
(12) Push Pull Converter Transformer

(12) IEC 60950 and 61558 basic insulation
(12) Compliant, 12 mm creepage 4KVrms isolation (600Vrms continuous)
(1) Patented: US Patent 9,646,755

Electrical Specifications @ $25^{\circ} \mathrm{C}-$ Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$									
Part Number		$\begin{gathered} \text { Inductance } \\ (1-4) \\ (\mu H \pm 35 \%) \end{gathered}$	Leakage Inductance (1-4) with (5-8) shorted (uHMAX)	Capacitance $(1,4)$ to $(5,8)$ (DF MAX)	$\begin{aligned} & \text { DCR (1-4) } \\ & (\Omega \text { MAX) } \end{aligned}$	$\begin{aligned} & \text { DCR (5-8) } \\ & (\Omega \text { MAX) } \end{aligned}$	$\begin{gathered} \text { ET (1-4)' } \\ (V-\mu \sec M a x) \end{gathered}$	Turns Ratio (1:4) (8:5)	Isolated Voltage ${ }^{2}$ (Vrms)
Commerical	Automotive ${ }^{8}$								
PH9385.011NL	PM2155.011NL	3200	6.0	36	1.10	1.00	109	1CT: 1CT	
PH9385.045NL	PM2155.045NL	3200	4.0	36	1.10	1.25	109	4CT:5CT	
PH9385.034NL	PM2155.034NL	2600	3.0	36	1.00	1.50	98	3CT: 4CT	
PH9385.012NL	PM2155.012NL	2600	3.0	40	1.00	1.90	98	1CT:2CT	
PH9385.038NL	PM2155.038NL	2600	3.0	40	1.00	2.20	98	3CT:8CT	400
PH9385.013NL	PM2155.013NL	2600	3.0	40	1.00	2.75	98	1CT:3CT	
PH9385.027NL	PM2155.027NL	2600	3.0	40	1.00	3.00	98	2CT:7CT	
PH9385.015NL	PM2155.015NL	1350	3.0	30	0.80	3.20	70	$1 \mathrm{CT}: 5 \mathrm{5T}$	

Notes:

1. The ET Max is calculated to limit the core loss and temperature rise at 200 KHz based on a bipolar flux swing of 180 mT Peak.
2. For Push-Pull topology, where the voltage is applied across half the primary winding turns, the ET needs to be derated by 50% for the same flux swing.
3. The applied ET may need to be further derated for higher frequencies based on the temperature rise which results from the core and copper losses
A. To calculate total copper loss (W), use the following formula: Copper Loss $(W)=$ Irms_Primary ${ }^{2 *}$ DCR_Primary + Irms_Secondary ${ }^{2 *}$ DCR_Secondary.
B. To calculate total core loss (W), use the following formula: Core Loss $(W)=3.93 E-10^{*}(\text { Frequency in } \mathrm{KHz})^{1.7} *(180 *[E T / E T M a x])^{2.17}$ Where ET is the applied Volt Second, ET Max is the rated Volt Second for 180mT flux swing
C. To calculate temperature rise, use the following formula:

Temperature Rise $\left({ }^{\circ} \mathrm{C}\right)=100$ * (Core Loss $(\mathrm{W})+$ Copper Loss (W))
4. The AEC-Q200 temperature and humidity operational life testing was completed using a dielectric strength test of 4000 Vdc .
5. Optional Tape \& Reel packing can be ordered by adding a " $\overline{\text { " }}$ suffix to the part number (i.e. PH9385.011NL becomes PH9385.011NLT). Pulse complies to industry standard tape and reel specification EIA481.
6. The "NL" suffix indicates an RoHS-compliant part number.
7. Continuous isolation voltage confirmed by $125^{\circ} \mathrm{C} / 1000 \mathrm{hrs}$ accelerated aging with the bias voltage applied between primary and secondary windings.
8. The PM2155.XXXNLT part numbers are AEC-Q200 and IATF16949 certified. The mechanical dimensions are 100% tested in production but do not necessarily meet aproduct capability index (Cpk) >1.33 and therefore may not strictly conform to PPAP.

Mechanical

Schematic

TAPE \& REEL INFO

SURFACE MOUNTING TYPE, REELTAPE LIST

PART NUMBER	REEL SIZE (mm)			TAPE SIZE (mm)		
	A	G	P_{1}	W	$\mathrm{~K}_{0}$	PCS/REEL
PH9385.XXXNLT/PM2155.XXXNLT	0330	32.4	24	32	8.3	300

APPLICATION

PH9385.XXXNL is a series of high isolation power supply transformer drivers. Intended to operate in a fixed duty cycle Push Pull topology, it is a part of a low cost solution for delivering lower power (up to 2.5 W) from a low voltage source. A typical implementation would be an isolated RS-485 power supply driver circuit, the design is compatible with the MAXIM ${ }^{\top M}$ MAX253 IC. Other IC's include Texas SN6501 UCC2808, Analog ADuM4070, ADuM447x.
A schematic diagram for the Push Pull converter topology is given below.

For a fixed 50% duty cycle mode of operation, the output voltage is simply determined by the input voltage and turns ratio. So, with the available turns ratios, a variety of output voltages can be selected. This range can be extended by implementing different topologies such as forward or bridge and can be used with controllers offered by different IC vendors for a number of different applications.

For More Information

Pulse Worldwide	Pulse Europe	Pulse China Headquarters	Pulse North China	Pulse South Asia	Pulse North Asia
Headquarters	Pulse Electronics GmbH	Pulse Electronics (ShenZhen) CO., LTD	Room 2704/2705	3 Fraser Street	1F., No. 111 Xiyuan Rd
15255 Innovation Drive Ste 100	Am Rottland 12	D708, Shenzhen Academy of	Super Ocean Finance Ctr.	0428 DU0 Tower	Zhongli City
San Diego, CA 92128	58540 Meinerzhagen	Aerospace Technology,	2067 Yan An Road West	Singapore 189352	Taoyuan City 32057
U.S.A.	Germany	The 10th Keji South Road,	Shanghai 200336		Taiwan (R.O.C)
		Nanshan District, Shenzhen, P.R. China 518057	China		
Tel: 8586748100	Tel: 492354777100	Tel: 8675533966678	Tel: 862162787060	Tel: 6562878998	Tel: 88634356768
Fax: 8586748262	Fax: 492354777168	Fax: 8675533966700	Fax: 862162786973	Fax: 6562800080	Fax: 88634356820

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Transformers category:
Click to view products by Pulse manufacturer:
Other Similar products are found below :
ET-030A F-102X F-120X F-14X-1 F-181U F-18A F-199U F-19X F-202U F-204U F-206U F-227X F-238U F-239U-1 F-23U F24-250-B F-242U F-245U F-264U F-265U F-267U F-281U F-283U F-290X F-295Z F-296Z F-298Z F-3143P F-3298Z F-33U F-346X F-35U F364U F-392A F-395X F-397U F-412X F-47U F-55X-1 F-60U F-68U F-71U F-72Z F-74U F-83A F-84AC F-85U F-86U F-9U PCT-02

[^0]: Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.

