Product Specification

PE64909

Product Description

PE64909 is a DuNE ${ }^{\text {TM }}$ technology-enhanced Digitally Tunable Capacitor (DTC) based on Peregrine’s UltraCMOS ${ }^{\circledR}$ technology. This highly versatile product supports a wide variety of tuning circuit topologies with emphasis on impedance matching and aperture tuning applications.

PE64909 offers high RF power handling and ruggedness while meeting challenging harmonic and linearity requirements enabled by Peregrine's HaRP™ technology. The device is controlled through the widely supported 3-wire (SPI compatible) interface. All decoding and biasing is integrated on-chip and no external bypassing or filtering components are required.

DuNE ${ }^{\text {TM }}$ devices feature ease of use while delivering superior RF performance in the form of tuning accuracy, monotonicity, tuning ratio, power handling, size, and quality factor. With built-in bias voltage generation and ESD protection, DTC products provide a monolithically integrated tuning solution for demanding RF applications.

UltraCMOS ${ }^{\circledR}$ Digitally Tunable Capacitor (DTC)
 100-3000 MHz

Features

- 3-wire (SPI compatible) serial interface with built-in bias voltage generation and ESD protection
- DuNE ${ }^{\text {TM }}$ technology enhanced
- 4-bit 16-state Digitally Tunable Capacitor
- Shunt configuration $\mathrm{C}=0.6 \mathrm{pF}$ to 2.35 pF (3.9:1 tuning ratio) in discrete 117 fF steps
- High RF power handling ($30 \mathrm{~V}_{\mathrm{pk}} \mathrm{RF}$) and linearity
- Wide power supply range (2.3 to 4.8 V) and low current consumption (typ. $140 \mu \mathrm{~A}$ at 2.75 V)
- High ESD tolerance of 2 kV HBM on all pins
- Applications include:
- Tunable antennas
- Tunable matching networks
- Tunable filter networks
- Phase shifters

Figure 2. Package Type
10-lead $2 \times 2 \times 0.55 \mathrm{~mm}$ QFN

Figure 1. Functional Diagram

Table 1. Electrical Specifications @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$ (In shunt configuration, RF-connected to GND)

Parameter	Condition	Min	Typ	Max	Unit
Operating frequency		100		3000	MHz
Minimum capacitance $\left(\mathrm{C}_{\text {min }}\right)$	State 0000, 100 MHz	0.54	0.60	0.66	pF
Maximum capacitance ($\mathrm{C}_{\text {max }}$)	State 1111, 100 MHz	1.88	2.35	2.82	pF
Tuning ratio	$\mathrm{C}_{\text {max }} / \mathrm{C}_{\text {min }}, 100 \mathrm{MHz}$		3.9:1		
Step size	4 bits (16 states), 100 MHz		0.117		pF
Quality factor at $\mathrm{C}_{\text {min }}{ }^{1}$	698 to 960 MHz , with L_{s} removed 1710 to 2170 MHz , with L_{s} removed		$\begin{aligned} & 40 \\ & 40 \end{aligned}$		
Quality factor at $\mathrm{C}_{\text {max }}{ }^{1}$	698 to 960 MHz , with L_{s} removed 1710 to 2170 MHz , with L_{s} removed		$\begin{aligned} & 29 \\ & 13 \end{aligned}$		
Self resonant frequency	State 0000 State 1111		$\begin{aligned} & 9.1 \\ & 3.7 \end{aligned}$		GHz
Harmonics ${ }^{2}$	2fo, 3fo: 698 to $915 \mathrm{MHz} ; \mathrm{P}_{\mathrm{in}}=+34 \mathrm{dBm}, 50 \Omega$ 2fo, 3fo: 1710 to $1910 \mathrm{MHz} ; \mathrm{P}_{\mathrm{IN}}=+32 \mathrm{dBm}, 50 \Omega$			$\begin{aligned} & -36 \\ & -36 \end{aligned}$	dBm dBm
IMD3	Bands I,II,V/VIII, +20 dBm CW @ TX freq, -15 dBm CW @ 2TX-RX freq, 50Ω			-105	dBm
Third order intercept point (IP3)	Shunt configuration derived from IMD3 spec $\mathrm{IP} 3=\left(2 \mathrm{P}_{\mathrm{TX}}+\mathrm{P}_{\text {block }}-\mathrm{IMD} 3\right) / 2$		65		dBm
Switching time ${ }^{3,4}$	State change to 10/90\% delta capacitance between any two states			12	$\mu \mathrm{s}$
Start-up time ${ }^{3}$	Time from $V_{\text {DD }}$ within specification to all performances within specification			70	$\mu \mathrm{s}$
Wake-up time ${ }^{3,4}$	State change from Standby mode to RF state to all performances within specification			70	$\mu \mathrm{s}$

Notes: 1. Q for a Shunt DTC based on a Series RLC equivalent circuit
$Q=X_{C} / R=\left(X-X_{L}\right) / R$, where $X=X_{L}+X_{C}, X_{L}=2^{*} \mathrm{pi}^{*} f^{*} \mathrm{~L}, X_{C}=-1 /\left(2^{*} \mathrm{pi}^{*} f^{*} C\right)$, which is equal to removing the effect of parasitic inductance L_{S}
2. In Shunt between 50Ω ports. Pulsed RF input with 4620μ s period, 50% duty cycle, measured per 3GPP TS 45.005
3. DC path to ground at RF- must be provided to achieve specified performance
4. State change activated on falling edge of SEN following data word

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin \#	Pin Name	Description
1	RF-	Negative RF port ${ }^{1}$
2	RF-	Negative RF port ${ }^{1}$
3	GND	Ground ${ }^{2}$
4	$V_{D D}$	Power supply pin
5	SCL	Serial interface clock input
6	SEN	Serial interface latch enable input
7	SDA	Serial interface data input
8	RF+	Positive RF port ${ }^{1}$
9	RF+	Positive RF port ${ }^{1}$
10	GND	Ground ${ }^{2}$
Pad	GND	Exposed pad: ground for proper operation ${ }^{2}$
Notes: 1. For optimal performance, recommend tying pins 1-2 and pins 8-9 together on PCB 2. For optimal performance, recommend tying pins 3, 10, and exposed ground pad together on PCB		

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE64909 in the 10-lead $2 x 2 \mathrm{~mm}$ QFN package is MSL1.

Table 3. Operating Ranges

Parameter	Symbol	Min	Typ	Max	Unit
Supply voltage	$V_{\text {D }}$	2.30	2.75	4.80	V
Supply current ($\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$)	I_{DD}		140	200	$\mu \mathrm{A}$
Standby current ($\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$)	I_{DD}		25		$\mu \mathrm{A}$
Digital input high	V_{1+}	1.2	1.8	3.1	V
Digital input low	VIL	0	0	0.57	V
RF input power (50 $\left.{ }^{1}\right)^{1}$ 698 to 915 MHz 1710 to 1910 MHz				$\begin{aligned} & +34 \\ & +32 \end{aligned}$	dBm dBm
Peak operating RF voltage ${ }^{2}$ $\begin{aligned} & V_{P} \text { to } V_{M} \\ & V_{P} \text { to RFGND } \end{aligned}$				$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Vpk Vpk
Operating temperature range	Top	-40	+25	+85	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {st }}$	-65	+25	+150	${ }^{\circ} \mathrm{C}$

Notes: 1. Maximum Power Available from 50Ω Source. Pulsed RF input with $4620 \mu \mathrm{~S}$ period, 50% duty cycle, measured per 3GPP TS 45.005 measured in shunt between 50Ω ports, RF- connected to GND
2. Node voltages defined per Equivalent Circuit Model Schematic (Figure 13). When DTC is used as a part of reactive network, impedance transformation may cause the intemal RF voltages $\left(\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{M}}\right)$ to exceed Peak Operating RF Voltage even with specified RF Input Power Levels. For operation above about $+20 \mathrm{dBm}(100 \mathrm{~mW})$, the complete RF circuit must be simulated using actual input power and load conditions, and internal node voltages ($\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{M}}$ in Figure 13) monitored to not exceed $30 \mathrm{~V}_{\mathrm{pk}}$

Table 4. Absolute Maximum Ratings

Parameter/Condition	Symbol	Min	Max	Unit
ESD Voltage HBM ${ }^{1}$, all pins	V $_{\text {ESD }}$		2000	V

Note 1: Human Body Model (MIL-STD-883 Method 3015.7)
Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS ${ }^{\circledR}$ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS ${ }^{\circledR}$ devices are immune to latch-up.

Performance Plots @ $25^{\circ} \mathrm{C}$ and 2.75 V unless otherwise specified

Figure 4. Measured Shunt C (@ 100 MHz) vs State

Figure 5. Measured Shunt S_{11} (major states)

Figure 6. Measured Step Size vs State (frequency)

Figure 7. Measured Shunt C vs Frequency (major states)

Figure 8. Measured Shunt Q vs Frequency (major states)

Figure 9. Measured Shunt Q vs State

Figure 10. Measured Self Resonance Frequency vs State

Serial Interface Operation and Sharing

The PE64909 is controlled by a three wire SPIcompatible interface with enable active high. As shown in Figure 11, the serial master initiates the start of a telegram by driving the SEN (Serial Enable) line high. Each bit of the 8 -bit telegram (MSB first in) is clocked in on the rising edge of SCL (Serial Clock), as shown in Table 5 and Figure 11. Transitions on SDA (Serial Data) are allowed on the falling edge of SCL. The DTC activates the data on the falling edge of SEN. The DTC does not count how many bits are clocked and only maintains the last 8 bits it received.

More than 1 DTC can be controlled by one interface by utilizing a dedicated enable (SEN) line for each DTC. SDA, SCL, and $V_{D D}$ lines may be shared as shown in Figure 12. Dedicated SEN lines act as a chip select such that each DTC will only respond to serial transactions intended for them. This makes each DTC change states sequentially as they are programmed.

Alternatively, a dedicated SDA line with common SEN can be used. This allows all DTCs to change states simultaneously, but requires all DTCs to be programmed even if the state is not changed.

Figure 11. Serial Interface Timing Diagram

Table 5. 8-Bit Serial Programming Register Map

b7	b6	b5	b4	b3	b2	b1	b0
0^{1}	0^{1}	STB 2	0	d 3	d2	d 1	d 0

Notes: 1. These bits are reserved and must be written to 0 for proper operation 2. The DTC is active when low (set to 0) and in low-current stand-by mode when high (set to 1)

Table 6. Serial Interface Timing Characteristics
$V_{D D}=2.75 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Min	Max	Units
$\mathrm{t}_{\mathrm{SCL}}$	Serial clock period	38.4		ns
$\mathrm{t}_{\mathrm{SCLL}}$	SCL low time	13.2		ns
$\mathrm{t}_{\mathrm{SCLH}}$	SCL high time	13.2		ns
t_{R}	SCL, SDA, SEN rise time		6.5	ns
t_{F}	SCL, SDA, SEN fall time		6.5	ns
$\mathrm{t}_{\mathrm{ESU}}$	SEN rising edge to SCL rising edge	19.2		ns
$\mathrm{t}_{\mathrm{EHD}}$	SCL rising edge to SEN falling edge	19.2		ns
$\mathrm{t}_{\mathrm{DSU}}$	SDA valid to SCL rising edge	13.2		ns
$\mathrm{t}_{\mathrm{DHD}}$	SDA valid after SCL rising edge	13.2		ns
$\mathrm{t}_{\mathrm{EOW}}$	SEN falling edge to SEN rising edge	38.4		ns

Equivalent Circuit Model Description

The DTC Equivalent Circuit Model includes all parasitic elements and is accurate in both Series and Shunt configurations, reflecting physical circuit behavior accurately and providing very close correlation to measured data. It can easily be used in circuit simulation programs.

For V_{P} and V_{M} max operating limits, refer to Table 3.

Figure 13. Equivalent Circuit Model Schematic

Table 7. Equivalent Circuit Model Parameters

Variable	Equation (state $=0,1,2 \ldots 15)$	Unit
C_{s}	0.127^{*} state +0.20	pF
R_{S}	$20 /($ state $+20 /($ state +0.7$))+0.7$	Ω
$\mathrm{R}_{\mathrm{P} 1}$	$10+4^{*}$ state	Ω
$\mathrm{R}_{\mathrm{P} 2}$	$40000+10^{*}$ state $\wedge 3$	Ω
$\mathrm{C}_{\mathrm{P} 1}$	-0.01^{*} state +0.40	pF
$\mathrm{C}_{\mathrm{P} 2}$	0.0133^{*} state +0.45	pF
L_{s}	0.35	nH

Table 8. Equivalent Circuit Data

State			DTC Core		Parasitic Elements			
Hex	Bin	Dec	$\mathbf{C}_{\mathbf{s}}$ $[\mathbf{p F}]$	$\mathbf{R}_{\mathbf{S}}[\Omega]$	$\mathbf{C}_{\mathbf{P} 1}$ $[\mathbf{p F}]$	$\mathbf{C}_{\mathbf{P} 2}$ $[\mathbf{p F}]$	$\mathbf{R}_{\mathbf{P} 1}$ $[\Omega]$	$\mathbf{R}_{\mathbf{P} 2}$ $[\mathbf{k} \Omega]$
0×00	0000	0	0.20	1.40	0.40	0.45	10.0	40.0
0×01	0001	1	0.33	2.27	0.39	0.46	14.0	40.0
0×02	0010	2	0.45	2.83	0.38	0.48	18.0	40.1
0×03	0011	3	0.58	3.08	0.37	0.49	22.0	40.3
0×04	0100	4	0.71	3.12	0.36	0.50	26.0	40.6
0×05	0101	5	0.83	3.05	0.35	0.52	30.0	41.3
0×06	0110	6	0.96	2.93	0.34	0.53	34.0	42.2
0×07	0111	7	1.09	2.78	0.33	0.54	38.0	43.4
0×08	1000	8	1.21	2.64	0.32	0.56	42.0	45.1
0×09	1001	9	1.34	2.51	0.31	0.57	46.0	47.3
$0 \times 0 \mathrm{~A}$	1010	10	1.47	2.39	0.30	0.58	50.0	50.0
$0 \times 0 B$	1011	11	1.59	2.27	0.29	0.60	54.0	53.3
$0 \times 0 C$	1100	12	1.72	2.17	0.28	0.61	58.0	57.3
$0 \times 0 \mathrm{D}$	1101	13	1.84	2.08	0.27	0.62	62.0	62.0
$0 \times 0 E$	1110	14	1.97	2.00	0.26	0.64	66.0	67.4
$0 \times 0 F$	1111	15	2.10	1.93	0.25	0.65	70.0	73.8

Series Operation

In Series configuration, the effective capacitance between RF+ and RF- ports is represented by $\mathrm{C}_{\text {s }}$ and tuning ratio as $\mathrm{C}_{\mathrm{smax} / \mathrm{C}_{\mathrm{smin}} \text {. }}$

Figure 14. Effective Capacitance Diagram

Shunt Configuration (looking into RF+ when RF- is grounded) will have higher total capacitance at RF+ due to parallel combination of Cs with parasitic capacitance $\mathrm{C}_{\mathrm{P} 1}\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}\right)$, as demonstrated in Figure 15 and Table 9.

Figure 15. Typical Capacitance vs. State

Table 9. Effective Capacitance Summary

Configuration	Effective Capacitance	$\mathbf{C}_{\text {min }}$ (state 0)	$\mathbf{C}_{\text {max }}$ (state 31)	Tuning Ratio
Series (RF+ to RF-)	C_{s}	0.20	2.10	$10.5: 1$
Shunt (RF+ to GND)	$\mathrm{C}_{\mathrm{s}}+\mathrm{C}_{\mathrm{P} 1}$	0.60	2.35	$3.9: 1$

S_{11} and S_{21} for series configuration is illustrated in Figures 16 and 17. S_{21} includes mismatch and dissipative losses and is not indicative of tuning network loss. Equivalent Circuit Model can be used for simulation of tuning network loss.

Figure 16. Measured Series $\mathrm{S}_{11} / \mathrm{S}_{22}$ (major states)

Frequency(. $\mathbf{3 - 3 0 0 0} \mathbf{M H z}$)
Figure 17. Measured Series \mathbf{S}_{21} vs. Frequency (major states)

When the DTC is used as a part of a reactive network, impedance transformation may cause the internal RF voltages (V_{P} and V_{M} in Figure 13) to exceed peak operating RF voltage. The complete RF circuit must be simulated using actual input power and load conditions to ensure neither V_{P} nor V_{M} exceeds 30 Vpk.

Layout Recommendations

For optimal results, place a ground fill directly under the DTC package on the PCB. Layout isolation is desired between all control and RF lines. When using the DTC in a shunt configuration, it is important to make sure the RF-pin is solidly grounded to a filled ground plane. Ground traces should be as short as possible to minimize inductance. A continuous ground plane is preferred on the top layer of the PCB. When multiple DTCs are used together, the physical distance between them should be minimized and the connection should be as wide as possible to minimize series parasitic inductance.

Figure 18. Recommended Schematic of Multiple DTCs

Figure 19. Recommended Layout of Multiple DTCs Port 2

Evaluation Board

The 101-0675 Evaluation Board (EVB) was designed for accurate measurement of the DTC impedance and loss. Two configurations are available: 1 Port Shunt (J3) and 2 Port Shunt (J4, J5). Three calibration standards are provided. The open (J2) and short (J1) standards (104 ps delay) are used for performing port extensions and accounting for electrical length and transmission line loss. The Thru (J9, J10) standard can be used to estimate PCB transmission line losses for scalar de-embedding of the 2 Port Series configuration (J4, J5).
The board consists of a 4 layer stack with 2 outer layers made of Rogers 4350B ($\varepsilon_{r}=3.48$) and 2 inner layers of FR4 $\left(\varepsilon_{r}=4.80\right)$. The total thickness of this board is 62 mils (1.57 mm). The inner layers provide a ground plane for the transmission lines. Each transmission line is designed using a coplanar waveguide with ground plane (CPWG) model using a trace width of 32 mils (0.813 mm), gap of 15 mils (0.381 mm), and a metal thickness of 1.4 mils (0.051 mm).

Figure 20. Evaluation Board Layout

Figure 21. Package Drawing
10-lead $2 \times 2 \times 0.55 \mathrm{~mm}$ QFN

Figure 22. Top Marking Specifications

17-0112

Marking Spec Symbol	Package Marking	Definition
PP	DL* *	Part number marking for PE64909
ZZ	$00-99$	Last two digits of lot code
Y	$0-9$	Last digit of year, starting from 2009 (0 for 2010,1 1 for 2011, etc)
WW	$01-53$	Work week

Note: (PP), the package marking specific to the PE64909, is shown in the figure instead of the standard Peregrine package marking symbol (P).

Figure 23. Tape and Reel Specifications

Table 10. Ordering Information

Order Code	Description	Package	Shipping Method
PE64909B-Z	PE64909 DTC	10-lead $2 \times 2 \mathrm{~mm} \mathrm{QFN}$	$3,000 \mathrm{units} / \mathrm{T} \mathrm{\& R}$
EK64909-12	PE64909 Evaluation kit	Evaluation kit	$1 \mathrm{set} / \mathrm{box}$

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form)

Sales Contact

For additional information, contact Sales at sales@psemi.com.

Disclaimers

The information in this document is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

Peregrine products are protected under one or more of the following U.S. patents: patents.psemi.com.

Copyright and Trademark

©2017, Peregrine Semiconductor Corporation. All rights reserved. The Peregrine name, logo, UTSi and UltraCMOS are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Trimmer/Variable Capacitors category:
Click to view products by pSemi manufacturer:

Other Similar products are found below :
GKY20086 GNC8R050 GXA18000 GXA36000 GXC90000 GXE5R000NM GXL10000 GZN60100 PC50H230 PC50J110 PC51H230
GDT40026 GKU90020 GNR4R550 GNR8R050 GXL15000 538-011 D 9-35LF PC39G520 STPTIC-56G2C5 27271LSL 27281SL
STPTIC-82G2C5 27283-3R10 GNL8R050 GYB5R000 0538-006-F-15.0-60LF GXL18000 GHC5R500 GZD80000 TP11G KT1SD KF8
$\underline{K P 8} \underline{K M 8} \underline{K G 8} \underline{K J 8} \underline{K T 8} \underline{K G 10}$ KP10 KF10 KJ10 KM10 TP42C NMAJ25HV KF4SD KJ1SD KP1SD KM4SD KT4SD KP4SD

