Declaration of Conformity to EU RoHS Directive (EU) 2015/863

Pulse Electronics manufactures products at Pulse Operations or with selected Manufacturing Partners

Pulse Electronics

15255 Innovation Drive \#100
San Diego, CA 92128
Tel: 858-674-8100
Part number: J1V-U5000NL
This is to certify that the parts/products listed above meet the requirements of the RoHS Directive (EU) 2015/863 The following table lists the restricted materials and their respective allowable limits:

RoHS Restricted Substance	Allowable Limit
Cadmium and its compounds*	$100 \mathrm{ppm}(0.01$ weight $\%)$
Mercury and its compounds	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Hexavalent chromium and its compounds	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Lead and its compounds $* *$	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Polybrominated biphenyls (PBB)	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Polybrominated diphenyl ethers (PBDE)	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Phthalate $(2-$ ethyl hexyl ester (DEHP)	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Butyl Benzyl Phthalate (BBP)	$1000 \mathrm{ppm}(0.1$ weight $\%)$
dibutyl phthalate (DBP)	$1000 \mathrm{ppm}(0.1$ weight $\%)$
Di Iso Butyl Ortho Phthalate (DIBP)	$1000 \mathrm{ppm}(0.1$ weight $\%)$

If parts/products take advantage of any exceptions, please check which exemption(s): 1. Mercury in single capped (compact) fluorescent lamps not exceeding (per burner):
\square (a) For general lighting purposes <30 Watts
(b) For general lighting purposes ≥ 30 Watts and <50 Watts
(c) For general lighting purposes ≥ 50 Watts and <150 Watts
(d) For general lighting purposes ≥ 150 Watts: 15 mg
(e) For general lighting purposes with circular or square structural shape and tube diameter ≤ 17 mm
(f) For special purposes: 5 mg
(g) For general lighting purposes < 30Wwith a lifetime equal or above 20000h: 3,5mg

2a. Mercury in double-capped linear fluorescent lamps for general lighting purposes not exceeding (per lamp):
(1) Tri-band phosphor with normal lifetime and a tube diameter $<9 \mathrm{~mm}$ (e.g. T2)
(2) Tri-band phosphor with normal lifetime and a tube diameter $\geq 9 \mathrm{~mm}$ and $\leq 17 \mathrm{~mm}$ (e.g. T5)
(3) Tri-band phosphor with normal lifetime and a tube diameter $>17 \mathrm{~mm}$ and $\leq 28 \mathrm{~mm}$ (e.g. T8)
\square (4) Tri-band phosphor with normal lifetime and a tube diameter > 28 mm (e.g. T12)
(5) Tri-band phosphor with long lifetime ($\geq 25,000 \mathrm{~h}$)

2b. Mercury in other fluorescent lamps not exceeding (per lamp):
(1) Linear halophosphate lamps with tube diameter > 28 mm (e.g. T10 and T12): 10 mg
(2) Non-linear halophoshate lamps (all diameters): 15 mg

(3) Non-linear tri-band phosphor lamps with tube diameter > 17 mm (e.g. T9)
(4) Lamps for other general lighting and special purposes (e.g. induction lamps)
3. Mercury in cold cathode fluorescent lamps and external electrode fluorescent lamps (CCFL and EEFL) for special purposes not exceeding (per lamp):
(a) Short length $(\leq 500 \mathrm{~mm})$
(b) Medium length ($>500 \mathrm{~mm}$ and $\leq 1500 \mathrm{~mm}$)
(c) Long length (> 1500 mm)
\square 4a. Mercury in other low pressure discharge lamps (per lamp)
4b. Mercury in High Pressure Sodium (vapor) lamps for general lighting purposes not exceeding (per burner) in lamps with improved color rendering index $\mathrm{Ra}>60$:
(I) $\mathrm{P} \leq 155 \mathrm{~W}$
(II) $155<\mathrm{P} \leq 405 \mathrm{~W}$
(III) $\mathrm{P}>405 \mathrm{~W}$

4c. Mercury in other High Pressure Sodium (vapor) lamps for general lighting purposes not exceeding (per burner):
(I) $\mathrm{P} \leq 155 \mathrm{~W}$
(II) $155<\mathrm{P} \leq 405 \mathrm{~W}$
(III) $\mathrm{P}>405 \mathrm{~W}$

4d. Mercury in High Pressure Mercury (vapor) lamps (HMPV)
4e. Mercury in metal halide lamps (MH)
4f. Mercury in other discharge lamps for special purposes not specifically mentioned in Annex
4 g . Mercury in hand crafted luminous discharge tubes used for signs, decorative or architectural and specialist lighting and light-artwork, where the mercury content shall be limited as follows:
\square (a). 20 mg per electrode pair $+0,3 \mathrm{mg}$ per tube length in cm , but not more than 80 mg , for outdoor applications and indoor applications exposed to temperatures below $20^{\circ} \mathrm{C}$;
\square (b). 15 mg per electrode pair $+0,24 \mathrm{mg}$ per tube length in cm , but not more than 80 mg , for all other indoor applications.
\square 5a. Lead in glass of cathode ray tubes
$\square 5$ b. Lead in glass of fluorescent tubes not exceeding 0.2% by weight

6a. Lead as an alloying element in steel for machining purposes and in galvanized steel containing up to 0.35% lead by weight
$\square 6$ b. Lead as an alloying element in aluminium containing up to 0.4% lead by weight
6 c . Copper alloy containing up to 4% lead by weight
\square a. Lead in high melting temperature type solders (i.e. lead-based alloys containing 85% by weight or more lead)

7b. Lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission, and network management for telecommunications

》 7c-I. Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, e.g. piezoelectronic devices, or in a glass or ceramic matrix compound
$\square 7 \mathrm{c}-\mathrm{II}$. Lead in dielectric ceramic in capacitors for a rated voltage of 125 V AC or 250 V DC or higher
\square 7c-III. Lead in dielectric ceramic in capacitors for a rated voltage of less than 125 V AC or 250 V DC
$\square 7 \mathrm{c}$-IV. Lead in PZT-based dielectric ceramic materials for capacitors being part of integrated circuits or discrete semiconductors
\square 8a. Cadmium and its compounds in one shot pellet type thermal cut-offs
8b. Cadmium and its compounds in electrical contacts
\square 9. Hexavalent chromium as an anticorrosion agent of the carbon steel cooling system in absorption refrigerators up to 0.75% by weight in the cooling solution
$\square 9$ b. Lead in bearing shells and bushes for refrigerant-containing compressors for heating, ventilation, air conditioning and refrigeration (HVACR) applications
\square 11a. Lead used in C-press compliant pin connector systems
\square 11b. Lead used in other than C-press compliant pin connector systems
$\square 12$. Lead as a coating material for the thermal conduction module C-ring
\square 13a. Lead in white glasses used for optical applications
13b. Cadmium and lead in filter glasses and glasses used for reflectance standards
$\square 14$. Lead in solders consisting of more than two elements for the connection between the pins and the package of microprocessors with a lead content of more than 80% and less than 85% by weight
\square 15. Lead in solders to complete a viable electrical connection between semiconductor die and carrier within integrated circuit Flip Chip packages

16. Lead in linear incandescent lamps with silicate coated tubes

\square 17. Lead halide as radiant agent in High Intensity Discharge (HID) lamps used for professional reprography applications

18a. Lead as activator in the fluorescent powder (1% lead by weight or less) of discharge lamps when used as specialty lamps for diazoprinting reprography, lithography, insect traps, photochemical and curing processes containing phosphors such as $\mathrm{SMS}((\mathrm{Sr}, \mathrm{Ba}) 2 \mathrm{MgSi} 2 \mathrm{O} 7: \mathrm{Pb})$

18b. Lead as activator in the fluorescent powder (1% lead by weight or less) of discharge lamps when used as sun tanning lamps containing phosphors such as BSP (BaSi2O5:Pb)
19. Lead with $\mathrm{PbBiSn}-\mathrm{Hg}$ and $\mathrm{PbInSn}-\mathrm{Hg}$ in specific compositions as main amalgam and with $\mathrm{PbSn}-\mathrm{Hg}$ as auxiliary amalgam in very compact Energy Saving Lamps (ESL)
20. Lead oxide in glass used for bonding front and rear substrates of flat fluorescent lamps used for Liquid Crystal Displays (LCDs)
\square 21. Lead and cadmium in printing inks for the application of enamels on glasses, such as borosilicate and soda lime glasses
\square 23. Lead in finishes of fine pitch components other than connectors with a pitch of 0.65 mm and less
24. Lead in solders for the soldering to machined through hole discoidal and planar array ceramic multilayer capacitors
\square 25. Lead oxide in surface conduction electron emitter displays (SED) used in structural elements, notably in the seal frit and frit ring

26. Lead oxide in the glass envelope of Black Light Blue lamps

27. Lead alloys as solder for transducers used in high-powered (designated to operate for several

 hours at acoustic power levels of 125 dB SPL and above) loudspeakers29. Lead bound in crystal glass as defined in Annex I (Categories 1, 2, 3 and 4) of Council Directive 69/493/EEC
\square 30. Cadmium alloys as electrical/mechanical solder joints to electrical conductors located directly on the voice coil in transducers used in high-powered loudspeakers with sound pressure levels of $100 \mathrm{~dB}(\mathrm{~A})$ and more
30. Lead in soldering materials in mercury free flat fluorescent lamps (which e.g. are used for liquid crystal displays, design or industrial lighting)
31. Lead oxide in seal frit used for making window assemblies for Argon and Krypton laser tubes
\square 33. Lead in solders for the soldering of thin copper wires of $100 \mu \mathrm{~m}$ diameters and less in power transformers
32. Lead in cermet-based trimmer potentiometer elements
33. Mercury used as a cathode sputtering inhibitor in DC plasma displays with a content up to 30 mg per display until 1 July 2010
34. Lead in the plating layer of high voltage diodes on the basis of a zinc borate glass body
\square 38. Cadmium and cadmium oxide in thick film pastes used on aluminium bonded beryllium oxide
35. Cadmium in color converting II-VI LEDs ($<10 \mu \mathrm{~g}$ Cd per mm^{2} of light-emitting area) for use in solid state illumination or display systems until 1 July 2014
36. Lead in solders and termination finishes of electrical and electronic components and finishes of printed circuit boards used in ignition modules and other electrical and electronic engine control systems, which for technical reasons must be mounted directly on or in the crankcase or cylinder of hand-held combustion engines

Signature:

Name: Kelly Yang
Title: QA Officer

Date: 06/12/2018
Phone: 86-816-7077888
Email: kellyyang@pulseelectronics.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Modular Connectors / Ethernet Connectors category:
Click to view products by Pulse manufacturer:

Other Similar products are found below :
8949-H88/06BLKA/SN 74441-0010/BKN MP1010RX-1000 MP44RX-1000 PHP-6P6C-5 GAX-3-66 GAX-8-62 GDCX-PA-66-50 GDCX-PN-64 GDCX-PN-66 GDCX-PN-66-50 GDLX-A-66 GDLX-N-66 GDLX-S-66 GDLX-S-88K GDTX-S-88-50 GDX-PA-1010 GLX-N-1010M-BLK GLX-S-88M-BLK GMX-N-1010 GMX-S-1010 GMX-S-66 GMX-SMT4-N-88 GPX-2-64 GSGX-N-2-88 GSGX-N-4-88 GSX-NS2-88-3.05 GSX-NS2-88-3.05-50 GSX-NS-88-3.05-50 PT-108A-8C-UL PT-J951-8C PTS-J531-8CS-50UL 1-1775629-2 A-2014-0-4 GWLX-S-88-GR GWLX-S9-88-YG DC-1021-8-WH-6 1300530003 1324640-4 RJ11FTVC2G RJ11FTVC2N RJFTVX2SA1G $132764-001$ 1413235 MP88X-1000 MPS88RX-5000 E5288-S000K3-L E5908-15A242-L 155302-001 AX100653

