High Frequency Planar Transformers

(1) Power Rating: up to 250W
(1) Height: 9.1 mm to 10.4 mm Max
(1) Footprint: $29.5 \mathrm{~mm} \times 26.7 \mathrm{~mm}$ Max
(1) Frequency Range: 200 kHz to 700 kHz

①® Isolation (Primary to Secondary): 1750Vdc

Electrical Specifications @ $25^{\circ} \mathrm{C}-$ Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
Part Number	Turns Ratio		Schematic	Primary ${ }^{1}$ Inductance ($\mu \mathrm{H}$ MIN)	Leakage ${ }^{2}$ Inductance ($\mu \mathrm{H}$ MAX)	DCR (m Ω MAX)				Maximum Height (mm)
	Primary A	Secondary				Primary A	Primary B	Primary Aux.	Secondary	
Double Interleave Designs (Higher Efficiency, Lower DCR and Lower Leakage)										
PA0901NL	4T \& 4T	$\begin{gathered} 4 T \\ (1 T: I T: 1 T: 1 T) \end{gathered}$	A1	216	0.3	13	13	-	4.5	10.2
PA0903NL	$5 \mathrm{~T} \& 5 \mathrm{~T}$ (w/5T aux)			340	0.3	15	15	235		
PA0905NL	$6 \mathrm{~T} \& 6 \mathrm{~T}$ (w/2T aux)			480	0.3	21	21	78		
PA0907NL	$7 T$ \& 7 T (w/3T aux)			660	0.3	50	50	100		
PA0909NL	8 T \& 8 T			860	0.3	60	60	-		
PA0908NL	4 T \& 4T	$1 T \& 1 T$	A2	216	0.3	13	13	-	$0.56 \& 0.56$	10.2
PA0910NL	$5 \mathrm{~T} \& 5 \mathrm{~T}$ (w/5T aux)			340	0.3	15	15	235		
PA0912NL	$6 \mathrm{~T} \& 6 \mathrm{~T}$ (w/2T aux)			480	0.3	21	21	78		
PA0914NL	$7 T \& 7 T$ (w/3T aux)			660	0.3	50	50	100		
Single Interleave Designs (Lower Cost)										
PA0930NL	4 T	4T (IT:IT:IT:IT)	Bl	54	0.3	13	-	-		
PA0931NL	5 T (w/5T aux)			85	0.3	15	-	470		
PA0934NL	4 T	$7 T$ \& 7 T	B2	54	0.3	13	-	-	40 \& 40	9.1
PA0935NL	5 T (w/5T aux)			85	0.3	15	-	470		
PA0936NL	6 T (w/2T aux)			120	0.3	21	-	156		
PA0937NL	7 T (w/3T aux)			165	0.3	50	-	200		
PA0947NL	8 T			215	0.3	60	-	-		
PA0943NL	5 T (w/5T aux)	$2 T$ \& $1 T$	B3	85	0.3	15	-	470	1.8 \& 0.6	9.1

Notes:

1. Inductance is measured, where applicable, with both primary windings connected in series (2 to 5 , with 3 and 4 shorted).
2. Leakage inductance is measured with both primary windings connected in series (where applicable) with all other windings shorted.

Mechanical

PAO9OX

*H - Maximum Height (see table above)
Weight \qquad ..19.8grams
IrayInches.............30/tray
Dimensions: $\frac{\text { nches }}{m i m}$
Unless otherwise specified, all tolerances are: $\pm \frac{0.010}{0,25}$

SUGGESTED PAD LAYOUT

NOTES: The above is a universal footprint for a component that has all 11 pins populated. For a given part number, it is only necessary to provide pads for the terminations shown in the schematic below.

Schematics
PAOgOX

- SINGLE INTERLEAVE SCHEMATICS -

High Frequency Planar Transformers
 PA09XXNL Series (up to 250W)

PA09XX Transformer Winding Configuration Matrix

The following is a matrix of the winding configurations that are possible with the Pulse PAO9XX Planar Transformer Platform. The package is typically capable of handling between 150-250W of power depending on the application, ambient conditions and
available cooling. Once a configuration is selected, the formulae and charts can be used to determine the approximate power dissipation and temperature rise of the component in a given application.

High Efficiency Double Interleaved Designs										
				SECONDARY WINDINGS						
				Single Winding			Tapped Winding			Dual Winding
		Turns		17	2 T	41	1:1	1:3	2:2	17%
			DCR (m,	0.28	1.12	4.5	1.12	4.5	4.5	1.12
	은흘흔은	41	5	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		5	7.5	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		65	12	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		7	30	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		85	20	PA0008	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		107	30	PA0910	PA0910	PA0903	PA0910	PA0003	PA0903	PA0910
		127	48	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		145	120	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		16 T	140	PA0916	PA0916	PA0909	PA0916	PA0909	PA0909	PA0916
	$\begin{aligned} & \text { ㅇㅡㅡㅡㄹ } \\ & \text { ㄹㅡㅡ } \\ & \text { 言 } \end{aligned}$	4T/4T	20	PA0008	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		4T/5T	30	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		5T/5	48	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		5T/6T	120	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		67/6T	140	-	-	PA0909	-	PA0909	PA0909	-

Lower Cost Single Interleaved Designs

SECONDARY WINDINGS

				Single Winding			Tapped Winding				Dual Winding	
		Turns		31	4T	7	1:2	1:3	2:2	7:1	$17 \& 2 T$	7T\&T
			DCR (m)	3.4	4.5	20	3.4	4.5	4.5	80	4.5	80
	$\begin{aligned} & \text { ⿹ㅡㄹ } \\ & \text { 를 } \\ & \text { 을 } \\ & \text { 흘 } \end{aligned}$	4 T	10	-	PA0930	PA0934	-	PA0930	PA0930	PA0934	-	PA0934
		5	15	PA0943	PA0931	PA0935	PA0943	PA0931	PA0931	PA0935	PA0943	PA0935
		61	24	-		PA0936	-	-	-	PA0936	-	PA0936
		7	60	-	-	PA0937	-	-	-	PA0937	-	PA0937
		81	70	-	-	PA0947	-	-	-	PA0947	PA0947	PA0947

Notes:

1. The primary inductance for any configuration can be calculated as: Primary Inductance $(\mu \mathrm{H} M \mathrm{M})=3.4^{*}$ (Primary_Turns)2
2. The above base part numbers (PA09XXNL) are available from stock.
3. It is possible to add a small gap to the transformer. Gapped transformers are nonstandard and can be made available upon request, but are not typically available
from stock. To request a gapped version of the transformer, add a suffix "G" to the base number (i.e. PA0901GNL). The nominal inductance with the a gap can be calculated as:

Primary Inductance $(\mu \mathrm{H}$ nominal $)=2.2^{*}$ (Primary Turns)

High Frequency Planar Transformers
 PA09XXNL Series (up to 250W)

Notes from Tables:

1. The above transformers have been tested and approved by Pulse's IC partners and are cited in the appropriate datasheet or evaluation board documentation at these companies. To determine which IC and IC companies are matched with the above transformers, please refer To the IC cross reference on the Pulse web page.
2. To determine if the transformer is suitable for your application, it is necessary to ensure that the temperature rise of the component (ambient plus temperature rise) does not exceed its operating temperature. To determine the approximate temperature rise of the transformer, refer to the graphs below.

Total Power Dissipation $(W)=.001^{*}$ (DCRprimary * IRMs_primary ${ }^{2}+$ DCRsecondary * IRMs_secondary ${ }^{2}$) + Core Loss (W)

For More Information
Pulse Worldwide Headquarters
15255 Innovation Drive Ste 100
San Diego, CA 92128
U.S.A.

Pulse Europe
Pulse Electronics GmbH Am Rottland 12 58540 Meinerzhagen Germany

Tel: 8586748100
Fax: 8586748262
Tel: 492354777100
Fax: 492354777168
Pulse China Headquarters
Pulse Electronics (ShenZhen) C0., LTD
D708, Shenzhen Academy of
Aerospace Technology,
The 10th Keji South Road,
Nanshan District, Shenzhen,
P.R. China 518057

Tel: 8675533966678
Fax: 8675533966700
Pulse North China
Room 2704/2705
Super Ocean Finance Ctr.
2067 Yan An Road West
Shanghai 200336
China

Tel: 862162787060
Fax: 862162786973

Pulse South Asia 3 Fraser Street 0428

DUO Tower Singapore 189352

Pulse North Asia 1F., No. 111 Xiyuan Road Zhongli District Taoyuan City 32057 Taiwan (R.O.C)

Tel: 6562878998 Fax: 6562800080

Tel: 88634356768 Fax: 88634356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Transformers category:
Click to view products by Pulse manufacturer:
Other Similar products are found below :
ET-030A F-102X F-120X F-14X-1 F-181U F-18A F-199U F-19X F-202U F-204U F-206U F-227X F-238U F-239U-1 F-23U F24-250-B F-242U F-245U F-264U F-265U F-267U F-281U F-283U F-290X F-295Z F-296Z F-298Z F-3143P F-3298Z F-33U F-346X F-35U F364U F-392A F-395X F-397U F-412X F-47U F-55X-1 F-60U F-68U F-71U F-72Z F-74U F-83A F-84AC F-85U F-86U F-9U PCT-02

