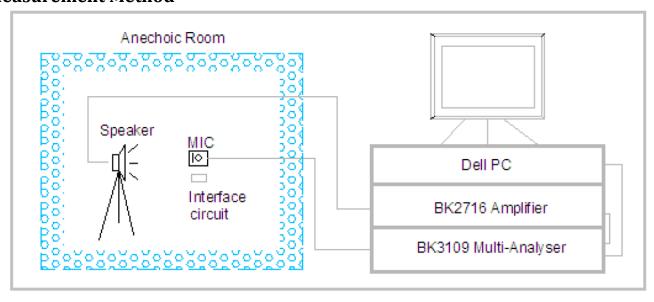
©2020, PUI Audio Inc.

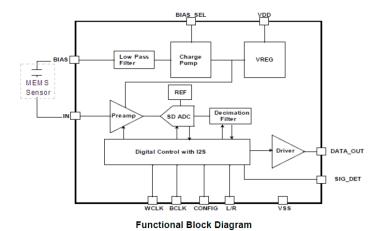
95 SCK DATA CONFIG GND L/R VOD

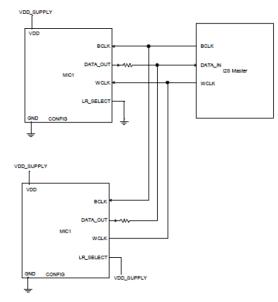
Data Sheet

DMM-4026-B-I2S-EB-R


PUI Audio is proud to release a line of high-fidelity MEMS wide-band microphones that cover the entire audio band from 20 Hz up to 18 kHz —and up to 20 kHz on some models—while featuring an industry-best consistency of ±1 dB across the entire frequency response.

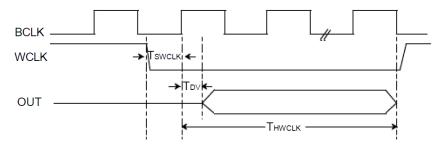
Quickly test and prototype the I²S **DMM-4026-B-I2S-R** with this evaluation board. Solder pads make wiring to the evaluation board quick-and-easy!


Specifications

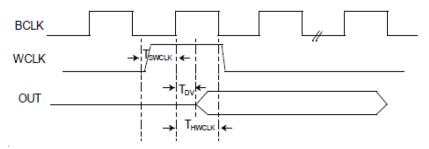

Parameters	Condition	Values	Units		
Directivity	Omnidirectional				
Data Format	I ² S 24-bit data size with 18-bit precision, 32-bit word size				
	1 kHz @ 50cm with 94 dB source				
Sensitivity	0 dB=1V/Pa	-26±1	dB		
Rated Voltage	- 1.8		VDC		
Operating Voltage Range	- 1.5 to 3.6		VDC		
Supply Current	Normal Mode	820 ~ 1000	μΑ		
Supply Current	Sleep Mode (clock off)	5	μΑ		
Signal-to-Noise Ratio	1kHz, 94 dB input, A-weighted	64	dB		
Frequency Range	20~20,000	Hz			
Total Harmonic Distortion	110 dB @ 50cm, 1 kHz acoustic				
(typical)	source	1%	-		
Charles Tillian	Sensitivity reaching 90% of listed value from initial power-				
	up	20	mS		
Startup Time	From Sleep Mode	20	mS		
	From Normal Mode to Sleep Mode	20	mS		
I	Normal Mode	2.048 ~ 4.096	MHz		
Input Clock Frequency	Sleep Mode	320	kHz		
Clock Jitter	Long Term RMS	500	pS		
Load Capacitance	-	140	pF		
Pass Band	Fs=48 kHz	18	kHz		
Pass Band Attenuation	- 0.5		dB		
Environmental Compliances	RoHS/Halogen Free				
Power Supply Rejection	100 mVpp Square Wave @ 217 Hz, A-weighted	-86	dBFS		
Operating Temperature	-40 ~ +100	°C			
Storage Temperature	-40 ~ +125				

Measurement Method

Measurement Interface Circuit

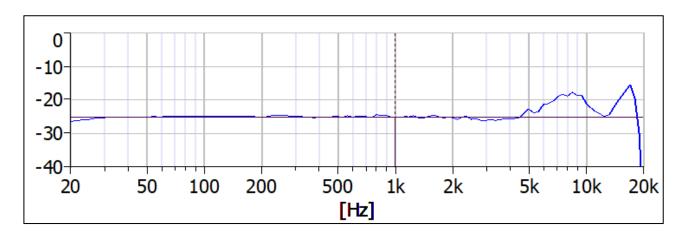


Interface diagram between I2S Master and 2 Microphones


Digital Interface Specifications

In order to properly use this microphone, the I2S converter must support a 32-bit word size for mono operation and 64-bit word size for stereo operation with two microphones. Each microphone outputs 24-bit data with 18-bit precision. Six bits are null (0) value.

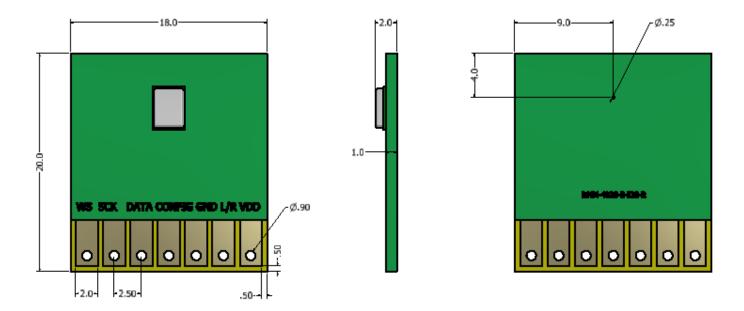
Parameters	Symbol	Condition	Value		Units	
	-		MIN	Typical	MAX	-
BCLK Frequency	BCLK	-	-	3.072	12.288	MHz
BCLK Duty Cycle	-	-	45	-	55	%
Data Valid	TDV	-	-	-	18	nS
WCLK Hold Time	THWCLK	Two mic mode	32 (1/BCLK)	-	-	nS
		Array mic mode	20	-	-	nS
WCLK Setup Time	TSWCLK	-	20	-	-	nS



Interface timing diagram for two microphone Mode

Interface timing diagram for Array microphone Mode

Typical Frequency Response (Microphone spaced 50cm from 94 dB acoustic source)



Reliability Testing

Type of Test	Test Specifications
	Samples for qualification testing require 3 passes 260±5 °C reflow
Simulated Reflow	solder profiles. 2 hours of setting time is required between each
(Without Solder)	reflow profile test.
	Precondition at +25°C for 1 hour. Expose to +85°C with 85%
	relative humidity for 1000 hours. Dry at room ambient for 3±1
Static Humidity	hour before taking final measurement.
	Each cycle shall consist of 30 minutes at -40°C, 30 minutes at
	+125°C with 5 minutes transition time. Test duration is for 30
Temperature Shock	cycles, starting from cold to hot temperature.
	Perform ESD sensitivity threshold measurements for each contact
	according to MIL-STD-883G, Method 3015.7 for Human Body
	Model. Identify the ESD threshold levels indicating passage of
ESD Sensitivity	8000V Human Body Model.
	Vibrate randomly along three perpendicular directions for 30
	minutes in each direction, 4 cycles from 20~2000 Hz with a peak
Vibration Test	acceleration of 20 Gs.
	Subject samples to half-sine shock pulses (3000±15% Gs for
Shock Test	0.3ms) in each direction, for a total of 18 shocks.
	Drop samples from 1.5m height onto a steel surface, total 18
Drop Test	times and inspected for mechanical damage.
	Subject samples to +125°C for 168 hours under full maximum
Operation Life	rated voltage.

Microphone frequency response and sensitivity shall not deviate more than ±3 dB.

Dimensions

This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

© 2020, PUI Audio Inc.

Specifications Revisions

Specifications Revisions					
Revision	Description	Date			
-	Released from Engineering	1/31/2020			
A	Added I2S data information	5/26/2021			

Note:

- 1. Unless otherwise specified:
 - A. All dimensions are in millimeters.
 - B. Default tolerances are ± 0.5 mm and angles are $\pm 3^{\circ}$.
- 2. Specifications subject to change or withdrawal without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio IC Development Tools category:

Click to view products by PUI Audio manufacturer:

Other Similar products are found below:

1580/5171-DEMO LM4906MMBD LM4935RLEVAL LME49710NABD LME49740MABD LME49740NABD LME49860MABD LME49860MABD LME49870MABD EVAL-AD1940AZ EVAL-ADAU1401AEBZ SRC4382EVM-PDK TLV320AIC36EVM-K TPA5052EVM TPA6136A2YFFEVM LM4562HABD LM4906LDBD LM4923LQBD LM4992SDBD LME49710MABD LME49713MABD LME49860NABD MAX98300EVKIT+WLP MAX9738EVKIT+ MAX98358EVSYS#WLP MAX9723DEVKIT+ EVAL-ADAV803EBZ MAX9890EVKIT+ LM4809MBD LM4674TLBD CDBWM8725-M-1 CDBWM8533-M-1 EV_ICS-40740-FX SDCK3 PIM524 MAX9723DEVCMODU+ DEV-17737 EVALAHNBIM69D130V01TOBO1 1063 TAS5756MDCAEVM TLV320ADC3101EVM-K TLV320AIC3007EVM-K TLV320AIC3105EVM-K TLV320AIC3253EVM-K TPA2016D2EVM TPA2035D1EVM TPA2051D3YFFEVM TPA3107D2EVM TPA6120A2EVM TPA6132A2EVM2 MIKROE-2454