# THT Current Sense Transformers <br> P0581NL / P0582NL AND P0583NL 



## ® UL/C-UL recognized components

(12) 3000Vrms gate to drive winding test
⑱ Useful operating frequency from 50 kHz to 500 kHz
(1) Most popular winding configurations

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$

| Part <br> Number | Turns <br> Ratio | Primary Inductance <br> $(1-10)(\mathrm{mH} M 1 \mathrm{~N})$ | DCR Pri <br> $(1-10)(\Omega \mathrm{MAX})$ | DCR Sec1 <br> $(3-7)(\mathrm{m} \Omega \pm 15 \%)$ | DCR Sec2 <br> $(4-8)(\mathrm{m} \Omega \pm 15 \%)$ | Hipot <br> $($ Pri-Sec) $(V \mathrm{Vrms})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P0581NL | $200: 1: 1$ | 76 | 2.8 | 1.7 | 1.7 | 3000 |
| P0582NL | $100: 1: 1$ | 19 | 1.4 | 1.7 | 1.7 | 3000 |
| P0583NL | $50: 1: 1$ | 5 | 0.7 | 1.7 | 1.7 | 3000 |


| Part Number | Addilitional Specifications |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reference Data |  |  |  | Calculation Data |  |
|  | RT | $\begin{gathered} \text { Ipk } \\ \text { (Amps) } \end{gathered}$ | Droop <br> (\%) | Max Flux <br> Density | Kb | $\begin{aligned} & \text { Req } \\ & (\mathrm{m} \Omega) \end{aligned}$ |
| P0581NL | 200 | 34 | 1.00 | 2000 | 17.12 | . 9 |
| P0582NL | 100 | 35 | 1.98 | 2000 | 68.49 | . 8 |
| P0583NL | 15 | 36 | 1.19 | 2000 | 273.97 | . 75 |

## Notes:

1. These current sense transformers have two one turn primaries that can be used in parallel. The listed current ratings are for parallel connection.
2. The reference values are for an application using the termination resistor (Rt) and operating with unipolar waveform at $100 \mathrm{kHz}, 40 \%$ duty cycle. The estimated temperature rise is $55^{\circ} \mathrm{C}$.
3. The peak flux density should remain below 2100 Gauss to ensure that the core does not saturate. Use the following formula to calculate the peak flux density: Bpk = Kb*Ipk * Rt * don/(Ff* freq. in kHz) where: Rt is the terminating resistor in the application and the Ff is 1 for unipolar waveform and 2 for bipolar waveform.
4. To calculate the droop: Droop Exponent $(\mathrm{D})=$ Rt $^{*}$ don/(Lpri in $\mathrm{mH}^{*}$ Freq. in kHz $\%$ Droop $=\left(1-e^{-D}\right) * 100$
5. The temperature rise of the component is calculated based on the total core loss and copper loss:
A. To calculate total copper loss (W): $\mathrm{P}(\mathrm{cu})=1 \mathrm{pk}^{2}{ }^{*} \mathrm{Req}^{*} \mathrm{Ff} *$ don where Ff is 1 for unipolar waveform and 2 for bipolar waveform
B. To calculate total core loss (W): $P($ core $)=0.000073$ * (Freq. in kHz) ${ }^{1.67 *}$ (Bop in kG) ${ }^{2.532}$ where: Bop in $\mathrm{KG}=\mathrm{Kb}^{*}$ lpk *Rt * don/(2000 *Freq. in kHz)
C. To calculate temperature rise: Temperature Rise $(C)=60.18^{*}$ (Core Loss $(W)+$ Copper Loss (W) $)^{.833}$

Schematic
P058XNL


For More Information
Pulse Worldwide Headquarters 15255 Innovation Drive Ste 100 San Diego, CA 92128 U.S.A.

Tel: 8586748100
Fax: 8586748262
Tel: 492354777100
Fax: 492354777168
Tel: 8675533966678
Fax: 8675533966700
Pulse North China
Room 2704/2705
Super Ocean Finance Ctr.
2067 Yan An Road West
Shanghai 200336
China

Tel: 862162787060
Fax: 862162786973
Pulse South Asia
3 Fraser Street 0428
DU0 Tower
Singapore 189352

Pulse North Asia 1F., No. 111 Xiyuan Road Zhongli District Taoyuan City 32057 Taiwan (R.O.C)

Tel: 6562878998 Fax: 6562800080

Tel: 88634356768 Fax: 88634356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electroniss, Inc. All rights reserved.
power.pulseelectronics.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Current Transformers category:

## Click to view products by Pulse manufacturer:

Other Similar products are found below :
L595100 ACST-260 MP3500 L595050 BV EI 3042089 PACT RCP-4000A-UIRO-PT-D14 PACT RCP-4000A-UIRO-PT-D19 E54CT1L CTD-KIT $\underline{44021 ~} 44104 \underline{44176} \underline{44248} \underline{45023} \underline{45041} \underline{45071} \underline{\text { PA3828NL CT16-1-50A/50MA SPCT 100/60 1200/5A VA } 15 \text { CL } 0.5}$ SPCT 100/60 1000/5A VA 15 CL 0.5 SPCT 100/60 600/5 A VA 7.5 CL 1 SPCT 100/60 600/5 A VA 5 CL 0.5 SPCT 100/60 800/5 A VA 10 CL 0.5 SPCT 140/100 1200/5A VA 15 CL 0.5 SPCT 140/100 1250/5A VA 15 CL 0.5 SPCT 140/100 1500/5A VA 15 CL 0.5 SPCT 140/100 1600/5A VA 15 CL 0.5 SPCT 140/100 1000/5A VA 15 CL 0.5 SPCT 140/100 2500/5A VA 15 CL 0.5 SPCT 140/100 2000/5A VA 15 CL 0.5 SPCT $140 / 1003000 / 5 A$ VA 15 CL 0.5 SPCT 140/100 800/5A VA 15 CL 0.5 SPCT 62/30 50/5A VA1 CL 3 SPCT 62/30 60/5A VA1 CL 3 SPCT $\underline{62 / 3075 / 5 A ~ V A 1 ~ C L ~} 3 \underline{\text { SPCT 62/30 75/5A VA3 CL } 3} \underline{\text { SPCT 62/40 100/5 A VA } 1 \text { CL } 1} \underline{\text { SPCT 62/40 125/5 A VA } 1 \text { CL } 1} \underline{\text { SPCT 62/40 150/5 A }}$ VA 3 CL 1 SPCT 62/40 160/5 A VA 1.5 CL 1 SPCT 62/40 200/5 A VA 2,5 CL 0,5 SPCT 62/40 200/5 A VA 3 CL $1 \xrightarrow[\text { SPCT 62/40 250/5 A VA }]{ }$ 3 CL 1 SPCT 62/40 300/5 A VA 3 CL 0.5 SPCT 62/40 400/5 A VA 3.75 CL 0.5 2CSM029000R1211 HPT205NBJ-1 HCT204KFH HCT20KQD HPT205A/F

