PUOLOP 迪浦

60V/20A N-Channel Advanced Power MOSFET

Features

- ♦ Low On-Resistance
- ◆ Fast Switching
- ♦ 100% Avalanche Tested
- ◆ Repetitive Avalanche Allowed up to Tjmax
- ♦ Lead-Free, RoHS Compliant

Description

PTD20N06 designed by the trench process techniques to achieve extremely low on-resistance. Additional features of this design can operate at high junction temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Motor applications and a wide variety of other applications.

General Features

♦ V_{DS} =60V,I_D =20A

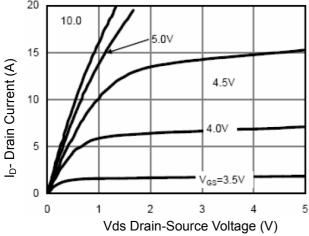
 $R_{DS(ON)}$ <44m Ω @ V_{GS} =10V

TO-252-2L

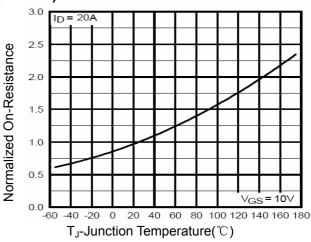
Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (Ta) is 25°C, unless otherwise specified.

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	20	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	14	А	
Pulsed Drain Current	I _{DM}	60	Α	
Maximum Power Dissipation	P _D	40	W	
Derating factor		0.27	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	
Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	3.7	°C/W	



60V/20A N-Channel Advanced Power MOSFET


Electrical Characteristics (T_c=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics			•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)	·						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	2.0	3.0	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	37	44	mΩ	
Forward Transconductance	g FS	V _{DS} =5V,I _D =4.5A	11	-	-	S	
Dynamic Characteristics (Note4)	·						
Input Capacitance	C _{lss}	V _{DS} =30V,V _{GS} =0V, F=1.0MHz	-	500	-	PF	
Output Capacitance	C _{oss}		-	60	-	PF	
Reverse Transfer Capacitance	C _{rss}		-	25	-	PF	
Switching Characteristics (Note 4)	·						
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, I_D =2A, R_L =6.7 Ω V_{GS} =10V, R_G =3 Ω	-	5	-	nS	
Turn-on Rise Time	t _r		-	2.6	-	nS	
Turn-Off Delay Time	t _{d(off)}		-	16.1	-	nS	
Turn-Off Fall Time	t _f		-	2.3	-	nS	
Total Gate Charge	Qg	V _{DS} =30V,I _D =4.5A, V _{GS} =10V	-	14		nC	
Gate-Source Charge	Q_{gs}		-	2.9		nC	
Gate-Drain Charge	Q_{gd}		-	5.2		nC	
Drain-Source Diode Characteristics			•				
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	20	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	35	-	nS	
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	53	-	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

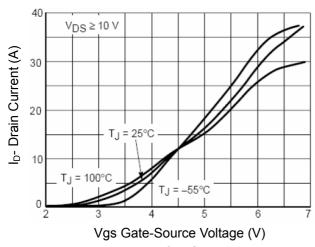


Figure 1 Output Characteristics

Figure 4 Rdson-Junction Temperature

Figure 2 Transfer Characteristics

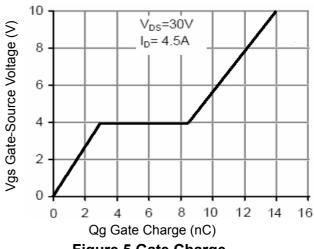


Figure 5 Gate Charge

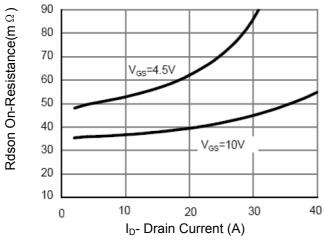


Figure 3 Rdson- Drain Current

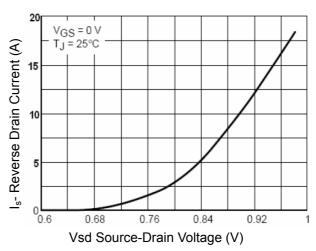


Figure 6 Source- Drain Diode Forward

2015-3-26

60V/20A N-Channel Advanced Power MOSFET

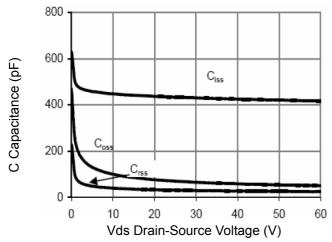


Figure 7 Capacitance vs Vds

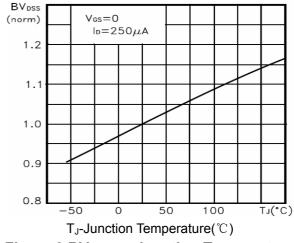
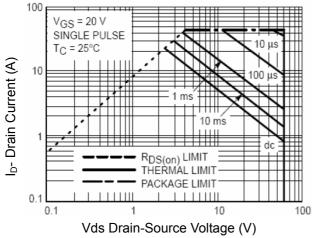



Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

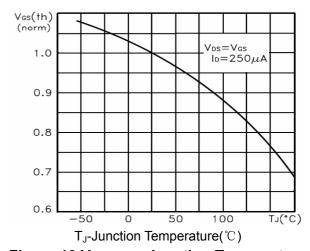


Figure 10 V_{GS(th)} vs Junction Temperature

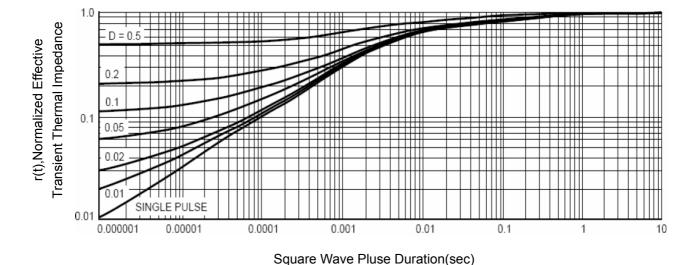


Figure 11 Normalized Maximum Transient Thermal Impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by PUOLOP manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3