


High Frequency Wire Wound

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$


High Frequency Wire Wound

| Electrical Specifications @ $25^{\circ} \mathrm{C}-$ Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PA1692NL | Pri. Inductance | ( $3,4-5,6$ ) | $73 \mu \mathrm{H} \pm 30 \%$ |  |
|  | Lk. Inductance | (3, 4-5, 6) with (12, 11, 10, 9, 8, 7) shorted | 1.0 $\mu \mathrm{H}$ MAX |  |
|  | DCR | (3, 4-5, 6) | 10.2m $\Omega$ MAX |  |
|  |  | (12, 11, 10-9, 8, 7) | $5 \mathrm{~m} \Omega$ MAX |  |
|  |  | (1-2) | $115 \mathrm{~m} \Omega$ MAX |  |
|  | Hi-Pot | Pri-Sec | 1500 Vdc |  |
|  | K1 Factor | 40.3 |  |  |
| PA1735NL | Pri. Inductance | (1, 2-3, 4) | $28.5 \mu \mathrm{H} \pm 5 \%$ | FLYBACK TRANSFORMER |
|  | Lk. Inductance | (1,2-3, 4) with (12, 11, 10, 9, 8, 7) shorted | $1 \mu \mathrm{H}$ MAX |  |
|  | DCR | (1,2-3, 4) | $39.0 \mathrm{~m} \Omega$ MAX |  |
|  |  | (12, 11, 10-9, 8, 7) | $3.5 \mathrm{~m} \Omega$ MAX |  |
|  |  | (5-6) | $230 \mathrm{~m} \Omega$ MAX |  |
|  | Hi-Pot | Pri-Sec | 1800 Vrms |  |
|  | K1 Factor | 574.6 |  |  |
| PA1736NL | Pri. Inductance | (1, 2-3, 4) | $20.5 \mu \mathrm{H} \pm 5 \%$ | FLYBACK TRANSFORMER |
|  | Lk. Inductance | $(1,2-3,4)$ with $(12,11,10,9,8,7)$ shorted | $1 \mu \mathrm{H}$ MAX |  |
|  | DCR | (1, 2-3, 4) | $39.0 \mathrm{~m} \Omega$ MAX |  |
|  |  | (12, 11, 10-9, 8, 7) | $8.5 \mathrm{~m} \Omega$ MAX |  |
|  |  | (5-6) | $230 \mathrm{~m} \Omega$ MAX |  |
|  | Hi-Pot | Pri-Sec | 1500 Vrms |  |
|  | K1 Factor | 413.3 |  |  |
| PA1835NL | Pri. Inductance | (1, 2-3, 4) | 4.5 $\mu \mathrm{H} \pm 5 \%$ | FLYBACK TRANSFORMER |
|  | Lk. Inductance | (1,2-3, 4) with (12, 11, 10, 9, 8, 7) shorted | $0.25 \mu \mathrm{H}$ MAX |  |
|  | DCR | (1, 2-3, 4) | $9.5 \mathrm{~m} \Omega$ MAX |  |
|  |  | (12, 11, 10-9, 8, 7) | $3 \mathrm{~m} \Omega$ MAX |  |
|  |  | (5-6) | $130 \mathrm{~m} \Omega$ MAX |  |
|  | Hi-Pot | Pri-Sec | 1800 Vrms |  |
|  | K1 Factor | 241.9 |  |  |
| PA1836NL | Pri. Inductance | (1,2-3, 4) | 4.5 $\mu \mathrm{H} \pm 5 \%$ | FLYBACK TRANSFORMER |
|  | Lk. Inductance | (1,2-3, 4) with (12, 11, 10, 9, 8, 7) shorted | $0.2 \mu \mathrm{HMAX}$ |  |
|  | DCR | (1,2, 3, 4) | $9.5 \mathrm{~m} \Omega$ MAX |  |
|  |  | (12, 11, 10-9, 8, 7) | $5 \mathrm{~m} \Omega$ MAX |  |
|  |  | (5-6) | $130 \mathrm{~m} \Omega$ MAX |  |
|  | Hi-Pot | Pri-Sec | 1800 Vrms |  |
|  | K1 Factor | 241.9 |  |  |

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$



## High Frequency Wire Wound Transformers

EFD20 Platforms - SMT

## Notes:

1. The temperature of the component (ambient plus temperature rise) must be within the stated operating temperature range.
2. The above transformers and inductors have been tested and approved by Pulse's power IC partners and are sited in the appropriate datasheet or evaluation board documentation at these companies. To determine which IC and IC partners are matched with the above Pulse part numbers please consult the IC Cross Reference on the Pulse website.
3. For flyback topology applications, it is necessary to ensure that the transformer will not saturate in the application. The peak flux density (Bpk) should remain below 2700Gauss. To calculate the peak density, use the following formula: Bpk (Gauss) = K1_Factor *Ipk (A)
4. In high volt-sec applications, it is important to calculate the core loss of the transformer. Approximate transformer core loss can be calculated as: CoreLoss $(W)=1.32 E-13 *(\text { Freq_kHz })^{1.63} *(\Delta \text { B_Gauss })^{2.63}$
where $\Delta B$ can be calculated as: For Flyback Topology: $\Delta B=$ Kl_Factor * (A) For Forward Topology: $\Delta B=$ Kl_Factor *Volt- $\mu$ sec

Mechanical
PAXXXXNL/ PBXXXXNL


For More Information

| Pulse Worldwide | Pulse Europe | Pulse China Headquarters | Pulse North China | Pulse South Asia | Pulse North Asia |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Headquarters | Pulse Electronics GmbH | B402, Shenzhen Academy of | Room 2704/2705 | 135 Joo Seng Road | 3F, No. 198 |
| 12220 World Trade Drive | Am Rottland 12 | Aerospace Technology Bldg. | Super Ocean Finance | \#03-02 | Zhongyuan Road |
| San Diego, CA | 58540 Meinerzhagen | 10th Kejinan Road | Ctr. | PM Industrial BIdg. | Zhongli City |
| 92128 | Germany | High-Tech Zone | 2067 Yan An Road | Singapore 368363 | Taoyuan County 320 |
| U.S.A. |  | Nanshan District | West |  | Taiwan R. O. C. |
|  |  | Shenzhen, PR China 518057 | Shanghai 200336 |  |  |
|  |  |  | China |  |  |
|  |  |  |  |  | Tel: 88634356768 |
| Tel: 8586748100 | Tel: 492354777100 | Tel: 8675533966678 | Tel: 862162787060 | Tel: 6562878998 | Fax: 88634356823 (Pulse) |
| Fax: 8586748262 | Fax: 492354777168 | Fax: 8675533966700 | Fax: 862162786973 | Fax: 6562878998 | Fax: 88634356820 (FRE) |

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2016. Pulse Electronics, Inc. All rights reserved.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Transformers category:
Click to view products by Pulse manufacturer:
Other Similar products are found below :
ET-030A F-102X F-120X F-14X-1 F-181U F-18A F-199U F-19X F-202U F-204U F-206U F-227X F-238U F-239U-1 F-23U F24-250-B F-242U F-245U F-264U F-265U F-267U F-281U F-283U F-290X F-295Z F-296Z F-298Z F-3143P F-3298Z F-33U F-346X F-35U F364U F-392A F-395X F-397U F-412X F-47U F-55X-1 F-60U F-68U F-71U F-72Z F-74U F-83A F-84AC F-85U F-86U F-9U PCT-02

