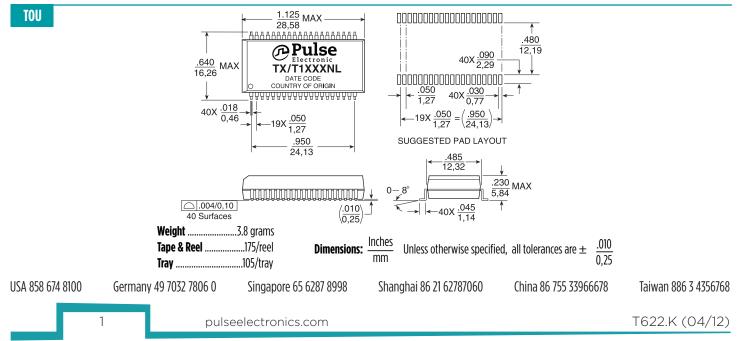

Quad Port T1/E1 with 8 Transformers, 1500 Vrms



- RoHS peak reflow temperature rating 245°C
- Models matched to leading quad and dual T1/ E1/CEPT/ISDN-PRI transceivers
- Crosstalk: -65 dB or better
- UL1950 recognized (some parts pending approval)
- RoHS compliant versions available upon request

	Electrical Specifications @ 25°C											
	RoHS Compliant Part Number		Turns Ratio (Pri:Sec ±2%)		OCL @ 25°C (mH MIN)		ι (μΗ ΜΑΧ)		w MAX)	Package/	Primary Pins	
Std Temp.	Ex Temp	ТX	RX	TX	RX	TX	RX	TX	RX	Schematic	Transmit	Receive
T1064NL	-	1:1.14	1:1.14CT	1.2	1.2	.6	.6	35	35	TOU/1	1-2, 6-7, 11-12, 16-17	38-36, 33-31, 28-26, 23-21
T1065NL	T1105NL	1:2CT	1:2CT	1.2	1.2	.8	.8	35	35	TOU/3	4-5, 9-10, 14-15, 19-20	24-25, 29-30, 34-35, 39-40
T1068NL	T1108NL	1:2CT	1:1CT	1.2	1.2	.6	.6	35	35	TOU/2	1-2, 6-7, 11-12, 16-17 21-22, 26-27, 31-32, 36-3	
T1071NL	-	1:1/1.26	1:2CT	1.2	1.2	.6	.6	35	35	TOU/2	1-2, 6-7, 11-12, 16-17 21-22, 26-27, 31-32, 36-	
T1073NL	-	1:2	1:2	1.2	1.2	.6	.6	35	35	TOU/4	1-3, 6-8, 11-13, 16-18 4-5, 9-10, 14-15, 19-20	
T1124NL	T1114NL	1:2CT	1CT:2	1.2	1.2	.6	.6	35	35	TOU/3	4-5, 9-10, 14-15, 19-20 1-3, 6-8, 11-13, 16-18	
T1142NL	T1231NL	1:2.4	1:1	1.0	1.0	.5	.5	35	35	TOU/5	1-2, 8-9, 11-12, 18-19	24-25, 27-28, 34-35, 37-38
T1145NL	-	1:2/2.4	1:0.79/1	1.0	1.0	1.0	1.0	35	35	TOU/6	1-2, 9-10, 11-12, 19-20	37-36, 35-34, 27-26
-	TX1262NL	1:2	1:2	1.2	1.2	.7	.7	35	35	TOU/5	1-2, 6-7, 11-12, 16-17	3-4, 8-9, 13-14, 18-19
-	TX1264NL	1:2CT	1CT:1	1.2	1.2	.6	.6	35	35	TOU/3	4-5, 9-10, 14-15, 19-20	1-3, 6-8, 11-13, 16-18
-	TX1266NL	1:2	1:1	1.2	1.2	.6	.6	35	35	TOU/4	1-3, 6-8, 11-13, 16-18	4-5, 9-10, 14-15, 19-20
-	TX1295NL	1:1.26CT	1:1.26CT	1.2	1.2	.6	.6	35	35	TOU/3	4-5, 9-10, 14-15, 19-20	24-25, 29-30, 34-35, 39-40

Notes: Chart Notes and TOU Schematics are on page 2.

Mechanical

Quad Port T1/E1 with 8 Transformers, 1500 Vrms

Pulse Electronics

Notes from Electrical Specifications Table

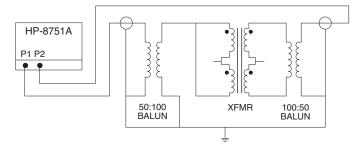
- A. OCL (primary inductance) is measured at the primary winding. Turns ratio is specified primary: secondary.
- B. To make a 1CT:1 ratio from a 1CT:2CT ratio, use only one-half of the secondary (2CT) winding.
- **C. It is possible** to use the same transformer model for the three impedance levels of TI (100 W) and CEPT (75 Ω & 120 Ω). For specific connection information and resistor values, refer to IC vendor's data book.
- D. Dual Ratio Transformer (T1071NL and T1145NL) These transformers have tapped secondary windings to provide two turns ratios (T/R). Use the entire primary winding and connect the secondary pins listed below to obtain desired turns ratio:

Part Number	Turns Ratio 1	Secondary Pins	Turns Ratio 2	Secondary Pins
	1:1	40-39	1:1.26	40-38
T1071NL	1:1	35-34	1:1.26	35-33
TIV/INL	1:1	30-29	1:1.26	30-28
	1:1	25-24	1:1.26	25-23
	1:2	40-39	1:2.4	40-38
T114CM	1:2	33-32	1:2.4	33-31
T1145NL	1:2	30-29	1:2.4	30-28
	1:2	23-22	1:2.4	23-21

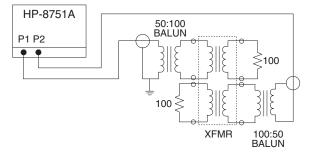
E. Dual Ratio Transformer for the surface mount package is anti-static tubes. Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number, (i.e. TI064NLT).

F. Extended Temperature Range Models - For extended temperature range transformers (-40 °C to +85 °C operating temperature range), OCL (Open Circuit Inductance) for the primary winding) is specified at both -40 °C and +25 °C. At -40 °C, OCL is 600 μH minimum. All other parameters are specified at +25 °C only. Standard temperature range is 0 °C to +70 °C.

		Schematics	
TOU	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 2 \\ 1 & 0 \\ 2 & 0 \\ 0 & 389 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0 \\ 1 & 0 \\ 5 & 0 \\ 1 & 0 \\ 1 \\ 0 \\ 0$	3 1 0 3 0 3 0 3 0 3 0 4 0 3 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5
	$\begin{array}{c} 4 \\ 1 & & & & & & & & \\ 0 & & & & & & & & \\ 0 & & & &$	5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 6 \\ 1 & 0 & 40 \\ 0 & 38 \\ 3 & 0 & 0 \\ 5 & 0 & 38 \\ 3 & 0 & 0 \\ 5 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 36 \\ 7 & 0 & 31 \\ 10 & 0 & 32 \\ 10 & 0 & 32 \\ 10 & 0 & 32 \\ 10 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 10 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 31 \\ 11 & 0 & 0 & 32 \\ 12 & 0 & 0 & 32 \\ 12 & 0 & 0 & 32 \\ 13 & 0 & 0 & 32 \\ 10 & 0 & 0 & 32 \\ 10 & 0 & 0 & 32 \\ 10 & 0 & 0 & 32 \\ 10 & 0 & 0 & 32 \\ 10 & 0 & 0 & 0 \\ 10 & 0 & 0 $
	2	pulse	eelectronics.com


	Transformer S	election Guide				
IC Mfr.	IC Part Number	Comments	Octal SMT			
			STD Temp	EXT Temp		
Mindspeed	ndspeed BT8510		T1071NL	-		
(Conexant)	BT8510	T1/E1	T1071NL	-		
	CN8380		T1124NL	T1114NL		
Cirrus Logic	61318	120 E1	T1068NL	T1108NL		
(Crystal)	61577	T1 & E1	T1065NL	T1105NL		
	61304A/5A/535A/574A,/75	75 E1	T1068NL	T1108NL		
	61304A/5A/535A/574A,/75	120 E1	T1071NL -			
	61582, 61583		T1064NL	-		
	61310, 61581		T1068NL	T1108NL		
	61584/84A	IQ3	T1065NL	T1105NL		
	61584/82/83/A	IQ5	T1064NL	-		
Maxim	DS2196		T1068NL	T1108NL		
(Dallas)	DS2148/Q48	3V	T1068NL	T1108NL		
	DS21352/Q352, DS21354/Q354		T1068NL	T1108NL		
Exar	T5683A, 59L91		T1065NL	T1105NL		
	T5894, T5897, T5997		T1065NL	T1105NL		
	T5791/T93/94/95		T1071NL	-		
	83L30/34/38		T1065NL	T1105NL		
Infineon	PEB22504	3.3V	T1142NL	T1231NL		
Technologies	PEB22554	3.3V	T1142NL	T1231NL		
(Siemens)	PEB2256 3.3 V	E1/T1/J1	T1142NL	T1231NL		
Intel	LXT 300/301		T1065NL	T1105NL		
(Level One)	LXT 304/305/307	T1, E1	T1065NL	T1105NL		
	LXT 304/305/307	75 E1, 120E1	T1071NL	-		
	LXT 310/317/318		T1068NL	T1108NL		
	LXT 331	T1, E1	T1068NL	T1108NL		
	LXT 331, LXT 332		T1065NL	T1105NL		
	LXT 334, LXT 335	T1/E1	T1065NL	T1105NL		
	LXT 334, LXT 335	75 E1	T1071NL	-		
	LXT 336		T1065NL	T1105NL		
	LXT 350, LXT 351, LXT 359	T1, E1	T1068NL	T1108NL		
	LXT 360/361/362/363	T1, E1	T1068NL	T1108NL		
	LXT 380/381/384/386/388	T1, E1	T1068NL	T1108NL		
	LXT 380/381/384/386/388	T1, E1	T1124NL	T1114NL		
Lucut	LXT 3104, LXT 3108		T1068	T1108NL		
Lucent Technologies	T7689, T769, T7698	DS1	T1064NL	-		
Technologies	TLIU04C1	DS1	T1064NL	-		
Zarlink	MT9076, MT9075		T1142NL	T1231NL		
(Mitel)	MT9074, MT9075		T1068NL	T1108NL		
PMC Sierra	PM4318		T1065NL	T1105NL		

Quad Port T1/E1 with 8 Transformers. 1500 Vrms



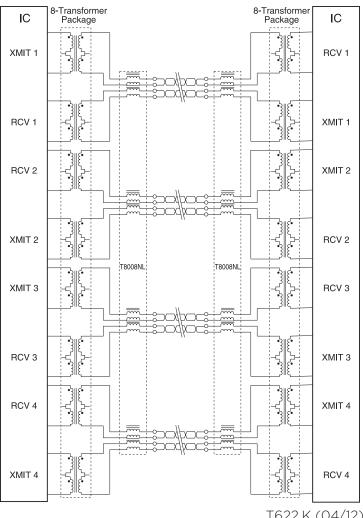
Application

- 1. ET Product All coils have an ET product of 10 V-usec minimum.
- 2. Flammability Materials used in the products are recognized as UL94-VO approved. Products meet the IEC 695-2-2 requirements (Needle Flame Test).
- 3. Balance Characteristics The transformers meet the requirements for longitudinal balance of FCC part 68.
- 4. Common Mode Rejection Ratio the CMRR for all transformers is better than 50dB at 1MHz. A typical test circuit is shown below.

5. Crosstalk Attentuation - In the packages which contain transmit and receive transformers side by side, sufficient crosstalk attentuation is achieved by the inherent characteristics of the toroid cores as well as by their proper positioning. The crosstalk attentuation is typically 65 dB or better. This result was established with the test circuit shown below.

6. Return Loss - ITU-T G.703 and European national regulatory documents specify minimum return loss levels. The transformers will allow these limits to be complied with the situations where they are applicable.

F	requency	50-100 kHz	10 kHz-2MHz	2-3 MHz
Return Loss				
	Transmit	9 dB	15 dB	11 dB
	Receive	12 dB	18 dB	14 B


7. Surge Voltage Capability - All transformers and chokes meet surge voltage tests according to the most stringent regulatory documents, when used with the proper voltage and current suppression devices:

3

Metallic Voltage: 800 V peak, 10/560µsec 2,400 V peak, 10/700µsec Longitudinal Voltage:

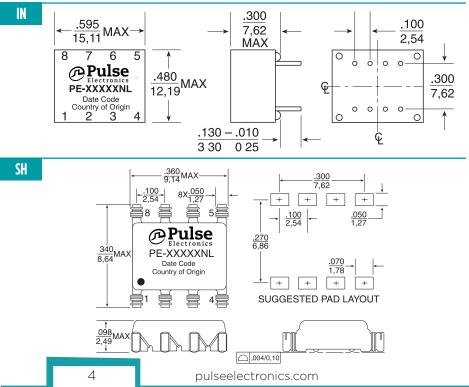
- 8. Isolation Voltage 100% of transformers are tested during the specified isolation voltage level.
- 9. General Information The transformers are specifically designed for use in 1.544 Mbps (T1), 2.048 Mbps (CEPT) and ISDN Primary rate (PRI) interface applications. They are matched to the majority of the line interface transceiver ICs currently available. Use of the proper transformer allows the interface circuit to comply with ITU-T G.703 and other standards regarding pulse waveform, return loss, and balance.
- 10. Common Mode Chokes Additional high-frequency 4-line common mode chokes may be used to provide an effective means of complying with national and international regulations on EMI. The common mode chokes are designed to be used in conjunction with Pulse's T1/CEPT transformers as shown in the typical application below. Crosstalk is typically -65 dB or better.

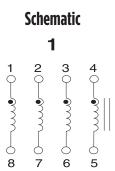
Typical Application

T622.K (04/12)

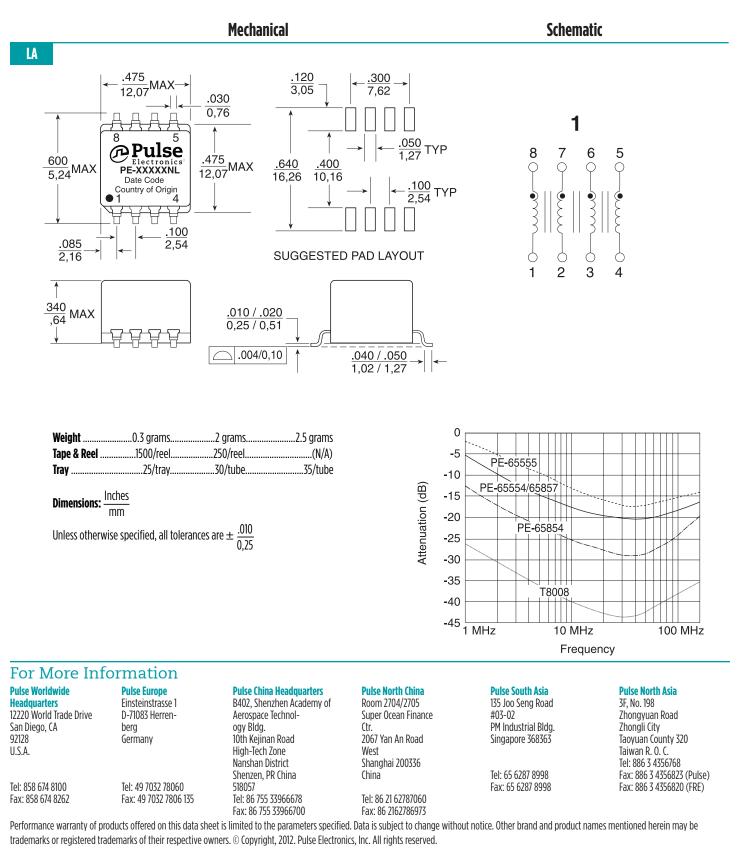
Quad Port T1/E1 with 8 Transformers, 1500 Vrms

			Elect	rical Specifications @	≥25°C			
RoHS Compliant Part Number	Number of Lines	Turns Ratio (±5%)	ocl (µH MIN)	¢_{₩/₩} (pF MAX)	LL (µH MAX)	dcr (Ω Max)	Isolation (Vrms MIN)	Package/Schematic
High Frequency Cor	High Frequency Common Mode Chokes							
T8008NL*	16 (8 x 2 line)	1:1 (8 places)	47.0	25	.18	0.40	500	TOU/2 (Surface Mount)
PE-65554NL	4	1:1:1:1	24.0	15	.20	0.30	500	IN/1 (Through Hole)
PE-65555NL	4	1:1:1:1	8.0	10	.20	0.25	500	IN/1 (Through Hole)
PE-65854NL	4	1:1:1:1	47.0	16	.20	0.30	500	SH/1 (Surface Mount)
PE-65857NL	4	1:1:1:1	24.0	15	.23	0.30	500	LA/1 (Surface Mount)


*Notes: Please see page 1 for TOU mechanical specifications.


TOU

Schematic


2
10 <u>•••</u> 040
20-039
30-038
50-036
6 0- <u>•</u> 035
70-034
80 <u>•</u> 1033
100-000-031
110- <u>•</u> 030
120-029
130 <u> </u>
150-026
160— <u>•</u> 025
170-024
180— <u>•</u> 023
200-000-021

Quad Port T1/E1 with 8 Transformers, 1500 Vrms

5

pulseelectronics.com

T622.K (04/12)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Transformers / Signal Transformers category:

Click to view products by Pulse manufacturer:

Other Similar products are found below :

CX2041NLT MGPWT-00449-P PE-64961 H1302FNLT H5008FNL H5012FNL H5020FNLT H5077NLT H5079NLT H5084FNLT B78476A9558A003 1812WBT2-4 1879479-1 HX2260FNL HX5014FNL EX2024FNL FL1066 T1137NLT T3012NL PE-65812FNL PE-65848FNLT H1174FNL H1302FNL H5015FNL H5019EFNL H5062FNLT CX2047LNL MGPWT-00059-P MGPWT-00266-P MGPWT-00278-P MGPWT-00431-P TTC-100 TTC-143-H TTC-5032-1 BX1194WNLT HX1234NLT HX5008FNLT HX5019FNL HX5084NL 3-1879385-5 TX1263NLT 4-1879391-0 T1142NL HX6101FNL HX5084FNL HX1148NL HX5020FNLT HX5014FNLT T1124NL 1879732-1