POWER

Push Pull Converter Transformer

Functional insulation for isolated power supply driver
2.5KVrms isolation (380Vrms continuous)

Electrical Specifications @ $25^{\circ} \mathrm{C}$ - Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Part Number	Inductance (1-3) \qquad	Leakage Inductance $(1-3)$ with (4-6) shorted $(\mu H$ MAX $)$	$\begin{gathered} \text { Capacitance } \\ (1,2,3) \text { to }(4,5,6) \\ (\text { pF MAX }) \\ \hline \end{gathered}$	$\begin{aligned} & \text { DCR (1-3) } \\ & (\Omega \text { MAX }) \end{aligned}$	$\begin{aligned} & \text { DCR (4-6) } \\ & (\Omega \text { MAX) } \end{aligned}$	ET MAX (1-3) (V- $\mathrm{\mu}$ Sec Max)	Turns Ratio $(1: 3)(6: 4)$	Isolated Voltage ${ }^{2}$ (Vrms)
PH9085.011NL	1020	0.8	30	0.60	0.65	22	ICT : ICT	2500
PH9085.012NL	1020	0.6	40	0.85	1.60	22	1CT:2CT	
PH9085.021NL	1160	1.6	20	0.60	0.35	23.6	2CT:1CT	
PH9085.034NL	1020	0.6	40	0.60	0.75	22	3CT: 4CT	
PH9085.035NL	1020	0.6	40	0.80	1.20	22	3CT:5CT	
PH9085.038NL	1020	0.7	40	0.85	2.00	22	3CT:8CT	
PH9085.043NL	1160	0.8	30	0.60	0.50	23.6	4CT:3CT	
PH9085.083NL	1160	2.0	15	0.60	0.30	23.6	8CT:3CT	
PH9085.089NL	1160	0.6	40	0.60	0.70	23.6	8CT:9CT	

Notes:

1. The ET Max is calculated to limit the core loss and temperature rise at 100 KHz based on a bipolar flux swing of 210 mT Peak.
2. For Push-Pull topology, where the voltage is applied across half the primary winding turns, the ET needs to be derated by 50% for the same flux swing.
3. The applied ET may need to be further derated for higher frequencies based on the temperature rise which results from the core and copper losses
A. To calculate total copper loss (W), use the following formula:

Copper Loss $(W)=$ Irms_Primary ${ }^{*}$ DCR_Primary + Irms_Secondary ${ }^{*}$ DCR_Secondary
B. To calculate total core loss (W), use the following formula:

Core Loss (W) $=7.70 \mathrm{E}-13$ * (Frequency in kHz) ${ }^{2.43 *}(210 *[E T / E T ~ M a x])^{2.5}$
Where ET is the applied Volt Second, ET Max is the rated Volt Second for 210 mT flux
swing
C. To calculate temperature rise, use the following formula: Temperature Rise $\left({ }^{\circ} \mathrm{C}\right)$
$=340^{*}($ Core Loss $(W)+$ Copper Loss (W))
4. The AEC-Q200 temperature and humidity operational life testing was completed using a dielectric strength test of 2750 Vdc .
5. Continuous isolation voltage confirmed by $125^{\circ} / / 1000$ hrs accelerated aging with the bias voltage applied between primary and secondary windings.

Mechanical
Schematic

PH9085.XXXNL

SUGGESTED LAND PATTERN

FINAL OUTLINE

Weight \qquad .0.365grams
Tape \& Reel \qquad ..700/reel
Tray \qquad ..55/tray
Dimensions: $\frac{\text { Inches }}{\mathrm{mm}}$
Unless otherwise specified, all tolerances are $\pm \frac{.010}{0,25}$

Application

PH9085. XXXNL is a series of high isolation power supply transformer drivers. Intended to operate in a fixed duty cycle Push Pull topology, it is a part of a low cost solution for delivering lower power (up to 2 W) from a low voltage source. A typical implementation would be an isolated RS-485/RS-232 power supply driver circuit, the design is compatible with the MAXIM ${ }^{\text {TM }}$ MAX253 IC.

A schematic diagram for the Push Pull converter topology is given below.

For a fixed 50% duty cycle mode of operation, the output voltage is simply determined by the input voltage and turns ratio. So, with the available turns ratios, a variety of output voltages can be selected.

MAXIM is a registered trademark of Maxim Integrated Products.

For More Information

Pulse Worldwide	Pulse Europe
Headquarters	Pulse Electronics GmbH
15255 Innovation Drive Ste 100	Am Rottland 12
San Diego, CA 92128	58540 Meinerzhagen
U.S.A.	Germany

Tel: 8586748100	Tel: 492354777100	Tel: 8675533966678	Tel: 862162787060	Tel: 6562878998	Tel: 88634356768
Fax: 8586748262	Fax: 492354777168	Fax: 8675533966700	Fax: 862162786973	Fax: 6562800080	Fax: 88634356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2018. Pulse Electronics, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Pulse manufacturer:
Other Similar products are found below :
ICEFIN806DMN ICEFIN698/869DMN PH9085.011NL PE-0603CD060KTT H1086NLT P0182T PA1494.442NL PE-0805CD030KTT PE53363NLT 23Z106SM-T HX5400NL JXD0-4005NL ST6200QNL T3001NL HX2019 PE-67540NL PE-65968NL PE-65535NL T1142NLT H7019FNL P0841NL P0438T P0584 P0752.474T P1167.154T STQN1553-45 JY0-0016NL JG0-0098NL JG0-0025NL J200014NL W1911 HX6101NL JXD1-0025NL RO2408NMD P0469NL P0841SNLT PB2134NL ST2-12B42 PE-0805CM331JTT PE-
51509NL 53119 J3026G01DNL P0849SNL W3012-K HX5020NL HX5201NL PE-68210NL T1124NL H5004NL JX30-0005NL

