93
00111	7	1.50	2.78
01000	8	1.63	2.64
01001	9	1.76	2.51
01010	10	1.89	2.39
01011	11	2.02	2.27
01100	12	2.15	2.17
01101	13	2.28	2.08
01110	14	2.41	2.00
01111	15	2.54	1.93
10000	16	2.66	1.86
10001	17	2.79	1.80
10010	18	2.92	1.75
10011	19	3.05	1.70
10100	20	3.18	1.65
10101	21	3.31	1.61
10110	22	3.44	1.57
10111	23	3.57	1.54
11000	24	3.70	1.51
11001	25	3.83	1.48
11010	26	3.95	1.45
11011	27	4.08	1.42
11100	28	4.21	1.40
11101	29	4.34	1.37
11110	30	4.47	1.35
11111	31	4.60	1.33

Layout Recommendations

For optimal results, place a ground fill directly under the DTC package on the PCB. Layout isolation is desired between all control and RF lines. When using the DTC in a shunt configuration, it is important to make sure the RF-pin is solidly grounded to a filled ground plane. Ground traces should be as short as possible to minimize inductance. A continuous ground plane is preferred on the top layer of the PCB. When multiple DTCs are used together, the physical distance between them should be minimized and the connection should be as wide as possible to minimize series parasitic inductance.

Figure 19. Recommended Schematic of Multiple DTCs

Figure 20. Recommended Layout of Multiple DTCs

Figure 22. Package Drawing
10-lead $2 \times 2 \times 0.45 \mathrm{~mm}$

TロP VIEW

		ETSLP
\wedge	MAX.	0.500
	NDM.	0.450
	MIN.	0.400

BDTTロM VIEW

SIDE VIEW
19-2002

Figure 23. Marking Specifications

Marking Spec Symbol	Package Marking	Definition
PP	CG	Part number marking for PE64904
ZZ	$00-99$	Last two digits of lot code
Y	$0-9$	Last digit of year, starting from 2009 (0 for 2010, 1 for 2011, etc)
WW	$01-53$	Work week

Figure 24. Tape and Reel Specifications

----------- Tape Feed Direction -----------

Device Orientation in Tape

Table 9. Ordering Information

Order Code	Package	Description	Shipping Method
PE64904C-Z	$10-$ lead QFN $2 \times 2 \times 0.45 \mathrm{~mm}$	Package Part in Tape and Reel	3000 units/T\&R
EK64904-13	Evaluation Kit	Evaluation Kit	1 Set/Box

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.
Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
Peregrine products are protected under one or more of the following U.S. patents: patents.psemi.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Trimmer/Variable Capacitors category:
Click to view products by pSemi manufacturer:

Other Similar products are found below :
GKY20086 GNC8R050 GXA18000 GXA36000 GXC90000 GXE5R000NM GXL10000 GZN60100 PC50H230 PC50J110 PC51H230
GDT40026 GKU90020 GNR4R550 GNR8R050 GXL15000 538-011 D 9-35LF PC39G520 STPTIC-56G2C5 27271LSL 27281SL
STPTIC-82G2C5 27283-3R10 GNL8R050 GYB5R000 0538-006-F-15.0-60LF GXL18000 GHC5R500 GZD80000 TP11G KT1SD KF8
$\underline{K P 8} \underline{K M 8} \underline{K G 8} \underline{K J 8} \underline{K T 8} \underline{K G 10}$ KP10 KF10 KJ10 KM10 TP42C NMAJ25HV KF4SD KJ1SD KP1SD KM4SD KT4SD KP4SD

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product Product Specification: The datasheet contains final data. In the event Peregrine decides to Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrin
 CNF (Customer Notification Form).
 The information in this document is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

