

Works with the TI SolarMagic RD-195 DC Arc Fault Detection Reference Design Kit

(1) For the TI SM73201-ARC-EV PCB

UL/C-UL recognized components
3000 Vrms gate to drive winding test
Useful operating frequency from 50 kHz to 500 kHz

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$

Part Number	Turns Ratio	Primary Inductance (3-7) (mH MIN)	DCR Pri 1 (3-7) (Ω MAX)	$\begin{gathered} \text { DCR Pri } 2 \\ (4-8)(m \Omega M A X) \end{gathered}$	$\begin{gathered} \text { DCR Sec } \\ (1-10)(\mathrm{m} \Omega \text { MAX }) \end{gathered}$	$\begin{gathered} \text { Hi-Pot } \\ \text { (Pri-Sec) }(\text { Vrms }) \end{gathered}$
PA3655NL	200:200:1	76	15.8	15.8	1.7	3000

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$

Part Number	Reference Data			Calculation Data
	RT (Ω)	Max (Amps)	(Gauss)	

Notes:

1. These current sense transformers have two one turn primaries that can be used in parallel. The listed current ratings are for parallel connection.
2. The reference values are for an application using the termination resistor (Rt) and operating with unipolar waveform at $100 \mathrm{kHz}, 40 \%$ duty cycle. The estimated temperature rise is $55^{\circ} \mathrm{C}$.
3. The peak flux density should remain below 2100 Gauss to ensure that the core does not saturate. Use the following formula to calculate the peak flux density: Bpk = Kb*Ipk * Rt * don/(Ff * Freq. in kHz) where: Rt is the terminating resistor in the application and Ff is 1 for unipolar waveform and 2 for bipolar waveform
4. The temperature rise of the component is calculated based on the total core loss and copper loss:
A. To calculate total copper loss (W): P(cu) = Ipk2*DCRSec*Ff* don where: Ff is 1 for unipolar waveform and 2 for bipolar waveform
B. To calculate total core loss (W): P(core) $=0.000073^{*}$ (Freq. in kHz)1.67 * (Bop in kG)2.532 where: Bop in $\mathrm{KG}=$ Kb ${ }^{*}$ Ipk *Rt * don/(2000 * Freq. in kHz)
C. To calculate temperature rise: Temperature Rise $(C)=60.18$ * (Core Loss(W) + Copper Loss (W)). 833

Mechanicals

PA3655NL

Schematic

Weight..
.5 grams
Tray.........................20/tray
Dimensions: $\frac{\text { Inches }}{\mathrm{mm}}$
Unless otherwise specified, all tolerences are $\pm \frac{.010}{0,25}$
For More Information

Pulse Worldwide Headquarters 12220 World Trade Drive San Diego, CA 92128 U.S.A.

Tel: 8586748100 Fax: 8586748262
Pulse Europe
Zeppelinstrasse 15
71083 Herrenberg
Germany

71083 Herrenberg Germany
\quad Fax: 497032780612

Pulse China Headquarters B402, Shenzhen Academy of Aerospace Technology BIdg. 10th Kejinan Road High-Tech Zone Nanshan District Shenzen, PR China 518057 Tel: 8675533966678 Fax: 8675533966700

Pulse North China Room 2704/2705 Super Ocean Finance Ctr. 2067 Yan An Road West Shanghai 200336 China

Tel: 862162787060
Fax: 862162786973

Pulse South Asia 135 Joo Seng Road \#03-02 PM Industrial BIdg. Singapore 368363

Tel: 6562878998 Fax: 6562878998

Pulse North Asia
3F No. 198, Zhongyuan Road Zhongli City Taoyuan County (32068) Taiwan

Tel: 88634356768
Fax: 88634356823
(trademarks or registered trademarks of their respective owners. © Copyright, 2012. Pulse Electronics, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Current Transformers category:

Click to view products by Pulse manufacturer:

Other Similar products are found below :
L595100 ACST-260 MP3500 L595050 BV EI 3042089 PACT RCP-4000A-UIRO-PT-D14 PACT RCP-4000A-UIRO-PT-D19 E54CT1L CTD-KIT $\underline{44021 ~} 44104 \underline{44176} \underline{44248} \underline{45023} \underline{45041} \underline{45071} \underline{\text { PA3828NL CT16-1-50A/50MA SPCT 100/60 1200/5A VA } 15 \text { CL } 0.5}$ SPCT 100/60 1000/5A VA 15 CL 0.5 SPCT 100/60 600/5 A VA 7.5 CL 1 SPCT 100/60 600/5 A VA 5 CL 0.5 SPCT 100/60 800/5 A VA 10 CL 0.5 SPCT 140/100 1200/5A VA 15 CL 0.5 SPCT 140/100 1250/5A VA 15 CL 0.5 SPCT 140/100 1500/5A VA 15 CL 0.5 SPCT 140/100 1600/5A VA 15 CL 0.5 SPCT 140/100 1000/5A VA 15 CL 0.5 SPCT 140/100 2500/5A VA 15 CL 0.5 SPCT 140/100 2000/5A VA 15 CL 0.5 SPCT $140 / 1003000 / 5 A$ VA 15 CL 0.5 SPCT 140/100 800/5A VA 15 CL 0.5 SPCT 62/30 50/5A VA1 CL 3 SPCT 62/30 60/5A VA1 CL 3 SPCT $\underline{62 / 3075 / 5 A ~ V A 1 ~ C L ~} 3 \underline{\text { SPCT 62/30 75/5A VA3 CL } 3} \underline{\text { SPCT 62/40 100/5 A VA } 1 \text { CL } 1} \underline{\text { SPCT 62/40 125/5 A VA } 1 \text { CL } 1} \underline{\text { SPCT 62/40 150/5 A }}$ VA 3 CL 1 SPCT 62/40 160/5 A VA 1.5 CL 1 SPCT 62/40 200/5 A VA 2,5 CL 0,5 SPCT 62/40 200/5 A VA 3 CL $1 \xrightarrow[\text { SPCT 62/40 250/5 A VA }]{ }$ 3 CL 1 SPCT 62/40 300/5 A VA 3 CL 0.5 SPCT 62/40 400/5 A VA 3.75 CL 0.5 2CSM029000R1211 HPT205NBJ-1 HCT204KFH HCT20KQD HPT205A/F

